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§1. Introduction.

The invariant set K with respect to some contraction maps fi, -, fs
on RY has interesting feature such as self-similarity, to which fractal is
closely related. The set K may be considered as an image of the natural
embedding ¢ from the set K of infinite sequences on k symbols. The
set K equipped with the product topology is a compact, totally dis-
connected set. If the map ¢ is not one-to-one, the invariant set K may
be connected, though it is totally disconnected when ¢ is one-to-one. In
[1], Hata studied the structure of self-similar sets by using linear homeo-
morphisms on the unit interval [0, 1] and he gave the conditions for self-
similar sets to be connected, to be a simple arc, to have many end points,
ete.

In this paper, we show a different approach to study the structure of
self-similar sets which are the invariant sets with respect to two contrac-
tion maps fi, f, on RY. When the map ¢ from FE{ onto the invariant
set K with respect to fi,f: is not one-to-one, there exists a pair (u',%? in
E{” such that o(u')=¢(u?. We introduce an equivalence relation in the
set of infinite sequences, when this pair (u', u”) satisfies some condition, which
we call (*)-pair. The cosets induced by the (*)-pair (u!,u?) are the ele-
ments of a quotient set E{”/; of E{”. We shall investigate the topology
of the quotient set K {”/;, and then study the structure of self-similar
sets by applying this result to the invariant set with respect to some
contraction maps. At §3 we show that the quotient set E{”/; is connected
since the equivalence set consists of more than two elements [Theorem
3.6]. §4 is devoted to the study of end points of EF{”/i:. The number of
end points of the quotient set depends on the property of equivalence sets.
We show that there exists an end point of E{”/; for any (*)-pair (u',u?)
and that there exist infinitely many end points for some (*)-pair (u',u?
[Theorem 4.4]. We give a necessary and sufficient condition for E{/; to
be homeomorphic to the unit interval [0,1] in Theorem 4.5. In §5 we
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apply these results to the invariant set with respect to contraction maps
fi,f. on R¥. Let f; (j=1,2) be an one-to-one, contraction map on R”, let
Fix (f7) be the uniquely determined fixed point of f; and let K=K(f1,f2)
be the compact subset of RY satisfying K =fi(K)Uf:(K). Then there
exists a continuous map ¢ of E{” onto K. If Fix(f))#Fix(f, and fi(K)
N fo(K)# @, then there exist a (*)-pair (u',u?) in E{” such that ¢(u')
=¢(u?) [Proposition 5.1]. By using this (*)-pair (u',u?, we define the
quotient set E{”/; and investigate the relation between the invariant set
K(fi, f>) and the quotient set E{’/;. If fi(K)N fo(K) is a singleton, K is
homeomorphic to E{’/; [Theorem 5.2] and the structure of K depends on
the pair (u',u?. Some pair (u!,u?) makes K(fi,f.) a simple arc and some
other pair (u!,u?) induces K(fi,f.) to have infinitely many end points
[Theorem 5.3]. So the investigation of E§”/; is useful in discussing the
topology of K and also may be helpful in drawing fractals.

§2. Preliminaries.

(1) Let E{ be the set of infinite sequences on 2 symbols {x=(x, -
ta) @ ={1,2)} and E® be the set of finite sequences {a=(a,--az)ln= N,
a;={1,2}}. Define the addition

®: B x(BPUEP) — (B UEL) by

(ar+an) B (B -Bm) =(ar @y By fn)
and
(al...an)@(xl...xk...):(al...anxl...xk...) .

(2) Let |a| be the length n of a=(a,-rar)= K and |x|=o for xc
E{. We shall say that a=E is a cycle of x=FE{” if « satisfies the
relation x=a@z and we say that a, is the minimal cycle of x if a, is a
cycle of z and |a,|<|a| for any cycle @ of . We say that x<=E{” is the
minimal cycle of x if there exists no a=E ™ such that x=aPz.

(3) For x=E{, the notation x=>" P2’ means the following :

if M<co, then 3, D2i =2'D2*D---D2¥ with /e EP(1=5<M+1) and
e FE®, and

if M=co, then XX P2/ =2'PB2*P---P2"P--+ with 2/ EFP(1<5< o).

