Self Similar Sets and Quotient Sets of Infinite Sequences

Fukiko Takeo

Department of Information Sciences, Faculty of Science Ochanomizu University (Received September 10, 1992)

§ 1. Introduction.

The invariant set K with respect to some contraction maps f_1, \dots, f_k on \mathbb{R}^N has interesting feature such as self-similarity, to which fractal is closely related. The set K may be considered as an image of the natural embedding φ from the set $E_k^{(\omega)}$ of infinite sequences on k symbols. The set $E_k^{(\omega)}$ equipped with the product topology is a compact, totally disconnected set. If the map φ is not one-to-one, the invariant set K may be connected, though it is totally disconnected when φ is one-to-one. In [1], Hata studied the structure of self-similar sets by using linear homeomorphisms on the unit interval [0,1] and he gave the conditions for self-similar sets to be connected, to be a simple arc, to have many end points, etc.

In this paper, we show a different approach to study the structure of self-similar sets which are the invariant sets with respect to two contraction maps f_1 , f_2 on \mathbb{R}^N . When the map φ from $E_2^{(\omega)}$ onto the invariant set K with respect to f_1, f_2 is not one-to-one, there exists a pair (u^1, u^2) in $E_2^{(\omega)}$ such that $\varphi(u^1) = \varphi(u^2)$. We introduce an equivalence relation in the set of infinite sequences, when this pair (u^1, u^2) satisfies some condition, which The cosets induced by the (*)-pair (u^1, u^2) are the elewe call (*)-pair. ments of a quotient set $E_{\scriptscriptstyle 2}^{\scriptscriptstyle (\omega)}/_{\scriptscriptstyle \tilde{u}}$ of $E_{\scriptscriptstyle 2}^{\scriptscriptstyle (\omega)}$. We shall investigate the topology of the quotient set $E_{2}^{(\omega)}/_{\tilde{u}}$, and then study the structure of self-similar sets by applying this result to the invariant set with respect to some contraction maps. At § 3 we show that the quotient set $E_2^{(\omega)}/_{\tilde{u}}$ is connected since the equivalence set consists of more than two elements [Theorem 3.6]. § 4 is devoted to the study of end points of $E_{2}^{(\omega)}/_{\tilde{u}}$. The number of end points of the quotient set depends on the property of equivalence sets. We show that there exists an end point of $E_{2}^{(\omega)}/_{\tilde{u}}$ for any (*)-pair (u^{1}, u^{2}) and that there exist infinitely many end points for some (*)-pair (u^1, u^2) [Theorem 4.4]. We give a necessary and sufficient condition for $E_2^{(\omega)}/_{\tilde{u}}$ to be homeomorphic to the unit interval [0,1] in Theorem 4.5. In § 5 we

apply these results to the invariant set with respect to contraction maps f_1, f_2 on \mathbb{R}^N . Let f_j (j=1,2) be an one-to-one, contraction map on \mathbb{R}^N , let $\operatorname{Fix}(f_j)$ be the uniquely determined fixed point of f_j and let $K = K(f_1, f_2)$ be the compact subset of \mathbb{R}^N satisfying $K = f_1(K) \cup f_2(K)$. Then there exists a continuous map φ of $E_2^{(\omega)}$ onto K. If $\operatorname{Fix}(f_1) \neq \operatorname{Fix}(f_2)$ and $f_1(K) \cap f_2(K) \neq \emptyset$, then there exist a (*)-pair (u^1, u^2) in $E_2^{(\omega)}$ such that $\varphi(u^1) = \varphi(u^2)$ [Proposition 5.1]. By using this (*)-pair (u^1, u^2) , we define the quotient set $E_2^{(\omega)}/_{\tilde{u}}$ and investigate the relation between the invariant set $K(f_1, f_2)$ and the quotient set $E_2^{(\omega)}/_{\tilde{u}}$. If $f_1(K) \cap f_2(K)$ is a singleton, K is homeomorphic to $E_2^{(\omega)}/_{\tilde{u}}$ [Theorem 5.2] and the structure of K depends on the pair (u^1, u^2) . Some pair (u^1, u^2) makes $K(f_1, f_2)$ a simple arc and some other pair (u^1, u^2) induces $K(f_1, f_2)$ to have infinitely many end points [Theorem 5.3]. So the investigation of $E_2^{(\omega)}/_{\tilde{u}}$ is useful in discussing the topology of K and also may be helpful in drawing fractals.

§ 2. Preliminaries.

(1) Let $E_2^{(\omega)}$ be the set of infinite sequences on 2 symbols $\{x = (x_1 \cdots x_n \cdots) | x_i \in \{1,2\}\}$ and $E_2^{(*)}$ be the set of finite sequences $\{\alpha = (\alpha_1 \cdots \alpha_n) | n \in \mathbb{N}, \alpha_i \in \{1,2\}\}$. Define the addition

$$\bigoplus : E_{2}^{(*)} \times (E_{2}^{(*)} \cup E_{2}^{(\omega)}) \longrightarrow (E_{2}^{(*)} \cup E_{2}^{(\omega)}) \text{ by}$$

$$(\alpha_{1} \cdots \alpha_{n}) \oplus (\beta_{1} \cdots \beta_{m}) = (\alpha_{1} \cdots \alpha_{n} \beta_{1} \cdots \beta_{m})$$
 and
$$(\alpha_{1} \cdots \alpha_{n}) \oplus (x_{1} \cdots x_{k} \cdots) = (\alpha_{1} \cdots \alpha_{n} x_{1} \cdots x_{k} \cdots) .$$

- (2) Let $|\alpha|$ be the length n of $\alpha = (\alpha_1 \cdots \alpha_n) \in E_2^{(*)}$ and $|x| = \infty$ for $x \in E_2^{(\omega)}$. We shall say that $\alpha \in E_2^{(*)}$ is a cycle of $x = E_2^{(\omega)}$ if α satisfies the relation $x = \alpha \oplus x$ and we say that α_0 is the *minimal cycle of* x if α_0 is a cycle of x and $|\alpha_0| \leq |\alpha|$ for any cycle α of x. We say that $x \in E_2^{(\omega)}$ is the *minimal cycle of* x if there exists no $\alpha \in E_2^{(*)}$ such that $x = \alpha \oplus x$.
 - (3) For $x \in E_2^{(\omega)}$, the notation $x = \sum_{j=1}^{M} \oplus z^j$ means the following:

if $M<\infty$, then $\sum_{j=1}^M \oplus z^j = z^1 \oplus z^2 \oplus \cdots \oplus z^M$ with $z^j \in E_2^{(*)} (1 \le j \le M-1)$ and $z^M \in E_2^{(\omega)}$, and

 $\text{if } M = \infty \text{, then } \Sigma_{j=1}^{M} \oplus z^{j} = z^{1} \oplus z^{2} \oplus \cdots \oplus z^{n} \oplus \cdots \text{ with } z^{j} \in E_{2}^{(*)} (1 \leq j < \infty).$

(4) For $n \in \mathbb{N} \cup \{0\}$, we shall define maps $\sigma^n : E_2^{(\omega)} \to E_2^{(\omega)}$ and $P_n : E_2^{(\omega)} \to E_2^{(\omega)} \cup \{\emptyset\}$ by

$$\sigma^{n}(x_{1}\cdots x_{k}\cdots) = (x_{n+1}x_{n+2}\cdots)$$

$$P_{n}(x_{1}\cdots x_{k}\cdots) = \begin{cases} (x_{1}\cdots x_{n}) & (n \ge 1) \\ \emptyset & (n = 0). \end{cases}$$

