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§1. Introduction and notations

Let U be the unit disc in R*. The classical theorem of Fatou asserts
that the nontangential boundary limit of the Poisson integral of a function
in L?(0U) exists almost everywhere. Similar results have been obtained
for more general domains, for example, Lipschitz domains, NTA-domains
and for more general approach regions (cf. [9], [10], [11], [12], [1]). In
these papers maximal operators of Hardy-Littlewood type associated to the
approach regions and L”-boundedness of the maximal operators have played
important roles.

In this paper, for an open set U we consider a countably sublinear
functional 7 on the class J(@U) of the extended real-valued functions on ¢ U,
in place of a measure on the boundary oU and suppose that for each x= U
a monotone sublinear functional @ ,(x) on L(r, ) is defined, where L (7, K )
is the closure of a family # of real-valued functions on oU relative to 7.
We give sufficient conditions for the boundary limits of @, along given
filters to exist 7-q.e. on oU.

More precisely, let ' be a closed subset of a topological space and
denote by J(F') the class of all extended real-valued functions on F. A
mapping 7 from J(F) to R*\J{+ o} is called a countably sublinear funec-
tional if it has the following properties:

(c) r(NH=rdrI),

(c;) bR =7(bSf)=1bl7(S),

(€) [, /nz0, fFEZ2/n=1(N=207(1).

To simplify the notations, we use 7(£) instead of r(yz) for a subset £
of F, where yy is the indicator function of E. A subset E of F satisfy-
ing 7(E)=0 is called r-polar. If a property holds on F' except for a y-polar
set, we say that the property holds 7-q.e. on F' (simply, it holds 7-g.e.).
We note that if y(f)<+ o, then the set {x=F'; |f(x)|=+ =} is r-polar
(ef. [7, 1.3 Lemmal).

Put
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B ={feJ(F); 1(f) <+ }.

We define the algebraic operations with extended real numbers in the
usual way. For example, ‘

0(£2)=0,  (+o0)+(—c0)=0.

Furthermore, fix a linear sublattce H of Borel measurable functions in
B(r). We denote by L(r, H) the set of all Borel measurable functions f
such that there exists a sequence {f,}CH for which 7(f,—f)—0.

If f,9=L(r, H) and b,c= R, then bf+cg and |f| belong to L(r, ).
For example, let » be a positive Radon measure on F and p be a real
number satisfying p=1. We define

rn=(\"1717a0)" tor ey,

*
where S stands for the upper integral with respect to v. Then a subset

E of F is r-polar if and only if v*(E)=0. Moreover if 4 1is the class
k(F) of all continuous real-valued functions on F with compact support,
then L(r, k(F')) is equal to .L?(v), i.e., the family of all Borel measurable
functions f such that |f|? is v-integrable. Therefore a countably sublinear
functional 7 on J(F') is regarded as a generalization of an upper integral.

Throughout in this paper, let X be a topological space and U be an
open subset of X with boundary B and 7 be a countably sublinear fune-
tional on J(B). Fix a linear sublattice H of Borel measurable real-valued
functions in PB(y). Suppose that to each x= U and fe (7, K) there cor-
responds a real number @,(x) satisfying the following properties :

(@) =g 7-q.e.=P(x)=D(x),

(a2) Do) =D () +Dy(x).

Furthermore, let 7" be a mapping from _L(7, H) to B(y) satisfying the
following properties :

(b)) f<g rqe.=Tf<Tg 7r-q.e.,

(bo) T(f+9)=Tf+Tg 7-q.e.,

(bs) T is 7-bounded; there is a positive real number ¢ such that

T(TIfN=cr(f) for all fe L(r, H).

Moreover, we assume that to each z= B there corresponds a filte &,
of subsets of U, converging to z.
In §2 we will prove the following theorem.

THEOREM 1. Suppose that

(1.1) F,—lim @,(x)=Tf(2) r-q.e.



July 1992 Theorems of Fatou Type 3

for every f in a dense subset I, of H with respect to v. Set
E;,={z=B; ¥ ,—limsup®,; (x)>b}

and suppose that there are positive real numbers ¢ and p such that

(1.2) T(Er )b Pr(f)?

for every real number b>0 and fe L(r, H). Then (1.1) holds for every
feLy, H).