(4) For n= N\U{0}, we shall define maps ¢": E{”—FE{ and P,: K3
—EP\J{p} by

Un(xl"'mk"') :(xn+1xn+2' )

J (@yeray,) (m21)
Pn(wl'“xk'”):
L@ (n=0).
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(5) For z,y= K", let a and B be minimal cycles of # and y respec-
tively and Q(z,y)={ZL D2’ E{”|2’<{a, 8, %,y}}. We say that » and y<=
E” are mutually prime if the existence of n,m<N such that P, ¢ "ve
{a, B} for v&Q(x,y) implies P,v = 2'P -+ P2’ with [€ N and 27 {a, B (1<
J=1).

(6) For u'=(u,),u’=(uz)= E{’, let a' and a® be minimal cycles of u'
and u* respectively. We say that (u',u? is a (*)-pair if the following
relations (*1), (*2) and (*3) hold.

(*1) wi=1u2=2.

(*2) ' and u® are mutually prime.

(*3) Either |[a'|=2 or |a* =2 is satisfied.

§3. The quotient set E{”/;.

The set E{”, equipped with the product topology, is a compact set
which has a fundamental basis {U,(x)|n= N} of neighborhoods of z< E{,
where U,(x)={y<sE,”|P,x=P,y}.

Hereafter, let (u',u%) be a (*)-pair and a', a® be the minimal cycles of
w',u® respectively and let Qu=Q(u', %, that is, Qu={Z}L, P cEP|pic
{a', a® u',u%}. Then we have

LEMMA 3.1. Qu is a closed set in E{.

PROOF. Since every point of E{” is a closed set, it is obvious that
Qu={u',u% is closed in E{” if |a'|=|a?|=oc. In case of |a'|=n,< = and
la®| =m,<co, suppose for y=(y,)=E{”, P,y belongs to P,Qu for all ne N.
Then Pn]_ly:a"1 with j7,=v, and Pnjl+nj2y:af1®aj2 with jzzynj1+1 (7.={1, 2}).
By repeating this process, we obtain that y=3;.,Pa’* belongs to Qu. So
y#Qu implies the existence of n=N such that U.(y)\Qu=@. Hence Qu
is closed. If either |a'|<co, |a’|=c0 or |a'|=o, |a? <o holds, we can
prove that Qu is closed in a similar way. O

DEFINITION. We shall write xay for z,y= E{” if either x=y holds
or there exists n= N 'U{0} such that P.x=P.y and ¢z, y< Qu.

LEMMA 3.2. The relation ; satisfies the equivalence relation.

PROOF. It is clear that x;x holds and x;y implies y;z. So we shall
show that x;y and y;z implies x;2. If either z=y or y=2z holds, it is
obvious. So suppose that there exist n, and =, such that n,=n,>0, P,
=Py, Pry=P,z and o"x, 6"y, 6"y, ¢"2=Qu. Then ¢"y<=Qu implies
oy =27 P7 with 27e{a', @’ for 1<5<M. If n,=n,, it is obvious that
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xa2. So suppose n;>7, Then there exists 1=0 such that o™y=z'P - D
ZPrPemy with |71=<|2!*!]. Since u' and u* are mutually prime, 7=z'"'
holds and ¢™x=_P, _,,(c"y)De"x=31D2’De™x belongs to Qu. Since it
is obvious that P, x=P,z we have x;2z. Therefore the relation # satisfies
the equivalence relation. [J

DEFINITION. For x=E{, let Qx be the equivalence class {y= E :
xray: and let E”/; be the set of equivalence classes, which we call the
quotient set induced by (u',u?. Let ¢ be the canonical map of E;” onto
E/a.

For ne N and 0<57<n—1, define

H(x; j)={hc E{’|Ph=Px,0’h<sQu, q(h)+q(x)}
J; n)={j={0,1,--- ,n—1}|3hc H(x; j) s.t. P,o=P,h}
Va@)={ys E|P,Qy={P,x} or y=u}

U,(q(x)={qy) e By [3| P,QyC P, Qx} .
Let A, be the set of N-valued functions on Qx. For y& A,, define
Vlg(x) = Ulg(Vye (@) |2’ & Q.

REMARK. It holds that U,(q(x)=\U{q(V,.(2')| 2 & Qu}.

PROPOSITION 3.3. Concerning the topology in FE /i, we have the
following.

(1) The family {V,(qx)|qx)EE [, n= A,} is a basis for the quotient
topology in E[s, that is, for any n< A, q ' (V,(q(x) is open in E”
and for WCE|; satisfying that ¢ (W) is open in E{”, there exists
pe A, such that Vi (qx))CW.

