Theorems of Fatou Type with Respect to Countably Sublinear Functionals

Hisako Watanabe

Department of Mathematics, Faculty of Science, Ochanomizu University (Received April 20, 1992)

§ 1. Introduction and notations

Let U be the unit disc in \mathbb{R}^n . The classical theorem of Fatou asserts that the nontangential boundary limit of the Poisson integral of a function in $L^p(\partial U)$ exists almost everywhere. Similar results have been obtained for more general domains, for example, Lipschitz domains, NTA-domains and for more general approach regions (cf. [9], [10], [11], [12], [1]). In these papers maximal operators of Hardy-Littlewood type associated to the approach regions and L^p -boundedness of the maximal operators have played important roles.

In this paper, for an open set U we consider a countably sublinear functional γ on the class $J(\partial U)$ of the extended real-valued functions on ∂U , in place of a measure on the boundary ∂U and suppose that for each $x \in U$ a monotone sublinear functional $\Phi_f(x)$ on $\mathcal{L}(\gamma, \mathcal{H})$ is defined, where $\mathcal{L}(\gamma, \mathcal{H})$ is the closure of a family \mathcal{H} of real-valued functions on ∂U relative to γ . We give sufficient conditions for the boundary limits of Φ_f along given filters to exist γ -q.e. on ∂U .

More precisely, let F be a closed subset of a topological space and denote by J(F) the class of all extended real-valued functions on F. A mapping γ from J(F) to $\mathbf{R}^+ \cup \{+\infty\}$ is called a countably sublinear functional if it has the following properties:

- (\mathbf{c}_1) $\gamma(f) = \gamma(|f|),$
- (c_2) $b \in \mathbb{R} \Rightarrow \gamma(bf) = |b|\gamma(f),$
- (c₃) $f, f_n \ge 0, f \le \sum_n f_n \Rightarrow \gamma(f) \le \sum_n \gamma(f_n).$

To simplify the notations, we use $\gamma(E)$ instead of $\gamma(\chi_E)$ for a subset E of F, where χ_E is the indicator function of E. A subset E of F satisfying $\gamma(E)=0$ is called γ -polar. If a property holds on F except for a γ -polar set, we say that the property holds γ -q.e. on F (simply, it holds γ -q.e.). We note that if $\gamma(f)<+\infty$, then the set $\{x\in F; |f(x)|=+\infty\}$ is γ -polar (cf. [7, 1.3 Lemma]).

Put

$$\mathcal{B}(\gamma) = \{ f \in J(F) ; \gamma(f) < +\infty \}$$

We define the algebraic operations with extended real numbers in the usual way. For example,

$$0(\pm \infty) = 0$$
, $(+ \infty) + (- \infty) = 0$.

Furthermore, fix a linear sublattce \mathcal{H} of Borel measurable functions in $\mathcal{B}(\gamma)$. We denote by $\mathcal{L}(\gamma,\mathcal{H})$ the set of all Borel measurable functions f such that there exists a sequence $\{f_n\}\subset\mathcal{H}$ for which $\gamma(f_n-f)\to 0$.

If $f, g \in \mathcal{L}(\gamma, \mathcal{H})$ and $b, c \in \mathbb{R}$, then bf + cg and |f| belong to $\mathcal{L}(\gamma, \mathcal{H})$. For example, let ν be a positive Radon measure on F and p be a real number satisfying $p \ge 1$. We define

$$\gamma(f) = \left(\int_{-\infty}^{\infty} |f|^p d
u\right)^{1/p}$$
 for $f \in J(F)$,

where $\int_{-\infty}^{\infty} stands$ for the upper integral with respect to ν . Then a subset E of F is γ -polar if and only if $\nu^*(E) = 0$. Moreover if \mathcal{H} is the class $\kappa(F)$ of all continuous real-valued functions on F with compact support, then $\mathcal{L}(\gamma,\kappa(F))$ is equal to $\mathcal{L}^p(\nu)$, i.e., the family of all Borel measurable functions f such that $|f|^p$ is ν -integrable. Therefore a countably sublinear functional γ on J(F) is regarded as a generalization of an upper integral.

Throughout in this paper, let X be a topological space and U be an open subset of X with boundary B and γ be a countably sublinear functional on J(B). Fix a linear sublattice \mathcal{H} of Borel measurable real-valued functions in $\mathcal{B}(\gamma)$. Suppose that to each $x \in U$ and $f \in \mathcal{L}(\gamma, \mathcal{H})$ there corresponds a real number $\Phi_f(x)$ satisfying the following properties:

- (a₁) $f \leq g \ \gamma$ -q.e. $\Rightarrow \Phi_f(x) \leq \Phi_g(x)$,
- (a₂) $\Phi_{f+g}(x) \leq \Phi_f(x) + \Phi_g(x)$.