We next consider ‘S-fine limits’. Let S be a convex cone of non-
negative lower semicontinuous functions in X which has the following
properties :

(1) TS u, €S,

(s,) There exists a locally bounded strictly positive function ve S.

A subset E of U is said to be S-thin at z& B, if z& E or there exists
ue S such that

liminf, ., ;cr w(®)>u(2).
If E, and E, are S-thin at\z, then E,\VFE, is also S-thin at z.

We assume that U is not S-thin at each point 26D and denote by &,
the filter generated by the family

{F'\U{z}; FC U, U\F is S-thin at z}.

If a function g converges along &F,, we say that ¢ has a S-fine limit at
z, which is denoted by S—Ilim,., ,er g(x).

Furthermore, fix a positive Radon measure v on X such that Svdv< + oo,
For f=J(B) we define

Tf(f):inf{Sudy: weS, uz|f| on B}.

Then 7S is a countably sublinear functional on .J(B) and B(r5)DC,(B),
where C,(B) stands for the space of all continuous real-valued functions f
defined on B such that |f|<av on B for some a>0. Therefore we can
define .L(75, C,(B)).

In §3 we will show

THEOREM 2. Let Y, be a dense subset of .L(r5, Co(B)) such that
(13) S_limx—»z.zeU@g(x):Tg(z) Tf'cLe'

for every gc I . Suppose that for some real mumber ¢>0 the following
condition (x) is satisfied :

(%) weS, geL(r),CB)), 0<g=u on B
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= @ x)=cu(x) for all x=U.

Then (1.3) holds 13-q.e. for every g=.L(1), C,(B)). |

In §4 the above results will be applied to potential theory. Let U be
an open set in the strong harmonic space X in the sense of Bauer. We
intend to construct a function space such that for each function f in the
space the generalized solution

2 —> Sfdegv

has the fine limits on U except for a polar set. To do this we consider
the convex cone S of nonnegative hyperharmonic functions in X and a
strictly positive continuous potential v, and define a countably sublinear
functional 75 on J(@U) such that a subset E of B is 75-polar if and only
if E is polar. Further it will be proved that, under the assumption that
there is no point of U at which U is thin, the harmonic function: x—

Sgdsi” for every g .L(y5, C,(0U)) has the fine limit Sgdef” at every ze
o U except for a polar set.

§2. Proof of Theorem 1

Before the proof of the theorem, recall that, a sequence {f,} of func-
tions in B(y) converges 7-quasi uniformly to a function f=PB(y) if there
exists, for every ¢>0, a set KCB such that y(E)<e and {f,} converges to
f uniformly on B\E as n— o,

It is well-known that $B(y) has the following property (cf. [7, 1.4.
Theorem]). |

LEMMA 2.1. Let {f,} be a sequence in B(y). If 7(f.)—0, then {f.}
has a subsequence which converges to 0 y-quast uniformly.

Furthermore, let 2 be a nonnegative extended real-valued functions
defined on a family of subsets of B. An extended real-valued function on
B is said to be A-quasicontinuous if for each ¢>0 there exists an open set
V such that 2(V)<e and the restriction of f to B\V is finite and con-
tinuous.

In view of the proof of [7, 1.4. Theorem] we obtain

LEMMA 2.2. Let {f,} be a sequence of real-valued continuous func-
tions in B(r) which 1s a Cauchy one with respect to v. Then there exists
a 7-quasicontinuous function f such that y(f—f.)—0. In particular, if
I C(B), then for every g<.L(r, ) there exists a 7-quasicontinuous h
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such that g=h 7-q.e., where C(B) 1s the space all of continuous real-valued
functions.

PROOF OF THEOREM 1. Let fe L(7, %) and ¢ be a positive real num-
ber. Further, set
B.={z=B; F,—limsup |®,(x)— Tf(z)| >¢} .