(2) The family {U,(q@)|neN,qx)eE{ [} is a basis for some to-
pology in E 5 /[;.

(8) The topology induced by {V,(q(x))} is finer than that by {U,(q(x))}.

(4) i) When Qu consists of two elements {u',u’}, the topology in-
duced by {V,(q(x))} is equivalent to that by {Ua(q(z))}.

ii) For a=E satisfying that Qr=/{x}, we have Un(q(x))=V,(q(x))
for any nEN, where p.(x')=n for any x'EQu.

PROOF. (1) By the definition, we have that V,(x)= U, (@)\\U{H(x; j)|J
eJ(x; n)}. So V,(x) is an open set, since H(x; j) is a closed set by the
closedness of Qu and J(z: ) is a finite set. For n<A4,, we see that
¢~V (q(x)) is open by the relation ¢~'(V,(q(2))="U{V,n (22’ € Qu}.

For WcE{®/, with q(x)e W, let ¢ (W) be open in E{’. For any
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o' Qu, there exists n, &N such that U, ,(«")Cq (W). Define =, by
p(@’)=mn, for any z'€Qx. Then V,,,(x")C Uy»(@’)C qg (W) and so
q(U{Vyo, @)’ €Qu)W. We get V,(q(z))C W by the relation

q(J{Vyon(@N)]e" € Quh) = U{g(Vyry (@) 2" € Qu}

(2) qy)= U,(q(x)) implies U,(q))c U,(q(x)). So it is obvious that
{U.} is a basis for some topology.

(3) Define 5,4, by 7.(z') =n for any 2’ Qx. Then U,(g(x)) =
V,alq(x)), which implies that the topology induced by {V,(q(x))} is finer
than that by {U(q(x))}.

(4) It is obvious by definition. O

Let (E§”/s, U) be the topological space E{/z, where the family
{Ugx)|g(x)= E{”’ s, n= N} is a basis for the topology.

PROPOSITION 3.4. Suppose ¢: K —KCR" is continuous and q(x)=
q(y) implies p(x)=¢(y). Then §: (B[, U)—K, defined by §(q(x))=¢(x),
18 contiuous.

PROOF. d(q(x))=¢(x) is well-defined since q(x)=q(y) implies ¢(z)=¢(y).
Since ¢ is uniformly continuous on a compact set E{”, for any neigh-
borhood VC R of 0= R"Y there exist n=N such that ¢(U,(x))C V+ ¢(x)
holds for any x=FE{. Then it holds that ¢ *(U,(q(2)))C U{Ua(z")|2’ < Qu},
which implies $(U,(q(x)))C V+@(g(z)) and so ¢ is continuous. [

LEMMA 3.5. Let A be an open proper subset of (E[;,U). For
gx)= A such that Qr={x}, suppose neN satisfies U,(q(x)) T A and
U.-(qx))# A. Then either of the following holds.

(1) q(h) does mot belong to A for any heH(x; n—1).

(2) There exist m(>n) and y=q '(A) satisfying P,..y=P,_x,

Qu={y}, Unla)CA and U,-(qy))gA.

PROOF. U,(¢(x))C A and U,-,(q(x))¢ A implies H(x; n—1)# @. Suppose
qglhy= A for some h=H(x; n—1). Then we shall show that (2) holds.
Qu={x} implies U,-(q(x))CU,(g(h)) for heH(x; n—1). By the relation
‘q(h)eA, there exists m(>mn) satisfying Un(q(h))C A and U,._,(g(h)z A. So
there exists zc E§” satisfying P, ,QzCP,_,Qh, P, Qz={P,_2} and q(z)&
A. Let hWeQh satisfy P,_z2=P,_ /. We can find y=FE{ such that
P,y=P,h" and Qy={y}. Then y=q '(A) and m are required ones. [

THEOREM 3.6. Let (u',u?) be a (*)-pair.
Then the quotient set (E§” [z, U) induced by (u',u?) is a commected,
compact, Hausdorff space, where the family {U.(q(x))|q(x)E E{ [z, ne N}
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18 a basts for the topology.