Furthermore, let T be a mapping from $\mathcal{L}(\gamma, \mathcal{H})$ to $\mathcal{B}(\gamma)$ satisfying the following properties:

- (b₁) $f \leq g \ \gamma$ -q.e. $\Rightarrow Tf \leq Tg \ \gamma$ -q.e.,
- (b₂) $T(f+g) \leq Tf + Tg \ \gamma$ -q.e.,
- (b₃) T is γ -bounded; there is a positive real number c such that

$$\gamma(T|f|) \leq c\gamma(f)$$
 for all $f \in \mathcal{L}(\gamma, \mathcal{H})$.

Moreover, we assume that to each $z \in B$ there corresponds a filte \mathcal{F}_z of subsets of U, converging to z.

In §2 we will prove the following theorem.

THEOREM 1. Suppose that

(1.1)
$$\mathcal{F}_z - \lim \Phi_f(x) = Tf(z) \quad \gamma - \text{q.e.}$$

for every f in a dense subset \mathcal{H}_1 of \mathcal{H} with respect to γ . Set

$$E_{f,b} = \{z \in B; \mathcal{F}_z - \limsup \Phi_{|f|}(x) > b\}$$

and suppose that there are positive real numbers c and p such that

$$(1.2) \gamma(E_{f,b}) \leq cb^{-p} \gamma(f)^p$$

for every real number b>0 and $f\in \mathcal{L}(\gamma,\mathcal{H})$. Then (1.1) holds for every $f\in \mathcal{L}(\gamma,\mathcal{H})$.

We next consider 'S-fine limits'. Let S be a convex cone of non-negative lower semicontinuous functions in X which has the following properties:

- (s_1) $\{u_n\}\subset S \Rightarrow \sum_n u_n \in S$,
- (s₂) There exists a locally bounded strictly positive function $v \in S$.

A subset E of U is said to be S-thin at $z \in B$, if $z \notin \overline{E}$ or there exists $u \in S$ such that

$$\lim \inf_{x\to z, x\in E} u(x) > u(z)$$
.

If E_1 and E_2 are S-thin at z, then $E_1 \cup E_2$ is also S-thin at z.

We assume that U is not S-thin at each point $z \in \partial D$ and denote by \mathcal{F}_z the filter generated by the family

$$\{F \cup \{z\}: F \subset U, U \setminus F \text{ is } S\text{-thin at } z\}$$
.

If a function g converges along \mathcal{G}_z , we say that g has a S-fine limit at z, which is denoted by $S-\lim_{x\to z, x\in U} g(x)$.

Furthermore, fix a positive Radon measure ν on X such that $\int \!\! v d\nu \!<\! +\infty$. For $f\!\in\! J(B)$ we define

$$\gamma_{\nu}^{S}(f) = \inf \left\{ \sqrt{ud\nu} : u \in S, u \ge |f| \text{ on } B \right\}.$$

Then γ_{ν}^{S} is a countably sublinear functional on J(B) and $\mathcal{B}(\gamma_{\nu}^{S}) \supset C_{v}(B)$, where $C_{v}(B)$ stands for the space of all continuous real-valued functions f defined on B such that $|f| \leq \alpha v$ on B for some $\alpha > 0$. Therefore we can define $\mathcal{L}(\gamma_{\nu}^{S}, C_{v}(B))$.

In §3 we will show

THEOREM 2. Let \mathcal{H}_1 be a dense subset of $\mathcal{L}(\gamma_{\nu}^{s}, C_{\nu}(B))$ such that

$$(1.3) S - \lim_{x \to z, x \in U} \Phi_{q}(x) = Tq(z) \gamma_{v}^{s} - q.e.$$

for every $g \in \mathcal{H}_1$. Suppose that for some real number c>0 the following condition (*) is satisfied:

(*)
$$u \in S$$
, $g \in \mathcal{L}(\gamma_{\nu}^{s}, C_{\nu}(B))$, $0 \leq g \leq u$ on B

$$\implies \Phi_g(x) \leq cu(x) \quad for \ all \ x \in U_s$$

Then (1.3) holds γ_{ν}^{s} -q.e. for every $g \in \mathcal{L}(\gamma_{\nu}^{s}, C_{\nu}(B))$.