- (5) For $x,y \in E_{z}^{(\omega)}$, let α and β be minimal cycles of x and y respectively and $Q(x,y) = \{\sum_{j=1}^{M} \bigoplus z^{j} \in E_{z}^{(\omega)} | z^{j} \in \{\alpha,\beta,x,y\}\}$. We say that x and $y \in E_{z}^{(\omega)}$ are mutually prime if the existence of $n,m \in \mathbb{N}$ such that $P_{m}\sigma^{n}v \in \{\alpha,\beta\}$ for $v \in Q(x,y)$ implies $P_{n}v = z^{1} \oplus \cdots \oplus z^{l}$ with $l \in \mathbb{N}$ and $z^{j} \in \{\alpha,\beta\}$ $(1 \leq j \leq l)$.
- (6) For $u^1 = (u_n^1)$, $u^2 = (u_n^2) \in E_2^{(\omega)}$, let α^1 and α^2 be minimal cycles of u^1 and u^2 respectively. We say that (u^1, u^2) is a (*)-pair if the following relations (*1), (*2) and (*3) hold.
 - (*1) $u_1^1 = 1, u_1^2 = 2.$
 - (*2) u^1 and u^2 are mutually prime.
 - (*3) Either $|\alpha^1| \ge 2$ or $|\alpha^2| \ge 2$ is satisfied.

§ 3. The quotient set $E_{2}^{(\omega)}/_{\tilde{u}}$.

The set $E_2^{(\omega)}$, equipped with the product topology, is a compact set which has a fundamental basis $\{U_n(x)|n\in \mathbf{N}\}$ of neighborhoods of $x\in E_2^{(\omega)}$, where $U_n(x)=\{y\in E_2^{(\omega)}|P_nx=P_ny\}$.

Hereafter, let (u^1, u^2) be a (*)-pair and α^1, α^2 be the minimal cycles of u^1, u^2 respectively and let $Qu = Q(u^1, u^2)$, that is, $Qu = \{\sum_{j=1}^M \bigoplus \beta^j \in E_2^{(\omega)} | \beta^j \in \{\alpha^1, \alpha^2, u^1, u^2\}\}$. Then we have

LEMMA 3.1. Qu is a closed set in $E_2^{(\omega)}$.

PROOF. Since every point of $E_2^{(\omega)}$ is a closed set, it is obvious that $Qu = \{u^1, u^2\}$ is closed in $E_2^{(\omega)}$ if $|\alpha^1| = |\alpha^2| = \infty$. In case of $|\alpha^1| = n_1 < \infty$ and $|\alpha^2| = n_2 < \infty$, suppose for $y = (y_n) \in E_2^{(\omega)}$, $P_n y$ belongs to $P_n Q u$ for all $n \in \mathbb{N}$. Then $P_{n_{j_1}} y = \alpha^{j_1}$ with $j_1 = y_1$ and $P_{n_{j_1} + n_{j_2}} y = \alpha^{j_1} \oplus \alpha^{j_2}$ with $j_2 = y_{n_{j_1} + 1} (j_k \in \{1, 2\})$. By repeating this process, we obtain that $y = \sum_{k=1}^{\infty} \oplus \alpha^{j_k}$ belongs to Q u. So $y \notin Q u$ implies the existence of $n \in \mathbb{N}$ such that $U_n(y) \cap Q u = \emptyset$. Hence Q u is closed. If either $|\alpha^1| < \infty$, $|\alpha^2| = \infty$ or $|\alpha^1| = \infty$, $|\alpha^2| < \infty$ holds, we can prove that Q u is closed in a similar way. \square

DEFINITION. We shall write $x_{\bar{u}}y$ for $x,y \in E_{\bar{u}}^{(\omega)}$ if either x=y holds or there exists $n \in \mathbb{N} \cup \{0\}$ such that $P_n x = P_n y$ and $\sigma^n x, \sigma^n y \in Qu$.

LEMMA 3.2. The relation \bar{u} satisfies the equivalence relation.

PROOF. It is clear that $x_{\tilde{u}}x$ holds and $x_{\tilde{u}}y$ implies $y_{\tilde{u}}x$. So we shall show that $x_{\tilde{u}}y$ and $y_{\tilde{u}}z$ implies $x_{\tilde{u}}z$. If either x=y or y=z holds, it is obvious. So suppose that there exist n_1 and n_2 such that $n_1 \ge n_2 \ge 0$, $P_{n_1}x = P_{n_1}y$, $P_{n_2}y = P_{n_2}z$ and $\sigma^{n_1}x$, $\sigma^{n_1}y$, $\sigma^{n_2}y$, $\sigma^{n_2}z \in Qu$. Then $\sigma^{n_2}y \in Qu$ implies $\sigma^{n_2}y = \sum_{j=1}^M \oplus z^j$ with $z^j \in \{\alpha^1, \alpha^2\}$ for $1 \le j < M$. If $n_1 = n_2$, it is obvious that

 $x_{\tilde{u}}z$. So suppose $n_1 > n_2$. Then there exists $l \ge 0$ such that $\sigma^{n_2}y = z^1 \oplus \cdots \oplus z^l \oplus \gamma \oplus \sigma^{n_1}y$ with $|\gamma| \le |z^{l+1}|$. Since u^1 and u^2 are mutually prime, $\gamma = z^{l+1}$ holds and $\sigma^{n_2}x = P_{n_1-n_2}(\sigma^{n_2}y) \oplus \sigma^{n_1}x = \sum_{j=1}^{l+1} \oplus z^j \oplus \sigma^{n_1}x$ belongs to Qu. Since it is obvious that $P_{n_2}x = P_{n_2}z$ we have $x_{\tilde{u}}z$. Therefore the relation \tilde{u} satisfies the equivalence relation. \square

DEFINITION. For $x \in E_2^{(\omega)}$, let Qx be the equivalence class $\{y \in E_2^{(\omega)}: x_{\bar{u}}y\}$ and let $E_2^{(\omega)}/_{\bar{u}}$ be the set of equivalence classes, which we call the quotient set induced by (u^1, u^2) . Let q be the canonical map of $E_2^{(\omega)}$ onto $E_2^{(\omega)}/_{\bar{u}}$.

For $n \in \mathbb{N}$ and $0 \le j \le n-1$, define

$$\begin{split} &H(x\,;\;j) = \{h \in E_{\,2}^{\,(\omega)} \,|\, P_{j}h = P_{j}x\,,\,\sigma^{j}h \in Qu\,,\,q(h) \neq q(x)\} \\ &J(x\,;\;n) = \{j \in \{0\,,\,1\,,\,\cdots\,,\,n-1\} \,|\, \exists h \in H(x\,;\;j)\;\;s.t.\;\;P_{n}x = P_{n}h\} \\ &V_{n}(x) = \{y \in E_{\,2}^{\,(\omega)} \,|\, P_{n}Qy = \{P_{n}x\}\;\;or\;\;y = x\} \\ &\tilde{U}_{n}(q(x)) = \{q(y) \in E_{\,2}^{\,(\omega)} \,|\, \tilde{u}\,|\, P_{n}Qy \subset P_{n}Qx\}\;. \end{split}$$

Let Λ_x be the set of N-valued functions on Qx. For $\eta \in \Lambda_x$, define

$$\tilde{V}_{\eta}(q(x)) = \bigcup \{q(V_{\eta(x')}(x'))|x' \in Qx\}$$
.