PROOF. To prove the connectedness of the set (E{/z, U), we shall
show that nonempty subset B of E{”/; is not open if A=B°(=the com-
plement of B) is a nonempty open set. Since A is nonempty, there exist
x'=q 7 (A) and n, =N such that Qz'={x'}, U,,(¢(z")C A and U, -(q(a") & A.
If q(h) does not belong to A for h=H(x'; n,—1),q(h) is not an interior
point of B, which implies that B is not open. If ¢(h) belongs to A for
he=H(x'; n,—1), there exist n.(>n,) and x*=q¢ '(A) such that P, x'=
P, x?, Qut={Y, U,lqx®))CA and U,, (¢(x*))ZA, by Lemma 3.5. If
q(h') does not belong to A for W< H(x*; n,—1), it follows that B is not
open in the same way as above. So we consider the case that there exist
sequences {n,}C IV and {z’}Cq '(A) satisfying n,>n,_,, Pnj_l_locf-——Pnj_l_le“,
U, (q(a?)CA and Un]._l(q(xf))cZA. Consider z=(z,)=E{ with z,=x] for
nj.1=k=mn;—1. Then z belongs to ¢ '(A°) and ¢(z) is not an interior point
of B, which implies that B is not open. So E{”/z is connected.

The compactness of E{”/; follows from the compactness of K, the
relation q(U,(2))C\U crce nq(H(z; 7)Y U,(g(x)) and the fact that J(x; n)
consists of finite elements. It is easily obtained that E{”/z is a Hausdorff
space. [

In a similar way to Theorem 3.6, the following is obtained.

COROLLARY 1. For any z=E{ and any n=N, the set U,(q(x)) is a
connected open set in the set (E[a, U).

Since {U,(q(x))|n= N} is a basis for (£ /az, U), the following is obtained.

COROLLARY 2. The set (E/a,U) is locally conmected, that s, for
any open set W containing q(z)c(E )z, U), there exists an open set V
containing q(x), which is contained in a connected component of W.

§4. End Points of E{”/;.

DEFINITION. q(z)= E$ /s is called an end point of E /[y if there
exists N = N satisfying that the boundary oU.,(q(x)) of U,(q(x)) is a sing-
leton for any n=N.

The following lemma characterizes the boundary U, (q(x)).
LEMMA 4.1. aU,(q(x))=U{qH('; j)lz'=Qux, j=] (x'; n)}.

PROOF. 2'€Qu,j=J(x’; n) and heH(x'; j) we have g(h)E(U.(q(x))).
For any m(>n), choose y=E{” such that Qy={y} and P,y=F,h. Then
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q(y)€ U,(q(x)) N Uxrlg(h)), which implies |
Ulg(H ("5 )la'eQu, jed (& ; n)}CaU.(g(x)).

Conversely, if q(y)&\U{q(H (z; j))]ac’EQx,bjEJ(w'; n)}V U,(g(z)), then
g(y) is an interior point of (U,(g(x)))?, which implies

U, (gx)C U{g(H (z; )’ eQr,jed (@' n)}. O

PROPOSITION 4.2. If |a'|=2 and |a®|=2, the following are equivalent.

(1) qx)=E®[: is an end point of E{”/s.

(2) Qx={x) and there exists N=N such that J(x; n)={n—1} for all
n=N.

PROOF. By Lemma 4.1, it is clear that (2) implies (1).

(1)=(2): If Qx+{x}, there exists k=N such that Qu=H(x; k). For
any N>k there exists n>N such that aU,(¢q(x)) is not a singleton, since
la?| =2 is satisfied. So (1) implies Qux={x}.

Suppose q(H(z: j))=q(H (x; n)) with j<n. Then P,_,c'x=p8'D-Dp
with 121, gi={at, @’ (1=1=<l). We have j=n—2 and q(H(z; j))#q(H (x;
n—1)), since |a'|=2 and |a?/=2. So aU.(g(x)) is not a singleton. Hence

(1) implies that there exists NN such that J(x; n)={n—1} for all n=N.
D

LEMMA 4.3. If la'|=1 and 2=<|a?|=n,<co then ah,=2.

PROOF. Consider v=a*@u'. If a;,=1, we have ¢"*"'v=u'. Since u'
and %’ are mutually prime, P,, ;v must be 2'®---Pz' with [=1,z’e
{a', a?} (1=j<1), which is a contradiction. [J

COROLLARY TO PROPOSITION 4.2. In case that |a'|=1 and u;=1, (1)
and (2) in Proposition 4.2 are equivalent.