In §4 the above results will be applied to potential theory. Let U be an open set in the strong harmonic space X in the sense of Bauer. We intend to construct a function space such that for each function f in the space the generalized solution

$$x \longmapsto \int f d\varepsilon_x^{CU}$$

has the fine limits on ∂U except for a polar set. To do this we consider the convex cone S of nonnegative hyperharmonic functions in X and a strictly positive continuous potential v, and define a countably sublinear functional γ_v^S on $J(\partial U)$ such that a subset E of B is γ_v^S -polar if and only if E is polar. Further it will be proved that, under the assumption that there is no point of ∂U at which U is thin, the harmonic function: $x\mapsto \int g d\varepsilon_x^{CU}$ for every $g\in \mathcal{L}(\gamma_v^S,\ C_v(\partial U))$ has the fine limit $\int g d\varepsilon_z^{CU}$ at every $z\in \partial U$ except for a polar set.

§ 2. Proof of Theorem 1

Before the proof of the theorem, recall that, a sequence $\{f_n\}$ of functions in $\mathcal{B}(\gamma)$ converges γ -quasi uniformly to a function $f \in \mathcal{B}(\gamma)$ if there exists, for every $\varepsilon > 0$, a set $E \subset B$ such that $\gamma(E) < \varepsilon$ and $\{f_n\}$ converges to f uniformly on $B \setminus E$ as $n \to \infty$.

It is well-known that $\mathcal{G}(\gamma)$ has the following property (cf. [7, 1.4. Theorem]).

LEMMA 2.1. Let $\{f_n\}$ be a sequence in $\mathcal{B}(\gamma)$. If $\gamma(f_n) \to 0$, then $\{f_n\}$ has a subsequence which converges to 0 γ -quasi uniformly.

Furthermore, let λ be a nonnegative extended real-valued functions defined on a family of subsets of B. An extended real-valued function on B is said to be λ -quasicontinuous if for each $\varepsilon > 0$ there exists an open set V such that $\lambda(V) < \varepsilon$ and the restriction of f to $B \setminus V$ is finite and continuous.

In view of the proof of [7, 1.4. Theorem] we obtain

LEMMA 2.2. Let $\{f_n\}$ be a sequence of real-valued continuous functions in $\mathcal{B}(\gamma)$ which is a Cauchy one with respect to γ . Then there exists a γ -quasicontinuous function f such that $\gamma(f-f_n)\to 0$. In particular, if $\mathcal{H}\subset C(B)$, then for every $g\in \mathcal{L}(\gamma,\mathcal{H})$ there exists a γ -quasicontinuous h

such that g=h γ -q.e., where C(B) is the space all of continuous real-valued functions.

PROOF OF THEOREM 1. Let $f \in \mathcal{L}(\gamma, \mathcal{H})$ and ε be a positive real number. Further, set

$$B_{\varepsilon} = \{z \in B; \ \mathcal{F}_z - \limsup |\Phi_f(x) - Tf(z)| > \varepsilon\}.$$

It suffice to see that $\gamma(B_{\varepsilon})=0$. By the definition of $\mathcal{L}(\gamma,\mathcal{H})$, we can choose a sequence $\{f_n\}\subset\mathcal{H}_1$ such that $\gamma(f-f_n)\to 0$ and hence $\gamma(T|f-f_n|)\to 0$ by the assumptions of T. By the aid of Lemma 2.1 there is a subsequence $\{g_n\}$ of $\{f_n\}$ such that $\{T|f-g_n|\}$ converges γ -quasi uniformly to 0. For each $\delta>0$ satisfying $\delta<\varepsilon$ there exist a set F_{δ} and a natural number m such that

(2.1)
$$\gamma(B \setminus F_{\delta}) < \delta$$
, $T|f - g_m| < \delta$ on F_{δ} and $\gamma(f - g_m) < \delta$.