REMARK. It holds that $\tilde{U}_n(q(x)) = \bigcup \{q(V_n(x')) | x' \in Qx\}.$

PROPOSITION 3.3. Concerning the topology in $E_2^{(\omega)}/_{\tilde{u}}$, we have the following.

- (1) The family $\{\tilde{V}_{\eta}(q(x))|q(x)\in E_{2}^{(\omega)}/_{\tilde{u}},\,\eta\in \Lambda_{x}\}\ is\ a\ basis\ for\ the\ quotient\ topology\ in\ E_{2}^{(\omega)}/_{\tilde{u}},\ that\ is,\ for\ any\ \eta\in \Lambda_{x},\,q^{-1}(\tilde{V}_{\eta}(q(x)))\ is\ open\ in\ E_{2}^{(\omega)}\ and\ for\ W\subset E_{2}^{(\omega)}/_{\tilde{u}}\ satisfying\ that\ q^{-1}(W)\ is\ open\ in\ E_{2}^{(\omega)},\ there\ exists\ \eta\in \Lambda_{x}\ such\ that\ \tilde{V}_{\eta}(q(x))\subset W.$
- (2) The family $\{\tilde{U}_n(q(x))|n\in N, q(x)\in E_2^{(\omega)}/_{\tilde{u}}\}$ is a basis for some topology in $E_2^{(\omega)}/_{\tilde{u}}$.
 - (3) The topology induced by $\{\tilde{V}_{\eta}(q(x))\}\$ is finer than that by $\{\tilde{U}_{n}(q(x))\}\$.
- (4) i) When Qu consists of two elements $\{u^1, u^2\}$, the topology induced by $\{\tilde{V}_n(q(x))\}$ is equivalent to that by $\{\tilde{U}_n(q(x))\}$.
- ii) For $x \in E_2^{(\omega)}$ satisfying that $Qx = \{x\}$, we have $\tilde{U}_n(q(x)) = \tilde{V}_{\eta_n}(q(x))$ for any $n \in \mathbb{N}$, where $\eta_n(x') = n$ for any $x' \in Qx$.

PROOF. (1) By the definition, we have that $V_n(x) = U_n(x) \setminus \bigcup \{H(x; j) | j \in J(x; n)\}$. So $V_n(x)$ is an open set, since H(x; j) is a closed set by the closedness of Qu and J(x; n) is a finite set. For $\eta \in A_x$, we see that $q^{-1}(\tilde{V}_{\eta}(q(x)))$ is open by the relation $q^{-1}(\tilde{V}_{\eta}(q(x))) = \bigcup \{V_{\eta(x')}(x') | x' \in Qx\}$.

For $W \subset E_2^{(\omega)}/_{\tilde{u}}$ with $q(x) \in W$, let $q^{-1}(W)$ be open in $E_2^{(\omega)}$. For any

 $x' \in Qx$, there exists $n_{x'} \in \mathbb{N}$ such that $U_{n_x}(x') \subset q^{-1}(W)$. Define $\eta \in A_x$ by $\eta(x') = n_{x'}$ for any $x' \in Qx$. Then $V_{\eta(x')}(x') \subset U_{\eta(x')}(x') \subset q^{-1}(W)$ and so $q(\bigcup \{V_{\eta(x')}(x') | x' \in Qx\}) \subset W$. We get $\widetilde{V}_{\eta}(q(x)) \subset W$ by the relation

$$q(\bigcup \{V_{\eta(x')}(x')|x' \in Qx\}) = \bigcup \{q(V_{\eta(x')}(x'))|x' \in Qx\}.$$

- (2) $q(y) \in \tilde{U}_n(q(x))$ implies $\tilde{U}_n(q(y)) \subset \tilde{U}_n(q(x))$. So it is obvious that $\{\tilde{U}_n\}$ is a basis for some topology.
- (3) Define $\eta_n \in A_x$ by $\eta_n(x') = n$ for any $x' \in Qx$. Then $\tilde{U}_n(q(x)) = \tilde{V}_{\eta_n}(q(x))$, which implies that the topology induced by $\{\tilde{V}_{\eta}(q(x))\}$ is finer than that by $\{\tilde{U}_n(q(x))\}$.
 - (4) It is obvious by definition. \square

Let $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U})$ be the topological space $E_2^{(\omega)}/_{\tilde{u}}$, where the family $\{\tilde{U}_n(q(x))|q(x)\in E_2^{(\omega)}/_{\tilde{u}}, n\in \mathbb{N}\}$ is a basis for the topology.

PROPOSITION 3.4. Suppose $\psi: E_{\frac{2}{2}}^{(\omega)} \to K \subset \mathbb{R}^N$ is continuous and q(x) = q(y) implies $\psi(x) = \psi(y)$. Then $\tilde{\psi}: (E_{\frac{2}{2}}^{(\omega)}/_{\tilde{u}}, \tilde{U}) \to K$, defined by $\tilde{\psi}(q(x)) = \psi(x)$, is continuous.

PROOF. $\tilde{\phi}(q(x)) = \phi(x)$ is well-defined since q(x) = q(y) implies $\phi(x) = \phi(y)$. Since ϕ is uniformly continuous on a compact set $E_2^{(\omega)}$, for any neighborhood $V \subset \mathbf{R}^N$ of $0 \in \mathbf{R}^N$ there exist $n \in \mathbf{N}$ such that $\phi(U_n(x)) \subset V + \phi(x)$ holds for any $x \in E_2^{(\omega)}$. Then it holds that $q^{-1}(\tilde{U}_n(q(x))) \subset \bigcup \{U_n(x') | x' \in Qx\}$, which implies $\tilde{\phi}(\tilde{U}_n(q(x))) \subset V + \tilde{\phi}(q(x))$ and so $\tilde{\phi}$ is continuous. \square

LEMMA 3.5. Let A be an open proper subset of $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U})$. For $q(x) \in A$ such that $Qx = \{x\}$, suppose $n \in \mathbb{N}$ satisfies $\tilde{U}_n(q(x)) \subset A$ and $\tilde{U}_{n-1}(q(x)) \not\subset A$. Then either of the following holds.

- (1) q(h) does not belong to A for any $h \in H(x; n-1)$.
- (2) There exist m(>n) and $y \in q^{-1}(A)$ satisfying $P_{n-1}y = P_{n-1}x$,

$$Qy = \{y\}, \tilde{U}_m(q(y)) \subset A \quad and \quad \tilde{U}_{m-1}(q(y)) \not\subset A.$$

PROOF. $\tilde{U}_n(q(x)) \subset A$ and $\tilde{U}_{n-1}(q(x)) \not\subset A$ implies $H(x\,;\,n-1) \neq \emptyset$. Suppose $q(h) \in A$ for some $h \in H(x\,;\,n-1)$. Then we shall show that (2) holds. $Qx = \{x\}$ implies $\tilde{U}_{n-1}(q(x)) \subset \tilde{U}_n(q(h))$ for $h \in H(x\,;\,n-1)$. By the relation $q(h) \in A$, there exists m(>n) satisfying $\tilde{U}_m(q(h)) \subset A$ and $\tilde{U}_{m-1}(q(h)) \not\subset A$. So there exists $z \in E_2^{(\omega)}$ satisfying $P_{m-1}Qz \subset P_{m-1}Qh$, $P_{m-1}Qz = \{P_{m-1}z\}$ and $q(z) \notin A$. Let $h' \in Qh$ satisfy $P_{m-1}z = P_{m-1}h'$. We can find $y \in E_2^{(\omega)}$ such that $P_m y = P_m h'$ and $Qy = \{y\}$. Then $y \in q^{-1}(A)$ and m are required ones. \square

THEOREM 3.6. Let (u^1, u^2) be a (*)-pair.