PROOF. To prove the above corollary, it is enough to show that (1)
implies (2) for xe E with Qr={x}. For any NN, there exists n>N
such that x, =2, since Qr={x} and |a*|=1. If x,=2 and x,.,=1, 0U,..(q(x))
is not a singleton by #:=1 and Lemma 4.3. So there exists n,=N such
that x,=2 for m=mn, which implies that J(x; n)={n—1} for all n>n, O

REMARK. If |a'|=1 and ui=2, there exists x= E{” such that ¢(x) is
an end point of £{”/z but there exists no N= N such that J(x; n)={n—1}
for all n=N. For example, x=2>7,P(211) satisfies this condition.

As for the existence of end points, we have

THEOREM 4.4. (1) For any (*)-pair (u',u’), there exists an end point
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of E® ;.
(2) There exist infinitely many end points unless Ju'; n)=Jw*; n)
={n—1} holds for all n=2.

PROOF. Let #'=27,P(1), 2*=37,P(2), *=27.,D(12), 2*=27%,D(112)
and z°=>%,D(221).

(1) We shall show that for any (*)-pair (u!,#?), one of ¢(x')~q(x’) is
an end point of E{?/;.

By Proposition 4.2, it is obtained that

q(z') is an end point of K */; if uz;=2,

g(z?) is an end point of E®/; if us;=1,

q(2?) is an end point of E{®/; if |a'|=2, |a? =2, u;=1 and u;=2,

g(z') is an end point of E{/; if |a'|=1 and u;=2,
and

q(x’) is an end point of Ei®/; if |a*|=1 and u;=2.

(2) Unless Ju'; n)=Ju?; n)={n—1} holds for all n=2, there exist
nee=N and 7, (1=j,=m,—2) such that either jo=J(u'; n,) or jy=J(u’; ny)
holds, since 0&J(u’; n,) by the definition of J(u’; n,) (7=1,2). It is enough
to consider the case of jo=J(u?®; o).

(a) In case u;=2:

If there exists m= N such that

(4.1) o™u' =u'
then m=2. If there exists m< N such that
(4.2) o™t =u'

then m =3.

Let m, and m, be the smallest number satisfying (4.1) and (4.2) respec-
tively, if they exist. Choose y<= E5” such that

(1) Pyoy+# Pyo™ ' (ii) Psy+ Pw™*u? and (iii) ¢*y=(2)Px', where the
condition (i) [resp. (ii)] is unnecessary if there exists no m satisfying (4.1)
[resp. (4.2)]. For any k=N, let ¢ E{® satisfy ¢*2*=y. Then ¢(z*) is an
end point of F{*/;. Hence there exist infinitely many end points of K{*/,.

(b) In case ui=1 and u;=1:

We can show that there exist infinitely many end points of E§{*/; in
the same way as (a) by replacing x, with x..

(¢) In case |a'|=2, |a®|=2, us;=1 and u;=2:

If there exists m;= N [resp. m,=N] such that

(4.3) g™yt = [resp. o™w®=ux"]

the m;=1 [resp. m,=3]. Let m; and m, be the smallest number satisfying
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(4.8) if they exist and let ms=co or m,= oo if there exists no m< N satisfy-
ing (4.3). If my=1 [resp. 2=<m;= co], choose y< E{* such that oy =(22)Ps’
and Py # Pwo™s*u® [resp. o*y=u", Pyy+ Po™ *u', Py + P,e™ *u® and Py +
(12)], where the corresponding condition is unnecessary if either ms;= oo or
m,= oo holds.

(d) In case |a'|=1 and u;=2:

If there exists m;=N such that ¢"su’=z', then m;=3. Choose y= E*
such that o®y=no', P+ P,™s *u® and P,y+(12).

(e) In case |a®|=1 and u;=1:

If there exists ms= N such that ¢™su'=2’, then m;=2. Choose y= E{*
such that ¢®y=ua’, Py + P,e™s *u' and Pyy+(21).

So also in case (c)~(e) as (a) and (b), let z*= E{* satisfy o*2*=y for
any k=N. Then ¢(z*) is an end point of E{*/;. Hence there exist in-
finitely many end points of E{*/,. [

THEOREM 4.5. The following are equivalent.
(1) The set (E{];, U) is homeomorphic to the unit interval [0, 1].
(2) For any n=2, Ju'; n)=Jwu?; n)={n—1} holds.