It suffice to see that 7(B)=0. By the definition of L(r, #), we can
choose a sequence {f.}CH, such that 7(f—f,)—0 and hence (T f—fa])—0
by the assumptions of 7. By the aid of Lemma 2.1 there is a subsequence
{g.) of {f.} such that {T|f—g.|} converges r-quasi uniformly to 0. For
each 0>0 satisfying d<e there exist a set F; and a natural number m
such that

(2.1) 1(B\F5<d, T|f—gnl<d on F; and 7(f—ga)<d.
We set
E,={zeB; |Tf(z)|=+ ©}U(U.fzeB" |Tg.(2)| =+ c0})

and denote by E, the set of points z such that ¥,—1lim®, (x) do not
exist or F,—lim®, (x)# Tg,(z). Furthermore, denote by G, the set

zeB; |Tf(2)— Tg. ()| > TIf = gal(2); -

Then E:=\U%.,(E,\UG,) is a 7-polar set by the assumptions for 9, and T.
Let z= F5\E. Then we have

F,—limsup |@ (x)— 1'f(2)|
<F,—limsup |@,(x)— D, (2)]
+F,—limsup|®, (x)— Tgn(2)| + | Tgn(z)— Tf(2)|
<¥F,—limsup® -, (x)+0d.
Therefore we see that
(2.2) B.sCA.;,

where

A, =R F\E; F,—limsup®,,-,,, (%) >ec— 0}
and
B.,={zeF\E; F,—limsup® (x)— Tf(z)| >¢}.

By (2.1), (2.2) and (1.2) we obtain
7(B)=7(B\F3)+7(E)+7(B..5)
<o+7(A: ) =0+c(e—0) Pr(f—gun)”



6 H. WATANABE NSR. 0.U., Vol. 43

<0+c(e—8)*o7.
As 0—0, we see that 7(B.)=0, which completes the proof.

REMARK. We see easily that Lemmas 2.1, 2.2 and Theorem 1 remain
valid even if we replace the property (c;) of 7 by the following one:
(c;) There is a positive real number ¢ such that

LFz0, 2. == 1r(=cXr(fa).

§3. Proof of Theorem 2

We prepare the following lemma.

LEMMA 3.1. Assume that condition (x) im Theorem 2 is satisfied.
For g= L(r5, Co(B)) and b= R*, set

Foy={zeB; S—limsup,.,. .cv®@ 4 (x)>b},

where S—limsupM,er(D,g](x):limEegasuper@.gi(x). Then there exists a
real number ¢>0 such that

(3.1) 7 (Fg0)=cb'15(g)

for every g= L(rs,Cy(B)) and every real number b>0.

PROOF. For g=.L(r}, C,(B)) and a positive real number b, put F'=F, ,.
To show (3.1), let u be an arbitrary function in S such that w>=|g| on B.
By assumption (+x) we have u(x)=c '@, (x) for every z=U. Let z<=F.
Then {x=U; @, (x)<ble&F,. Therefore the set E={x=U; @, (x)>b} is
not S-thin at z. Consequently we have

w(z)=liminf,_, ,czu(x)
zliminf, ., ,czc™ '@, (x)=c"'D,

whence ¢cb-'u=1 on F. From the definition of 7S it follows that

cb‘ISuduzrf(F) ,

whence
g =rS(F).

This completes the proof.

PROOF OF THEOREM 2, This is an easy consequence of Theorem 1 and
Lemma 3.1,
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§4. Harmonic spaces

In this section, let X be a strong harmonic space in the sense of Bauer
[2] and U be an open set with boundary B. Further, let S be the convex
cone of all nonnegative hyperharmonic functions in X. Evidently S has
the property (s,) in §1. Since there exists a strictly positive continuous
potential v, S also has the property (s). Denote by P the family of all
strictly positive continuous potentials.

In this section we also assume that there is no point in B at which U
is thin, i.e.,

lim inf, ., ,cy w(x)=u(z) for every u=S and every zeB.

Fix a countable regular open base {V,} of X and points {x,} such that
x,=V,. We shall define a measure v, depending on a function v< P, by

(4.1) yv=0%_.2"P0(x,)  tp

where g, is the harmonic measure of V, at x,.
We shall define for g=J(Bb)

7§(g):1nf{gudu; we S, uwzlgl on B}.

Then 75 is a countably sublinear functional such that B(r3HoC,(B).
A set E is said to be polar if there is a nonnegative superharmonic
function w such that u=-+c on LK.

LEMMA 4.1. A subset E of B is r5-polar if and only if E is polar.
PROOF. Suppose that 75(E)=0 and choose a sequence {u,}CS such that
w,=1 on K and Sundu<1/2“. If we set
U= 215U

then w=S and =+ on E. Moreover we have for every p
Sud/.tp: zngundg,,g2pv(mp)zn8undug_2%(xp)< Yoo

Therefore we can find 2,0V, such that u(z,)<+oco. Since {V,} is a
base, we see that the set {r=X; w(x) < + oo} is dense. Thus E is polar.
Conversely, suppose that E is polar. Choose a nonnegative superhar-

monic function  such that w=-+oc on E. Theh we have udy <+ oo (cf.