Then the quotient set $(E_{2}^{(\omega)}/_{\tilde{u}}, \tilde{U})$ induced by (u^{1}, u^{2}) is a connected, compact, Hausdorff space, where the family $\{\tilde{U}_{n}(q(x))|q(x)\in E_{2}^{(\omega)}/_{\tilde{u}}, n\in N\}$

is a basis for the topology.

PROOF. To prove the connectedness of the set $(E_2^{(\omega)}/_{\tilde{u}},\tilde{U})$, we shall show that nonempty subset B of $E_2^{(\omega)}/_{\tilde{u}}$ is not open if $A=B^c$ (=the complement of B) is a nonempty open set. Since A is nonempty, there exist $x^1 \in q^{-1}(A)$ and $n_1 \in \mathbb{N}$ such that $Qx^1 = \{x^1\}$, $\tilde{U}_{n_1}(q(x^1)) \subset A$ and $\tilde{U}_{n_1-1}(q(x^1)) \not\subset A$. If q(h) does not belong to A for $h \in H(x^1; n_1-1)$, q(h) is not an interior point of B, which implies that B is not open. If q(h) belongs to A for $h \in H(x^1; n_1-1)$, there exist $n_2(>n_1)$ and $x^2 \in q^{-1}(A)$ such that $P_{n_1-1}x^1 = P_{n_1-1}x^2$, $Qx^2 = \{x^2\}$, $\tilde{U}_{n_2}(q(x^2)) \subset A$ and $\tilde{U}_{n_2-1}(q(x^2)) \not\subset A$, by Lemma 3.5. If q(h') does not belong to A for $h' \in H(x^2; n_2-1)$, it follows that B is not open in the same way as above. So we consider the case that there exist sequences $\{n_j\} \subset \mathbb{N}$ and $\{x^j\} \subset q^{-1}(A)$ satisfying $n_j > n_{j-1}$, $P_{n_{j-1}-1}x^j = P_{n_{j-1}-1}x^{j-1}$, $\tilde{U}_{n_j}(q(x^j)) \subset A$ and $\tilde{U}_{n_j-1}(q(x^j)) \not\subset A$. Consider $z = (z_k) \in E_2^{(\omega)}$ with $z_k = x_k^j$ for $n_{j-1} \le k \le n_j - 1$. Then z belongs to $q^{-1}(A^c)$ and q(z) is not an interior point of B, which implies that B is not open. So $E_2^{(\omega)}/_{\tilde{u}}$ is connected.

The compactness of $E_2^{(\omega)}/_{\tilde{u}}$ follows from the compactness of $E_2^{(\omega)}$, the relation $q(U_n(x)) \subset \bigcup_{j \in J(x; n)} q(H(x; j)) \cup \tilde{U}_n(q(x))$ and the fact that J(x; n) consists of finite elements. It is easily obtained that $E_2^{(\omega)}/_{\tilde{u}}$ is a Hausdorff space. \square

In a similar way to Theorem 3.6, the following is obtained.

COROLLARY 1. For any $x \in E_{2}^{(\omega)}$ and any $n \in \mathbb{N}$, the set $\tilde{U}_{n}(q(x))$ is a connected open set in the set $(E_{2}^{(\omega)})_{\bar{u}}, \tilde{U}$.

Since $\{\tilde{U}_n(q(x))|n\in N\}$ is a basis for $(E_2^{(\omega)}/_{\tilde{u}},\tilde{U})$, the following is obtained.

COROLLARY 2. The set $(E_{2}^{(\omega)}/_{\tilde{u}},\tilde{U})$ is locally connected, that is, for any open set \tilde{W} containing $q(x) \in (E_{2}^{(\omega)}/_{\tilde{u}},\tilde{U})$, there exists an open set \tilde{V} containing q(x), which is contained in a connected component of \tilde{W} .

§ 4. End Points of $E_2^{(\omega)}/_{\bar{u}}$.

DEFINITION. $q(x) \in E_2^{(\omega)}/_{\tilde{u}}$ is called an end point of $E_2^{(\omega)}/_{\tilde{u}}$ if there exists $N \in \mathbb{N}$ satisfying that the boundary $\partial \tilde{U}_n(q(x))$ of $\tilde{U}_n(q(x))$ is a singleton for any $n \ge N$.

The following lemma characterizes the boundary $\partial \tilde{U}_n(q(x))$.

LEMMA 4.1. $\partial \tilde{U}_n(q(x)) = \bigcup \{q(H(x'; j)) | x' \in Qx, j \in J(x'; n)\}.$

PROOF. $x' \in Qx$, $j \in J(x'; n)$ and $h \in H(x'; j)$ we have $g(h) \notin (\tilde{U}_n(q(x)))$. For any m(>n), choose $y \in E_2^{(\omega)}$ such that $Qy = \{y\}$ and $P_m y = P_m h$. Then $q(y) \in \tilde{U}_n(q(x)) \cap \tilde{U}_m(q(h))$, which implies

$$\bigcup \{q(H(x'; j))|x' \in Qx, j \in J(x'; n)\} \subset \partial \tilde{U}_n(q(x)).$$

Conversely, if $q(y) \notin \bigcup \{q(H(x'; j)) | x' \in Qx, j \in J(x'; n)\} \cup \tilde{U}_n(q(x))$, then q(y) is an interior point of $(\tilde{U}_n(q(x)))^c$, which implies

$$\partial \tilde{U}_n(q(x)) \subset \bigcup \{q(H(x'; j)) | x' \in Qx, j \in J(x'; n)\}. \quad \Box$$

PROPOSITION 4.2. If $|\alpha^1| \ge 2$ and $|\alpha^2| \ge 2$, the following are equivalent.

- (1) $q(x) \in E_2^{(\omega)}/_{\tilde{u}}$ is an end point of $E_2^{(\omega)}/_{\tilde{u}}$.
- (2) $Qx = \{x\}$ and there exists $N \in \mathbb{N}$ such that $J(x; n) = \{n-1\}$ for all $n \ge N$.

PROOF. By Lemma 4.1, it is clear that (2) implies (1).

 $(1)\Rightarrow(2)$: If $Qx \neq \{x\}$, there exists $k \in \mathbb{N}$ such that Qx = H(x; k). For any N > k there exists n > N such that $\partial \tilde{U}_n(q(x))$ is not a singleton, since $|\alpha^2| \geq 2$ is satisfied. So (1) implies $Qx = \{x\}$.

Suppose q(H(x; j)) = q(H(x; n)) with j < n. Then $P_{n-j}\sigma^j x = \beta^1 \oplus \cdots \oplus \beta^l$ with $l \ge 1$, $\beta^i \in \{\alpha^1, \alpha^2\}$ $(1 \le i \le l)$. We have $j \le n-2$ and $q(H(x; j)) \ne q(H(x; n-1))$, since $|\alpha^1| \ge 2$ and $|\alpha^2| \ge 2$. So $\partial \tilde{U}_n(q(x))$ is not a singleton. Hence (1) implies that there exists $N \in \mathbb{N}$ such that $J(x; n) = \{n-1\}$ for all $n \ge N$.

LEMMA 4.3. If $|\alpha^1| = 1$ and $2 \le |\alpha^2| = n_2 < \infty$ then $\alpha_{n_2}^2 = 2$.