PROOF. (1)=(2): By (1), there exists a homeomorphism z:[0,1]—
E”[;. For t=(0,1), there exists ¢>0 such that (t—e,t+¢)(0,1). Since
((t—e, t+¢)) is an open set in F{®/,, there exists n,= N such that U,(z(t))
Cr(t—e,t+e) for n=n,. Since U,(z(t)) is a connected open set by Corollary
1 to Theorem 3.6, = '(U.(z(t))) is also connected open set in (0,1) and so
3(z (U,(z(t)))) consists of two points. Hence o(U,(z(t))) consists of two
points, which implies that z(¢) is not an end point. Therefore the set of
end points of E{/; consists of 7(0) and z(1), which implies (2) by Theorem
4.4,

(2)=(1): For z=(x,)=E{”, define

N —ulitl)  (n=22)
e (x)=2 77!
0 (n=1)

an (%)= -;— +(_1)en<w><xn__ %)

rin= 5457

Then a,(x)={0,1} for any n=N and r: Es”—[0,1] is a continuous, onto
mapping.
We recall that r(x)=r(y) (x+#y) if and only if
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there exists m,= N such that a,(x)=a;(y) ((=n,—1)
(4.4) @ny(®)=0, @, (¥)=1, a;(x)=1, a;(y)=0 (j=n,+1)

[resp. @.,()=0, a,,(®)=1, a;(y)=1, a;(x)=0 (G=n,+1)].
We see that (2) implies the following
(4.5) uj-iu?ﬁ‘ﬂ, u?-;tuﬁ—l for j=3.

We shall show that »(z)=r(y) is equivalent to g(x)=q(y) for x,y< E;.

Suppose ¢(z)=gq(y) for x,y= K. Then since Qu={u',u*} holds by (2),
we may take x=P, _;xDu’ and y=P, xcdu® with some n,=N. Then
a;(x)=a,y) for j<m,—1 and e, (x)=e,(y). If eno(x):eno(y):o (mod 2), we
have »,,=u;=1 and a, (x)=1/2+(u;—(3/2))=0. By (4.5), we have e, ()
=2—u} (mod 2) and e,,,;(@)=1—wu% (mod 2) for j=2. Hence a,.;(@)=1
for j=1. In the same way, we get a,(y)=1 and Uy (Y)=0 for 7=1.
Hence (4.4) is satisfied. If e, (@)=e, (y)=1 (mod 2), (4.4) is also satisfied
in the same way, which implies 7(x)=r(y).

On the other hand, suppose r(x)=r(y) for x,y= E{”. If x=y, then q(x)
=q(y). So suppose there exists m,< N such that x;=y, for j=<n,—1 and
L, #Yn, Then a;(x)=a;y) for j<mn,—1, e, (x)=e, (y) and @ (@) #a, (y). Itis
enough to consider the case a, (x)=0 and a,(y)=1. Then r(x)=r(y) implies
a;(z)=1 and a;(y)=0 for j=n,+1 by (4.4). W () =1/24(— 1) (2, — 3/2)
=0 implies e, (¥)#,, (mod 2). Hence €nyi(@)=u," (mod 2) and o @,
=u," by a,.i(x)=1. In the same way, we get Cuyri(®)=1—uy 0"
(mod 2) and ,,.,#u, """ for j=2. Hence by using (4.5), we get v,,.,=
wi’ by induction and we have =P, ,2Pu’". In the same way, we get
y=P,,- . wPu’", which implies ¢(x)=q(y).

So we have proved that ¢(x)=q(y) is equivalent to r(x)=r(y). Since
(B, U) is compact and the unit interval [0,1] is a Hausdorff space and
r: B —[0,1] is a continuous, onto mapping, (F;*/s, U) is homeomorphic
to [0,1] by Proposition 3.4. [

REMARK. It is easily seen that the condition (2) in Theorem 4.5 is
equivalent to the following (3).
(3) (u!,u?) is one of the followings (1i)~(iv)

(1) W= OER)  w=@DI B0

(ﬁ)WﬂM@gﬁm> w=(22)D 3 B(1)

i =1

«
i

(i) #'=(11)DZ B@)  w=21D =B Q)

i=1 i=1

.
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oo

(iv) =BT D1 =S 3 B2l

=1

§5. The invariant set with respect to contraction maps on R".