We set

$$E_0 = \{z \in B: |Tf(z)| = +\infty\} \cup (\bigcup_n \{z \in B: |Tg_n(z)| = +\infty\})$$

and denote by E_n the set of points z such that $\mathcal{F}_z - \lim \Phi_{g_n}(x)$ do not exist or $\mathcal{F}_z - \lim \Phi_{g_n}(x) \neq Tg_n(z)$. Furthermore, denote by G_n the set

$$\{z\!\in\! B\;;\;\;|Tf(z)\!-\!Tg_n(z)|\!>\!T|f\!-\!g_n|(z)\}\;.$$

Then $E := \bigcup_{n=0}^{\infty} (E_n \cup G_n)$ is a γ -polar set by the assumptions for \mathcal{H}_1 and T. Let $z \in F_{\delta} \setminus E$. Then we have

$$\begin{split} \mathcal{F}_z - & \limsup |\varPhi_f(x) - Tf(z)| \\ & \leq \mathcal{F}_z - \lim \sup |\varPhi_f(x) - \varPhi_{g_m}(x)| \\ & + \mathcal{F}_z - \lim \sup |\varPhi_{g_m}(x) - Tg_m(z)| + |Tg_m(z) - Tf(z)| \\ & \leq \mathcal{F}_z - \lim \sup \varPhi_{|f-g_m|}(x) + \delta \;. \end{split}$$

Therefore we see that

$$(2.2) B_{\varepsilon,\delta} \subset A_{\varepsilon,\delta},$$

where

$$A_{\varepsilon,\delta} = \{z \in F_{\delta} \setminus E; \ \mathcal{F}_z - \limsup \Phi_{|f-g_m|}(x) > \varepsilon - \delta\}$$

and

$$B_{\varepsilon,\delta} = \{z \in F_{\delta} \setminus E; \ \mathcal{F}_2 - \limsup \Phi_f(x) - Tf(z) | > \varepsilon \}.$$

By (2.1), (2.2) and (1.2) we obtain

$$\gamma(B_{\varepsilon}) \leq \gamma(B \setminus F_{\delta}) + \gamma(E) + \gamma(B_{\varepsilon, \delta}) \\
\leq \delta + \gamma(A_{\varepsilon, \delta}) \leq \delta + c(\varepsilon - \delta)^{-p} \gamma(f - g_{m})^{p}$$

$$<\delta+c(\varepsilon-\delta)^{-p}\delta^p$$
.

As $\delta \to 0$, we see that $\gamma(B_{\varepsilon}) = 0$, which completes the proof.

REMARK. We see easily that Lemmas 2.1, 2.2 and Theorem 1 remain valid even if we replace the property (c_3) of γ by the following one:

 (c_3') There is a positive real number c such that

$$f, f_n \ge 0$$
, $f \le \sum_n f_n \Longrightarrow \gamma(f) \le c \sum_n \gamma(f_n)$.

§ 3. Proof of Theorem 2

We prepare the following lemma.

LEMMA 3.1. Assume that condition (*) in Theorem 2 is satisfied. For $g \in \mathcal{L}(\gamma_{\nu}^{s}, C_{\nu}(B))$ and $b \in \mathbf{R}^{+}$, set

$$F_{g,b} = \{z \in B; S - \limsup_{x \to z, x \in U} \Phi_{+g^+}(x) > b\}$$
,

where $S-\limsup_{x\to z, x\in U} \Phi_{+g+}(x) = \lim_{E\in\mathcal{F}_z} \sup_{x\in E} \Phi_{+g+}(x)$. Then there exists a real number c>0 such that

(3.1)
$$\gamma_{\nu}^{S}(F_{g,b}) \leq cb^{-1}\gamma_{\nu}^{S}(g)$$

for every $g \in \mathcal{L}(\gamma_{\nu}^{s}, C_{\nu}(B))$ and every real number b > 0.

PROOF. For $g \in \mathcal{L}(\gamma_{\nu}^{S}, C_{v}(B))$ and a positive real number b, put $F = F_{g,b}$. To show (3.1), let u be an arbitrary function in S such that $u \ge |g|$ on B. By assumption (*) we have $u(x) \ge c^{-1} \Phi_{+g+}(x)$ for every $x \in U$. Let $z \in F$. Then $\{x \in U; \Phi_{+g+}(x) \le b\} \notin \mathcal{F}_{z}$. Therefore the set $E = \{x \in U; \Phi_{+g+}(x) > b\}$ is not S-thin at z. Consequently we have

$$u(z) = \lim \inf_{x \to z, x \in E} u(x)$$

$$\geq$$
 $\lim\inf_{x \to z: x \in E} c^{-1} \Phi_{+g+}(x) \geq c^{-1} b$,

whence $cb^{-1}u \ge 1$ on F. From the definition of γ_{ν}^{S} it follows that

$$cb^{-1}\!\!\int\!\! ud
u\!\ge\!\gamma_
u^S(F)$$
 ,

whence

$$cb^{-1}\gamma_{\nu}^{\mathcal{S}}(g)\!\ge\!\gamma_{\nu}^{\mathcal{S}}(F)$$
 .