PROOF. Consider $v = \alpha^2 \oplus u^1$. If $\alpha_{n_2}^2 = 1$, we have $\sigma^{n_2-1}v = u^1$. Since u^1 and u^2 are mutually prime, $P_{n_2-1}v$ must be $z^1 \oplus \cdots \oplus z^l$ with $l \ge 1, z^j \in \{\alpha^1, \alpha^2\}$ $(1 \le j \le l)$, which is a contradiction. \square

COROLLARY TO PROPOSITION 4.2. In case that $|\alpha^1|=1$ and $u_2^2=1$, (1) and (2) in Proposition 4.2 are equivalent.

PROOF. To prove the above corollary, it is enough to show that (1) implies (2) for $x \in E_2^{(\omega)}$ with $Qx = \{x\}$. For any $N \in \mathbb{N}$, there exists n > N such that $x_n = 2$, since $Qx = \{x\}$ and $|\alpha^1| = 1$. If $x_n = 2$ and $x_{n+1} = 1$, $\partial \tilde{U}_{n+1}(q(x))$ is not a singleton by $u_2^2 = 1$ and Lemma 4.3. So there exists $n_0 \in \mathbb{N}$ such that $x_n = 2$ for $n \ge n_0$, which implies that $J(x; n) = \{n-1\}$ for all $n > n_0$. \square

REMARK. If $|\alpha^1|=1$ and $u_2^2=2$, there exists $x\in E_2^{(\omega)}$ such that q(x) is an end point of $E_2^{(\omega)}/\bar{u}$ but there exists no $N\in \mathbb{N}$ such that $J(x;\ n)=\{n-1\}$ for all $n\geq N$. For example, $x=\sum_{j=1}^{\infty}\oplus (211)$ satisfies this condition.

As for the existence of end points, we have

THEOREM 4.4. (1) For any (*)-pair (u^1, u^2) , there exists an end point

of $E_{2}^{(\omega)}/_{\tilde{u}}$.

(2) There exist infinitely many end points unless $J(u^1; n)=J(u^2; n)$ = $\{n-1\}$ holds for all $n \ge 2$.

PROOF. Let $x^1 = \sum_{j=1}^{\infty} \oplus (1)$, $x^2 = \sum_{j=1}^{\infty} \oplus (2)$, $x^3 = \sum_{j=1}^{\infty} \oplus (12)$, $x^4 = \sum_{j=1}^{\infty} \oplus (112)$ and $x^5 = \sum_{j=1}^{\infty} \oplus (221)$.

(1) We shall show that for any (*)-pair (u^1, u^2) , one of $q(x^1) \sim q(x^5)$ is an end point of $E_2^{(\omega)}/_{\bar{u}}$.

By Proposition 4.2, it is obtained that

 $q(x^1)$ is an end point of $E_2^{(\omega)}/_{\tilde{u}}$ if $u_2^1=2$,

 $q(x^2)$ is an end point of $E_2^{(\omega)}/_{\bar{u}}$ if $u_2^2=1$,

 $q(x^3)$ is an end point of $E_2^{(\omega)}/_{\tilde{u}}$ if $|\alpha^1| \ge 2$, $|\alpha^2| \ge 2$, $u_2^1 = 1$ and $u_2^2 = 2$,

 $q(x^4)$ is an end point of $E_2^{(\omega)}/_{\tilde{u}}$ if $|\alpha^1|=1$ and $u_2^2=2$,

and

 $q(x^5)$ is an end point of $E_2^{(\omega)}/_{\tilde{u}}$ if $|\alpha^2|=1$ and $u_2^1=2$.

- (2) Unless $J(u^1; n) = J(u^2; n) = \{n-1\}$ holds for all $n \ge 2$, there exist $n_0 \in \mathbb{N}$ and j_0 $(1 \le j_0 \le n_0 2)$ such that either $j_0 \in J(u^1; n_0)$ or $j_0 \in J(u^2; n_0)$ holds, since $0 \in J(u^j; n_0)$ by the definition of $J(u^j; n_0)$ (j=1, 2). It is enough to consider the case of $j_0 \in J(u^2; n_0)$.
 - (a) In case $u_2^1 = 2$:

If there exists $m \in \mathbb{N}$ such that

$$\sigma^m u^1 = x^1$$

then $m \ge 2$. If there exists $m \in \mathbb{N}$ such that

$$\sigma^m u^2 = x^1$$

then $m \ge 3$.

Let m_1 and m_2 be the smallest number satisfying (4.1) and (4.2) respectively, if they exist. Choose $y \in E_2^{(\omega)}$ such that

- (i) $P_2\sigma y \neq P_2\sigma^{m_1-2}u^1$ (ii) $P_3y \neq P_3\sigma^{m_2-3}u^2$ and (iii) $\sigma^2y = (2) \oplus x^1$, where the condition (i) [resp. (ii)] is unnecessary if there exists no m satisfying (4.1) [resp. (4.2)]. For any $k \in \mathbb{N}$, let $z^k \in E_2^{(\omega)}$ satisfy $\sigma^k z^k = y$. Then $q(z^k)$ is an end point of $E_2^{(\omega)}/_{\bar{u}}$. Hence there exist infinitely many end points of $E_2^{(\omega)}/_{\bar{u}}$.
 - (b) In case $u_2^1 = 1$ and $u_2^2 = 1$:

We can show that there exist infinitely many end points of $E_2^{(\omega)}/_{\bar{u}}$ in the same way as (a) by replacing x_1 with x_2 .

(c) In case $|\alpha^1| \ge 2$, $|\alpha^2| \ge 2$, $u_2^1 = 1$ and $u_2^2 = 2$: If there exists $m_3 \in N$ [resp. $m_4 \in N$] such that

(4.3)
$$\sigma^{m_3}u^1 = x^3$$
 [resp. $\sigma^{m_4}u^2 = x^3$]

the $m_3 \ge 1$ [resp. $m_4 \ge 3$]. Let m_3 and m_4 be the smallest number satisfying

(4.3) if they exist and let $m_3 = \infty$ or $m_4 = \infty$ if there exists no $m \in \mathbb{N}$ satisfying (4.3). If $m_3 = 1$ [resp. $2 \le m_3 \le \infty$], choose $y \in E_2^{(\omega)}$ such that $\sigma y = (22) \oplus x^3$ and $P_3 y \ne P_3 \sigma^{m_3 - 3} u^2$ [resp. $\sigma^2 y = x^3$, $P_2 y \ne P_2 \sigma^{m_1 - 2} u^1$, $P_2 y \ne P_2 \sigma^{m_2 - 2} u^2$ and $P_2 y \ne (12)$], where the corresponding condition is unnecessary if either $m_3 = \infty$ or $m_4 = \infty$ holds.

(d) In case $|\alpha^1|=1$ and $u_2^2=2$:

If there exists $m_5 \in \mathbb{N}$ such that $\sigma^{m_5}u^2 = x^4$, then $m_5 \ge 3$. Choose $y \in E_2^{(\omega)}$ such that $\sigma^2 y = x^4$, $P_2 y \neq P_2 \sigma^{m_5-2} u^2$ and $P_2 y \neq (12)$.

(e) In case $|\alpha^2| = 1$ and $u_2^1 = 1$:

If there exists $m_6 \in \mathbb{N}$ such that $\sigma^{m_6} u^1 = x^5$, then $m_6 \ge 2$. Choose $y \in E_2^{(\omega)}$ such that $\sigma^2 y = x^5$, $P_2 y \neq P_2 \sigma^{m_6 - 2} u^1$ and $P_2 y \neq (21)$.