Let f; (=1,2) be an one-to-one, contraction map on R", with Lipschitz
constant ;< (0, 1) and Fix (f;) be the uniquely determined fixed point of f}.
When a nonempty compact subset K of R" satisfies K=fi(K)\ fo K), we
shall write K=K(f., f»), which is uniquely determined by the fixed point
theorem. For z,={1,2} (j=1,2,:--,n), we shall write

fx1~--xn:f.r1fx2 te fzn

and
Kipooy=Fopeay(K).

Then diam (K, .., )S7,,7s, " 72, diam (K)—0 as n—co.
For x=(xz,)= K, we have

KDK, DK, ;2 DKypzy 2 o

and the set N5..K,,.., consists of one point, say k.. By [2,§3.1], we have
K:UzeEz(‘"){kx}'

Define ¢: E{”—K by ¢(x)=k,. Then ¢ is continous and foe(x)=
o((J)Dw).

PROPOSITION 5.1. If Fix (f1)#=Fix (f2) and fi(K)N\fo(K)+#0, then there
exists a (%)-pair (u', u®) such that o(u')=@pu?).

PROOF. Since ¢o(E{”)=K and fi(K)N fo(K)+#0, there exist x=(x,) and
y=(y,) € E{” such that ¢(x)=¢(y) with x,=1 and y,=2. When there exists
j=1 such that

(5.1) fopzp@)=0(x)  [resp. fy.,,0)=0¢H)],

let j, [resp. j.] be the smallest one and put a'=(wx;---x; ) [resp. a®=(y, -
y;,)] and w'=37,Da’ [resp. u’=37,Da’]. If there does not exist j&=N
satifying (5.1), let u'=w [resp. u*=y]. Then ¢(x)=¢(u') and ¢(y)=¢(u*) im-
plies o(u')=¢(u’) and ' and u* are mutualy prime. The relations ¢(37.,(7))
=Fix (f;) (=1,2) and Fix (f,) #Fix(f,) imply that either 5, =2 or 7,=2 is
satisfied. So (u!,u?) is a (*)-pair. O

THEOREM 5.2. Let f, and f, be one-to-one, contraction maps on R"
and let Fix (f1)#Fix(f,). Then

(1) K=K(fi, f2) 1s either connected or totally disconmnected.

(2) If fUEK)Nfo(K) consists of one point {k,}, then there exists a (*)-
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pair (w',u®) such that (E{”[3, U) is homeomorphic to K.

PROOF. (1) If ¢: FE{”—K is one-to-one, then K is totally disconnected
since E,;” is totally disconnected and ¢ is a homeomorphism.

If ¢ is not one-to-one, there exists a (*)-pair (u',u?) satisfying o(u')=
¢(u®) by Proposition 5.1. Since (K{®/;, U) is connected by Theorem 3.6 and
the mapping ¢: (E$/;, U)—K, defined by ¢(q(x))=¢(x), is continuous by
Proposition 3.4, K is connected.

(2) If fulK)N fAK)={ko}, there exist a (*)-pair (u',«?) and the mapping
¢: (E{”/;, U)—K in the same way as (1). It is enough to show that ¢ is
one-to-one.

a) For ze E{” we shall show that q(z)=qw") if ¢(z)=¢(u'). If z=u,
it is obvious. So suppose that there exists n, =N such that P, z=P,u
and z,,.; #Un,,. Since f; and f, are one-to-one and fpnlzgo(a"lz):fpnlzgo(o"lul),
we have ¢(¢"z)=¢(c"u')=k,=¢(u'). By the construction of «' in Proposi-
tion 5.1, we have P, u'=a'® ---Da’. Hence P, z=a'D ---Pa’, (¢"w');=1
and (¢"12),=2. If o¢™z=u? we have z=a'® -+ Ba'Pu?, which implies
z€Qu and ¢(z)=q(u'). If there exists n,=NV such that P, (¢c"12)=P,,(u*)
and (6,12),,+1 #Un,;.1, We have P, (¢"2)=P, (u)=a*D -+ Da® by using
ple™1z)=¢(u?). By repeating this process, we have z¢:Qu and q(z)=q(u').

b) For z', z2< E{® we shall show that ¢(z")=q(2%) if ¢(z")=¢(2?). We
may suppose that there exists n,=0 such that P, 2'=P, 2* and 25, # 25,01
Since f, and f, are one-to-one and fp, .¢(c"2")=fp, 2@(0"2"), we have
p(c™z')=¢p(c™2?). Since (¢"°z');#(c"2%);, we have ¢(a"°z')=¢(g"02*)=k,=
o(u'). By using a), we get q(o"z')=q(a"2*)=q(u') and ¢"z!, ¢"02"<Qu,
which implies ¢(2')=gq(z?) and ¢ is one-to-one. Hence (K5 /s, U) is homeo-
morphic to K. O

By using Theorems 4.4, 4.5 and 5.2, we have the following.