This completes the proof.

PROOF OF THEOREM 2. This is an easy consequence of Theorem 1 and Lemma 3.1.

§ 4. Harmonic spaces

In this section, let X be a strong harmonic space in the sense of Bauer [2] and U be an open set with boundary B. Further, let S be the convex cone of all nonnegative hyperharmonic functions in X. Evidently S has the property (s_1) in §1. Since there exists a strictly positive continuous potential v, S also has the property (s_2) . Denote by P the family of all strictly positive continuous potentials.

In this section we also assume that there is no point in B at which U is thin, i.e.,

 $\lim\inf_{x\to z,\,x\in U}u(x)=u(z)$ for every $u\in S$ and every $z\in B$.

Fix a countable regular open base $\{V_p\}$ of X and points $\{x_p\}$ such that $x_p \in V_p$. We shall define a measure ν , depending on a function $v \in P$, by

(4.1)
$$\nu = \sum_{p=1}^{\infty} 2^{-p} v(x_p)^{-1} \mu_p ,$$

where μ_p is the harmonic measure of V_p at x_p .

We shall define for $g \in J(B)$

$$\gamma_v^S(g)\!=\!\inf\left\{\int\!\!u d
u\,;\,\,u\!\in\!S,u\!\geq\!|g|\,\, ext{on}\,\,B
ight\}.$$

Then γ_v^s is a countably sublinear functional such that $\mathcal{B}(\gamma_v^s) \supset C_v(B)$.

A set E is said to be polar if there is a nonnegative superharmonic function u such that $u = +\infty$ on E.

LEMMA 4.1. A subset E of B is γ_v^s -polar if and only if E is polar.

PROOF. Suppose that $\gamma_v^S(E) = 0$ and choose a sequence $\{u_n\} \subset S$ such that $u_n \ge 1$ on E and $\int u_n d\nu < 1/2^n$. If we set

$$u = \sum_{n} u_n$$

then $u \in S$ and $u = +\infty$ on E. Moreover we have for every p

$$\int \!\! u d\mu_p = \sum_n \int \!\! u_n d\mu_p \leq 2^p v(x_p) \sum_n \int \!\! u_n d\nu \leq 2^p v(x_p) < +\infty.$$

Therefore we can find $z_p \in \partial V_p$ such that $u(z_p) < +\infty$. Since $\{V_p\}$ is a base, we see that the set $\{x \in X; u(x) < +\infty\}$ is dense. Thus E is polar.

Conversely, suppose that E is polar. Choose a nonnegative superharmonic function u such that $u=+\infty$ on E. Then we have $\int u d\nu < +\infty$ (cf. [2, Satz 2.3.1]). Let $\varepsilon>0$. Since $\varepsilon u \ge 1$ on E, we have $\gamma_v^S(E) \le \varepsilon \int u d\nu$, which leads to $\gamma_v^S(E)=0$.

H. Bauer proved in [3] also in [4] for harmonic spaces in the sense

of Constantinescu-Cornea, that the generalized sulution H_f has a fine limit at each irregular point $z \in B$ for every bounded resolutive boundary function f and this limit is identified with the integral $\int f d\varepsilon_z^{CU}$, where ε_z^{CU} is the balayaged measure of ε_z to CU. W. Hansen also obtained the similar results concerning finely harmonic functions and finely open sets (cf. [8]).

The following theorem gives the boundary behavior of the harmonic function: $x \mapsto \int g d\varepsilon_z^{CU}$ for $g \in \mathcal{L}(\gamma_v^S, C_v(B))$.

THEOREM 3. Let U be an open set with boundary B in a strong harmonic space in the sense of Bauer. Furthermore assume that there in no point in B at which U is thin. Then every $g \in \bigcup_{v \in P} \mathcal{L}(\gamma_v^s, C_v(B))$ is ε_x^{CU} -integrable for all $x \in U$ and

(4.2)
$$f - \lim_{x \to z_+, x \in U} \int g d\varepsilon_x^{CU} = \int g d\varepsilon_z^{CU}$$

at every $z \in B$ except for a polar set, where f- \lim stands for the fine limit.