So also in case (c) \sim (e) as (a) and (b), let $z^k \in E_2^{(\omega)}$ satisfy $\sigma^k z^k = y$ for any $k \in \mathbb{N}$. Then $q(z^k)$ is an end point of $E_2^{(\omega)}/_{\tilde{u}}$. Hence there exist infinitely many end points of $E_2^{(\omega)}/_{\tilde{u}}$.

THEOREM 4.5. The following are equivalent.

- (1) The set $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U})$ is homeomorphic to the unit interval [0, 1].
- (2) For any $n \ge 2$, $J(u^1; n) = J(u^2; n) = \{n-1\}$ holds.

PROOF. $(1)\Rightarrow(2)$: By (1), there exists a homeomorphism $\tau:[0,1]\to E_2^{(\omega)}/_{\tilde{u}}$. For $t\in(0,1)$, there exists $\varepsilon>0$ such that $(t-\varepsilon,t+\varepsilon)\subset(0,1)$. Since $\tau((t-\varepsilon,t+\varepsilon))$ is an open set in $E_2^{(\omega)}/_{\tilde{u}}$, there exists $n_0\in \mathbb{N}$ such that $\tilde{U}_n(\tau(t))\subset \tau(t-\varepsilon,t+\varepsilon)$ for $n\geq n_0$. Since $\tilde{U}_n(\tau(t))$ is a connected open set by Corollary 1 to Theorem 3.6, $\tau^{-1}(\tilde{U}_n(\tau(t)))$ is also connected open set in (0,1) and so $\partial(\tau^{-1}(\tilde{U}_n(\tau(t))))$ consists of two points. Hence $\partial(\tilde{U}_n(\tau(t)))$ consists of two points, which implies that $\tau(t)$ is not an end point. Therefore the set of end points of $E_2^{(\omega)}/_{\tilde{u}}$ consists of $\tau(0)$ and $\tau(1)$, which implies (2) by Theorem 4.4.

 $(2) \Rightarrow (1)$: For $x = (x_n) \in E_2^{(\omega)}$, define

$$e_n(x) = \begin{cases} \sum_{j=1}^{n-1} (x_j - u_2^{x_j} + 1) & (n \ge 2) \\ 0 & (n = 1) \end{cases}$$

$$a_n(x) = \frac{1}{2} + (-1)^{e_n(x)} \left(x_n - \frac{3}{2} \right)$$

$$r(x) = \sum_{n=1}^{\infty} \frac{a_n(x)}{2^n}$$

Then $a_n(x) \in \{0, 1\}$ for any $n \in \mathbb{N}$ and $r: E_2^{(\omega)} \to [0, 1]$ is a continuous, onto mapping.

We recall that r(x) = r(y) $(x \neq y)$ if and only if

$$\{ \begin{array}{l} \text{there exists } n_0\!\in\!\pmb{N} \text{ such that } a_j(x)\!=\!a_j(y) \ (j\!\leq\!n_0\!-\!1) \\ \\ a_{n_0}\!(x)\!=\!0, \ a_{n_0}\!(y)\!=\!1, \ a_j(x)\!=\!1, \ a_j(y)\!=\!0 \ (j\!\geq\!n_0\!+\!1) \\ \\ \left[\text{resp. } a_{n_0}\!(y)\!=\!0, \ a_{n_0}\!(x)\!=\!1, \ a_j(y)\!=\!1, \ a_j(x)\!=\!0 \ (j\!\geq\!n_0\!+\!1) \right]. \end{array}$$

We see that (2) implies the following

$$(4.5) u_j^1 \neq u_2^{u_{j-1}^1}, \quad u_j^2 \neq u_2^{u_{j-1}^2} \quad \text{for} \quad j \geq 3.$$

We shall show that r(x) = r(y) is equivalent to q(x) = q(y) for $x, y \in E_2^{(\omega)}$.

Suppose q(x) = q(y) for $x, y \in E_2^{(\omega)}$. Then since $Qu = \{u^1, u^2\}$ holds by (2), we may take $x = P_{n_0-1}x \oplus u^1$ and $y = P_{n_0-1}x \oplus u^2$ with some $n_0 \in \mathbb{N}$. Then $a_j(x) = a_j(y)$ for $j \leq n_0 - 1$ and $e_{n_0}(x) = e_{n_0}(y)$. If $e_{n_0}(x) = e_{n_0}(y) = 0 \pmod{2}$, we have $x_{n_0} = u_1^1 = 1$ and $a_{n_0}(x) = 1/2 + (u_1^1 - (3/2)) = 0$. By (4.5), we have $e_{n_0+1}(x) = 2 - u_2^1 \pmod{2}$ and $e_{n_0+j}(x) = 1 - u_2^{n_j} \pmod{2}$ for $j \geq 2$. Hence $a_{n_0+j}(x) = 1$ for $j \geq 1$. In the same way, we get $a_{n_0}(y) = 1$ and $a_{n_0+j}(y) = 0$ for $j \geq 1$. Hence (4.4) is satisfied. If $e_{n_0}(x) = e_{n_0}(y) = 1 \pmod{2}$, (4.4) is also satisfied in the same way, which implies r(x) = r(y).

On the other hand, suppose r(x)=r(y) for $x,y\in E_2^{(\omega)}$. If x=y, then q(x)=q(y). So suppose there exists $n_0\in N$ such that $x_j=y_j$ for $j\le n_0-1$ and $x_{n_0}\ne y_{n_0}$. Then $a_j(x)=a_j(y)$ for $j\le n_0-1$, $e_{n_0}(x)=e_{n_0}(y)$ and $a_{n_0}(x)\ne a_{n_0}(y)$. It is enough to consider the case $a_{n_0}(x)=0$ and $a_{n_0}(y)=1$. Then r(x)=r(y) implies $a_j(x)=1$ and $a_j(y)=0$ for $j\ge n_0+1$ by (4.4). $a_{n_0}(x)=1/2+(-1)^{e_{n_0}(x)}(x_{n_0}-3/2)=0$ implies $e_{n_0}(x)\ne x_{n_0}\pmod 2$. Hence $e_{n_0+1}(x)=u_2^{x_{n_0}}\pmod 2$ and so $x_{n_0+1}=u_2^{x_{n_0}}$ by $a_{n_0+1}(x)=1$. In the same way, we get $e_{n_0+j}(x)=1-u_2^{x_{n_0+j-1}}\pmod 2$ and $x_{n_0+j}\ne u_2^{x_{n_0+j-1}}$ for $j\ge 2$. Hence by using (4.5), we get $x_{n_0+j}=u_{j+1}^{x_{n_0}}$ by induction and we have $x=P_{n_0-1}x\oplus u^{x_{n_0}}$. In the same way, we get $y=P_{n_0-1}x\oplus u^{y_{n_0}}$, which implies q(x)=q(y).

So we have proved that q(x) = q(y) is equivalent to r(x) = r(y). Since $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U})$ is compact and the unit interval [0,1] is a Hausdorff space and $r: E_2^{(\omega)} \to [0,1]$ is a continuous, onto mapping, $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U})$ is homeomorphic to [0,1] by Proposition 3.4. \square

REMARK. It is easily seen that the condition (2) in Theorem 4.5 is equivalent to the following (3).

(3) (u^1, u^2) is one of the followings (i) \sim (iv)

(i)
$$u^1 = (1) \oplus \sum_{i=1}^{\infty} \oplus (2)$$
 $u^2 = (2) \oplus \sum_{i=1}^{\infty} \oplus (1)$

(ii)
$$u^1 = (12) \oplus \sum_{i=1}^{\infty} \oplus (1)$$
 $u^2 = (22) \oplus \sum_{i=1}^{\infty} \oplus (1)$

(iii)
$$u^1 = (11) \oplus \sum_{i=1}^{\infty} \oplus (2)$$
 $u^2 = (21) \oplus \sum_{i=1}^{\infty} \oplus (2)$

(iv)
$$u^1 = (1) \oplus \sum_{i=1}^{\infty} \oplus (12)$$
 $u^2 = (2) \oplus \sum_{i=1}^{\infty} \oplus (21)$

§ 5. The invariant set with respect to contraction maps on \mathbb{R}^{N} .