THEOREM 5.3. Let f, and f, be one-to-one, contraction maps on RY.
If Fix (f)#Fix (f.) and fi(K)N\f(K) 1s a singleton, then we have the fol-
lowing.
(1) The following (a), (b) and (c) are equivalent.
(a) K(fi,f2) is a stmple arc.
(b) There exists a (*)-pair (u',u*)= E3” such that o(u')=¢u*) and
Jw'; n)y=Jwu®; n)={n—1} holds for any n=2.
(c) fi1 and f, satisfy one of the following (i)~ (iv)
(1) AFix(f))=fo(Fix(f1))
(i)  fifo(Fix(f1))= fo fo(Fix(f1))
(iii)  fiAA(Fix(f2) = fo fi(Fix(f2)
(iv)  fi(Fix(fif2)) = fo(Fix(f, 1)
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(2) K(fi, f2) has always end points.

Moreover if it is not a simple arc, then there are infinitely many
end potnts tn K(fy, fs).

The assumption that fi(K)Nf:(K) is a singleton plays an important
role in Theorem 5.3. Next we shall consider the condition for the set
JiK)N fo(K) to be a singleton in case of maps on a complex plane C which
is isomorphic to RZ.

PROPOSITION 5.4. Let f; and f, be ome-to-ome, contraction maps on
a complex plane and let f, be expressed by fi(z)=rz+w with 7,0=C.
Suppose fL(K)N fol K)={ko}, Fix(f,))#Fix(f,) and (u!,u?) s a (*)-pair sa-
tisfying eu')=pW?), where u' and u* are expressed with some «°, Y°<
E® as follows:

w'=(11---1D)BR2)Pa",  u*=(2)Dy°.

m times

Then m=2,

PROOF. By assumption, it holds that ¢(u')= ¢u?®) = {k,}. Since ¢:
(E{];, U)— K is a homeomorphism by Theorem 5.2, the set K is con-
nected and locally connected by Theorem 3.6 and its Corollary. Since K
is a complete metric set, K is arcwise connected [3, p. 36].

Let #'=>17,D(1) and suppose m = 3.

a) In case that either m is an even number or 7 is a real number :

By the equation f,fi(z)=|7r|"2+r@+w and fi(p(x,)=¢(x,), we have
p((11)Dx) — (@) =71"(¢p(x) —@(x')) for any zc K. So ('), o((11)Tu'),
o(u'), o((112)PD2") and ¢((2)ébx’) are on one line in this order since m =3.
o((2)Px") can be joined to ¢(u')=¢((2)By’) by a curve C, in f,(K), since
K is arcwise connected and ¢((2)Px°) and ¢(u')=¢((2)Py°) belong to fo(K).
The curve f,f.C; in fi(K) connects ¢((112)Px°) and ¢((11)Pu'). Since fif:
is a contraction map with ratio |7/* and it holds that f,fip(z')=¢(x'), we
have fifiConCo\p(u')# @, which is a contradiction, since fi(K) fo K)=
¢o(u') holds by assumption.

b) In case that 7 is not a real number and m is an odd number :

olah), e((1)Pu'), p((112)B2x°) and ¢((2)Bx°) are on one line in this order
since m=3. ¢(x'), p((11)Pu'), p(u') and ¢((12)Px°) are on another line in
this order. In the same way as a), we can join ¢((2)Bz°) to ¢(u')=
o((2)Py°) by a curve C, in fo(K). The curve f,C, [resp. f.fiC.] joins
o((12)D2") to o((1)Bu) [resp. o((112)Bz") to o((11)Pul)] in fi(K). Since
fi [resp. fifi] is a contraction map with ratio 7, [resp. |7]?] and fip(z')=
e(x?) [resp. fif:p(x')=¢(x')], either C,n\fiC\p(u') or Con fifiC\e(u') is
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nonempty, which is a contradiction, since fi(K) fo(K)=¢(u') holds by
assumption. Therefore m<2 holds. O
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