)

[2, Satz 2.3.1]). Let ¢>0. Sinceeu=1 on E, we have rf(E)geSudu, which
leads to 75 (E)=0.

H. Bauer proved in [3] also in [4] for harmonic spaces in the sense
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of Constantinescu-Cornea, that the generalized sulution H; has a fine limit
at each irregular point 2B for every bounded resolutive boundary funec-

tion f and this limit is identified with the integral S fdelY, where ¢V ig

the balayaged measure of ¢, to CU. W. Hansen also obtained the similar
results concerning finely harmonic functions and finely open sets (cf. [8]).
The following theorem gives the boundary behavior of the harmonic

function : xHSgdeSU for g= L(r5, Cy(B)).

THEOREM 3. Let U be an open set with boundary B in a strong
harmonic space in the sense of Bauer. Furthermore assume that there
in no point in B at which U is thin. Then every g<= UverL (75, Co(B)) s
eUantegrable for all x=U and

4.2) f—limmﬁzlxeyggdez":ggdef”

at every 2€B except for a polar set, where £—lim stands for the fine
limat.

PROOF. First we show that every g<_L(rS,Cy(B)) is sﬁ”—integrable
for all x= U. Since 75(g) <+ oo, there is we S such that

u=|g| on B and Sudv<+oo,
where v=35_,27"v(x,) '¢,. Assume that V,CU. Then we have
Slg(dsgzgSudyp§2pv(xp)gudu< +oo.

Since {x,} is dense, the function xwglgldeg” is harmonic in U and hence

S|g|d6§”<+oo for all z= U.
We next define

(Dg(x):ggdeg” for g L(15,Cy(B)) and z<U.

It is easy to see that @, has the properties (a,) and (ay) in §1. Noting
that the support of ¢{” is contained in B for every & B, we also define

Tg(z)= SgdeSU

for ge L(rs5,Cy(B)) and z=B. To see that T has also the property (bs) in
§1, let g=_L(75,Co(B)) and u be a function in S such that lg|<u on B.
Then

T[gl(z)§8udaf[’§u(z) for every z< B,



July 1992 Theorems of Fatou Type 9

which leads to rﬁ(TlngSudy. From the definition of y; it follows that

rS(T)gl)<y5(g). Thus we see that 7 has property (b)) and |Tg|< -+ oo
7s-g.e. Furthermore it is obvious that 7 has the properties (b;) and (b,)
in §1. :

To see that the assumptions of Theorem 2 are satisfied, let g=C,(B).
If CU is not thin at z= B, then we have

(4.3) limxaz,erSgdsi”:g(z):Sgder

(ef. [6, VII 3.1. Proposition]).
Next, assume that CU is thin at z=B. Since UU{z} is a fine neigh-
borhood, we obtain

f—lim, ., ,eo RSV (%)= REV(2)

for all nonnegative continuous hyperharmonic functions w, whence
(4.4) f—limxﬁz,erSgdegU:Sgdef”

(cf. [5, VI 11.4. Proposition]). Noting that a set in &, is also a fine
neighborhood, we have

(45) S"‘limz—az,xEUSng(;U:f_limx—)z,reUSgdagU .
By combining this with (4.3), (4.4), we conclude that
S i, aep|gdel? = | gdst?

for all g=C,(B) and all z& B.
Moreover the condition (x) is satisfied. Indeed, if w=¢g=0 on B, then

u(x) = Sudegf/g Sgdeg” for every x=U.

LY

Thus we see that all assumptions of Theorem 2 are satisfied. Therefore,
by the aid of Theorem 2, Lemma 4.1 and (4.5), we have the conclusion.

REMARK. In particular if ¢ is the sum of a series of continuous
potentials ¢, such that for some w=P the function g,/v is bounded for

every n and Z“i:lggndv<+ oo for the measure v defined by (4.1), then the

restriction g* of g to B belongs to L(75,C,(B)). In fact, this follows
from 37,97 Cy(B) and

rs(g*wz,T:lg’:)gS(zs;mﬂgn)d» —>0,

where g is the restriction of g, to B.
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