Let f_j (j=1,2) be an one-to-one, contraction map on \mathbb{R}^N , with Lipschitz constant $r_j \in (0,1)$ and Fix (f_j) be the uniquely determined fixed point of f_j . When a nonempty compact subset K of \mathbb{R}^N satisfies $K=f_1(K) \cup f_2(K)$, we shall write $K=K(f_1,f_2)$, which is uniquely determined by the fixed point theorem. For $x_j \in \{1,2\}$ $(j=1,2,\cdots,n)$, we shall write

$$f_{x_1\cdots x_n} = f_{x_1}f_{x_2}\cdots f_{x_n}$$

and

$$K_{x_1\cdots x_n}=f_{x_1\cdots x_n}(K)$$
.

Then diam $(K_{x_1\cdots x_n}) \leq r_{x_1}r_{x_2}\cdots r_{x_n} \operatorname{diam}(K) \rightarrow 0$ as $n \rightarrow \infty$.

For $x=(x_n)\in E_2^{(\omega)}$, we have

$$K \supset K_{x_1} \supset K_{x_1 x_2} \supset \cdots \supset K_{x_1 \cdots x_n} \supset \cdots$$

and the set $\bigcap_{n=1}^{\infty} K_{x_1 \cdots x_n}$ consists of one point, say k_x . By [2, § 3.1], we have $K = \bigcup_{x \in E_g(\omega)} \{k_x\}$.

Define $\varphi: E_2^{(\omega)} \to K$ by $\varphi(x) = k_x$. Then φ is continuous and $f_j \circ \varphi(x) = \varphi((j) \oplus x)$.

PROPOSITION 5.1. If Fix $(f_1) \neq \text{Fix } (f_2)$ and $f_1(K) \cap f_2(K) \neq \emptyset$, then there exists a (*)-pair (u^1, u^2) such that $\varphi(u^1) = \varphi(u^2)$.

PROOF. Since $\varphi(E_2^{(\omega)}) = K$ and $f_1(K) \cap f_2(K) \neq \emptyset$, there exist $x = (x_n)$ and $y = (y_n) \in E_2^{(\omega)}$ such that $\varphi(x) = \varphi(y)$ with $x_1 = 1$ and $y_1 = 2$. When there exists $j \geq 1$ such that

(5.1)
$$f_{x_1\cdots x_j}\varphi(x) = \varphi(x) \qquad [\text{resp. } f_{y_1\cdots y_j}\varphi(y) = \varphi(y)],$$

let j_1 [resp. j_2] be the smallest one and put $\alpha^1 = (x_1 \cdots x_{j_1})$ [resp. $\alpha^2 = (y_1 \cdots y_{j_2})$] and $u^1 = \sum_{i=1}^{\infty} \oplus \alpha^1$ [resp. $u^2 = \sum_{i=1}^{\infty} \oplus \alpha^2$]. If there does not exist $j \in \mathbb{N}$ satisfying (5.1), let $u^1 = x$ [resp. $u^2 = y$]. Then $\varphi(x) = \varphi(u^1)$ and $\varphi(y) = \varphi(u^2)$ implies $\varphi(u^1) = \varphi(u^2)$ and u^1 and u^2 are mutually prime. The relations $\varphi(\sum_{i=1}^{\infty} \oplus (j))$ = Fix (f_j) (j=1,2) and Fix $(f_1) \neq \text{Fix}(f_2)$ imply that either $j_1 \geq 2$ or $j_2 \geq 2$ is satisfied. So (u^1,u^2) is a (*)-pair. \square

THEOREM 5.2. Let f_1 and f_2 be one-to-one, contraction maps on \mathbb{R}^N and let $\operatorname{Fix}(f_1) \neq \operatorname{Fix}(f_2)$. Then

- (1) $K = K(f_1, f_2)$ is either connected or totally disconnected.
- (2) If $f_1(K) \cap f_2(K)$ consists of one point $\{k_0\}$, then there exists α (*)-

pair (u^1, u^2) such that $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U})$ is homeomorphic to K.

PROOF. (1) If $\varphi: E_2^{(\omega)} \to K$ is one-to-one, then K is totally disconnected since $E_2^{(\omega)}$ is totally disconnected and φ is a homeomorphism.

If φ is not one-to-one, there exists a (*)-pair (u^1,u^2) satisfying $\varphi(u^1)=\varphi(u^2)$ by Proposition 5.1. Since $(E_2^{(\omega)}/_{\tilde{u}},\tilde{U})$ is connected by Theorem 3.6 and the mapping $\tilde{\varphi}:(E_2^{(\omega)}/_{\tilde{u}},\tilde{U})\to K$, defined by $\tilde{\varphi}(q(x))=\varphi(x)$, is continuous by Proposition 3.4, K is connected.

- (2) If $f_1(K) \cap f_2(K) = \{k_0\}$, there exist a (*)-pair (u^1, u^2) and the mapping $\tilde{\varphi}: (E_2^{(\omega)}/_{\tilde{u}}, \tilde{U}) \to K$ in the same way as (1). It is enough to show that $\tilde{\varphi}$ is one-to-one.
- a) For $z \in E_2^{(\omega)}$ we shall show that $q(z) = q(u^1)$ if $\varphi(z) = \varphi(u^1)$. If $z = u^1$, it is obvious. So suppose that there exists $n_1 \in \mathbb{N}$ such that $P_{n_1}z = P_{n_1}u^1$ and $z_{n_1+1} \neq u^1_{n_1+1}$. Since f_1 and f_2 are one-to-one and $f_{P_{n_1}z}\varphi(\sigma^{n_1}z) = f_{P_{n_1}z}\varphi(\sigma^{n_1}u^1)$, we have $\varphi(\sigma^{n_1}z) = \varphi(\sigma^{n_1}u^1) = k_0 = \varphi(u^1)$. By the construction of u^1 in Proposition 5.1, we have $P_{n_1}u^1 = \alpha^1 \oplus \cdots \oplus \alpha^1$. Hence $P_{n_1}z = \alpha^1 \oplus \cdots \oplus \alpha^1$, $(\sigma^{n_1}u^1)_1 = 1$ and $(\sigma^{n_1}z)_1 = 2$. If $\sigma^{n_1}z = u^2$, we have $z = \alpha^1 \oplus \cdots \oplus \alpha^1 \oplus u^2$, which implies $z \in Qu$ and $q(z) = q(u^1)$. If there exists $n_2 \in \mathbb{N}$ such that $P_{n_2}(\sigma^{n_1}z) = P_{n_2}(u^2)$ and $(\sigma_{n_1}z)_{n_2+1} \neq u^2_{n_1+1}$, we have $P_{n_2}(\sigma^{n_1}z) = P_{n_2}(u^2) = \alpha^2 \oplus \cdots \oplus \alpha^2$ by using $\varphi(\sigma^{n_1}z) = \varphi(u^2)$. By repeating this process, we have $z \in Qu$ and $q(z) = q(u^1)$.
- b) For $z^1, z^2 \in E_2^{(\omega)}$ we shall show that $q(z^1) = q(z^2)$ if $\varphi(z^1) = \varphi(z^2)$. We may suppose that there exists $n_0 \ge 0$ such that $P_{n_0} z^1 = P_{n_0} z^2$ and $z_{n_0+1}^1 \ne z_{n_0+1}^2$. Since f_1 and f_2 are one-to-one and $f_{P_{n_0}z^1}\varphi(\sigma^{n_0}z^1) = f_{P_{n_0}z^2}\varphi(\sigma^{n_0}z^2)$, we have $\varphi(\sigma^{n_0}z^1) = \varphi(\sigma^{n_0}z^2)$. Since $(\sigma^{n_0}z^1)_1 \ne (\sigma^{n_0}z^2)_1$, we have $\varphi(\sigma^{n_0}z^1) = \varphi(\sigma^{n_0}z^2) = k_0 = \varphi(u^1)$. By using a), we get $q(\sigma^{n_0}z^1) = q(\sigma^{n_0}z^2) = q(u^1)$ and $\sigma^{n_0}z^1, \sigma^{n_0}z^2 \in Qu$, which implies $q(z^1) = q(z^2)$ and $\tilde{\varphi}$ is one-to-one. Hence $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U})$ is homeomorphic to K. \square

By using Theorems 4.4, 4.5 and 5.2, we have the following.

THEOREM 5.3. Let f_1 and f_2 be one-to-one, contraction maps on \mathbb{R}^N . If $\operatorname{Fix}(f_1) \neq \operatorname{Fix}(f_2)$ and $f_1(K) \cap f_2(K)$ is a singleton, then we have the following.

- (1) The following (a), (b) and (c) are equivalent.
 - (a) $K(f_1, f_2)$ is a simple arc.
- (b) There exists a (*)-pair $(u^1, u^2) \in E_2^{(\omega)}$ such that $\varphi(u^1) = \varphi(u^2)$ and $J(u^1; n) = J(u^2; n) = \{n-1\}$ holds for any $n \ge 2$.
 - (c) f_1 and f_2 satisfy one of the following (i) \sim (iv)
 - $(i) f_1(Fix(f_2)) = f_2(Fix(f_1))$
 - (ii) $f_1 f_2(\text{Fix}(f_1)) = f_2 f_2(\text{Fix}(f_1))$
 - (iii) $f_1 f_1(\text{Fix}(f_2)) = f_2 f_1(\text{Fix}(f_2))$
 - (iv) $f_1(\text{Fix}(f_1f_2)) = f_2(\text{Fix}(f_2f_1))$

(2) $K(f_1, f_2)$ has always end points.

Moreover if it is not a simple arc, then there are infinitely many end points in $K(f_1, f_2)$.

The assumption that $f_1(K) \cap f_2(K)$ is a singleton plays an important role in Theorem 5.3. Next we shall consider the condition for the set $f_1(K) \cap f_2(K)$ to be a singleton in case of maps on a complex plane C which is isomorphic to \mathbb{R}^2 .

PROPOSITION 5.4. Let f_1 and f_2 be one-to-one, contraction maps on a complex plane and let f_1 be expressed by $f_1(z) = \gamma \overline{z} + \omega$ with $\gamma, \omega \in \mathbb{C}$. Suppose $f_1(K) \cap f_2(K) = \{k_0\}$, $\operatorname{Fix}(f_1) \neq \operatorname{Fix}(f_2)$ and (u^1, u^2) is a (*)-pair satisfying $\varphi(u^1) = \varphi(u^2)$, where u^1 and u^2 are expressed with some x^0 , $y^0 \in E_2^{(\omega)}$ as follows:

$$u^1 = \underbrace{(11 \cdots 1)}_{m \text{ times}} \oplus (2) \oplus x^0, \qquad u^2 = (2) \oplus y^0.$$

Then $m \leq 2$.

PROOF. By assumption, it holds that $\varphi(u^1) = \varphi(u^2) = \{k_0\}$. Since $\tilde{\varphi}$: $(E_2^{(\omega)}/_{\tilde{u}}, \tilde{U}) \to K$ is a homeomorphism by Theorem 5.2, the set K is connected and locally connected by Theorem 3.6 and its Corollary. Since K is a complete metric set, K is arcwise connected [3, p. 36].

Let $x^1 = \sum_{i=1}^{\infty} \bigoplus (1)$ and suppose $m \ge 3$.

a) In case that either m is an even number or γ is a real number:

By the equation $f_1f_1(z)=|\gamma|^2z+\gamma\overline{\omega}+\omega$ and $f_1(\varphi(x_1))=\varphi(x_1)$, we have $\varphi((11)\oplus x)-\varphi(x^1)=|\gamma|^2(\varphi(x)-\varphi(x^1))$ for any $x\in E_2^{(\omega)}$. So $\varphi(x^1), \varphi((11)\oplus u^1), \varphi(u^1), \varphi((112)\oplus x^0)$ and $\varphi((2)\oplus x^0)$ are on one line in this order since $m\geq 3$. $\varphi((2)\oplus x^0)$ can be joined to $\varphi(u^1)=\varphi((2)\oplus y^0)$ by a curve C_2 in $f_2(K)$, since K is arcwise connected and $\varphi((2)\oplus x^0)$ and $\varphi(u^1)=\varphi((2)\oplus y^0)$ belong to $f_2(K)$. The curve $f_1f_1C_2$ in $f_1(K)$ connects $\varphi((112)\oplus x^0)$ and $\varphi((11)\oplus u^1)$. Since f_1f_1 is a contraction map with ratio $|\gamma|^2$ and it holds that $f_1f_1\varphi(x^1)=\varphi(x^1)$, we have $f_1f_1C_2\cap C_2\setminus \varphi(u^1)\neq \emptyset$, which is a contradiction, since $f_1(K)\cap f_2(K)=\varphi(u^1)$ holds by assumption.

b) In case that γ is not a real number and m is an odd number:

 $\varphi(x^1), \varphi((1) \oplus u^1), \varphi((112) \oplus x^0)$ and $\varphi((2) \oplus x^0)$ are on one line in this order since $m \geq 3$. $\varphi(x^1), \varphi((11) \oplus u^1), \varphi(u^1)$ and $\varphi((12) \oplus x^0)$ are on another line in this order. In the same way as a), we can join $\varphi((2) \oplus x^0)$ to $\varphi(u^1) = \varphi((2) \oplus y^0)$ by a curve C_2 in $f_2(K)$. The curve f_1C_2 [resp. $f_1f_1C_2$] joins $\varphi((12) \oplus x^0)$ to $\varphi((1) \oplus u^1)$ [resp. $\varphi((112) \oplus x^0)$ to $\varphi((11) \oplus u^1)$] in $f_1(K)$. Since f_1 [resp. f_1f_1] is a contraction map with ratio γ , [resp. $|\gamma|^2$] and $f_1\varphi(x^1) = \varphi(x^1)$ [resp. $f_1f_2\varphi(x^1) = \varphi(x^1)$], either $C_2 \cap f_1C_2 \setminus \varphi(u^1)$ or $C_2 \cap f_1f_1C_2 \setminus \varphi(u^1)$ is

nonempty, which is a contradiction, since $f_1(K) \cap f_2(K) = \varphi(u^1)$ holds by assumption. Therefore $m \leq 2$ holds. \square

References

- [1] H. Hata, On the Structure of Self-Similar Sets, Japan J. Appl. Math. 2 (1985), 381-414.
- [2] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
- [3] G.T. Whyburn, Analytic Topology, vol. 28, Amer. Math. Soc. Colloq. Pub., 1942.