PROOF. First we show that every $g\in \mathcal{L}(\gamma_v^s,C_v(B))$ is ε_x^{cv} -integrable for all $x\in U$. Since $\gamma_v^s(g)<+\infty$, there is $u\in S$ such that

$$u\!\ge\!|g|$$
 on B and $\int\!\!u d
u\!<\!+\!\infty$,

where $\nu = \sum_{p=1}^{\infty} 2^{-p} v(x_p)^{-1} \mu_p$. Assume that $\overline{V}_p \subset U$. Then we have

$$\int \! |g| darepsilon_{x_p}^{cv} \! \le \! \int \! \! u d\mu_p \! \le \! 2^p v(x_p) \! \int \! \! u d
u \! < + \infty$$
 .

Since $\{x_p\}$ is dense, the function $x\mapsto \int |g|d\varepsilon_x^{CU}$ is harmonic in U and hence $\int |g|d\varepsilon_x^{CU}<+\infty$ for all $x\in U$.

We next define

$$\Phi_g(x) = \int g d \varepsilon_x^{CU} \quad \text{for } g \in \mathcal{L}(\gamma_v^S, C_v(B)) \quad \text{and} \quad x \in U.$$

It is easy to see that Φ_q has the properties (a_1) and (a_2) in §1. Noting that the support of ε_z^{CU} is contained in B for every $z \in B$, we also define

$$Tg(z)\!=\! \int\!\! gdarepsilon_{z}^{\scriptscriptstyle CU}$$

for $g \in \mathcal{L}(\gamma_v^s, C_v(B))$ and $z \in B$. To see that T has also the property (b_3) in § 1, let $g \in \mathcal{L}(\gamma_v^s, C_v(B))$ and u be a function in S such that $|g| \le u$ on B. Then

$$T|g|(z)\!\leq\!\int\!\!udarepsilon_{z}^{\scriptscriptstyle CU}\!\leq\!u(z)$$
 for every $z\!\in\!B$,

which leads to $\gamma_v^S(T|g|) \leq \int u d\nu$. From the definition of γ_v^S it follows that $\gamma_v^S(T|g|) \leq \gamma_v^S(g)$. Thus we see that T has property (b₃) and $|Tg| < +\infty$ γ_v^S -q.e. Furthermore it is obvious that T has the properties (b₁) and (b₂) in § 1.

To see that the assumptions of Theorem 2 are satisfied, let $g \in C_v(B)$. If CU is not thin at $z \in B$, then we have

(4.3)
$$\lim_{x\to z, x\in U} \int g d\varepsilon_x^{CU} = g(z) = \int g d\varepsilon_z^{CU}$$

(cf. [5, VII 3.1. Proposition]).

Next, assume that CU is thin at $z \in B$. Since $U \cup \{z\}$ is a fine neighborhood, we obtain

$$f - \lim_{x \to z, x \in U} \hat{R}_w^{CU}(x) = \hat{R}_w^{CU}(z)$$

for all nonnegative continuous hyperharmonic functions w, whence

$$(4.4) f-\lim_{x\to z, x\in U} \int g d\varepsilon_x^{CU} = \int g d\varepsilon_z^{CU}$$

(cf. [5, VI 11.4. Proposition]). Noting that a set in \mathcal{F}_z is also a fine neighborhood, we have

$$(4.5) S - \lim_{x \to z, x \in U} \int g d\varepsilon_x^{CU} = f - \lim_{x \to z, x \in U} \int g d\varepsilon_x^{CU}.$$

By combining this with (4.3), (4.4), we conclude that

$$S\!-\!\lim_{x o z,\,x\in U}\!\int\!\! gdarepsilon_x^{CU}\!=\!\int\!\! gdarepsilon_z^{CU}$$

for all $g \in C_v(B)$ and all $z \in B$.

Moreover the condition (*) is satisfied. Indeed, if $u \ge g \ge 0$ on B, then

$$u(x)\!\ge\!\int\!\!udarepsilon_x^{CU}\!\ge\!\int\!\!gdarepsilon_x^{CU}$$
 for every $x\!\in\!U$.

Thus we see that all assumptions of Theorem 2 are satisfied. Therefore, by the aid of Theorem 2, Lemma 4.1 and (4.5), we have the conclusion.

REMARK. In particular if g is the sum of a series of continuous potentials g_n such that for some $v \in P$ the function g_n/v is bounded for every n and $\sum_{n=1}^{\infty} \int g_n d\nu < +\infty$ for the measure ν defined by (4.1), then the restriction g^* of g to g belongs to $\mathcal{L}(\gamma_v^S, C_v(B))$. In fact, this follows from $\sum_{n=1}^{m} g_n^* \in C_v(B)$ and

$$\gamma_v^S(g^* - \sum_{n=1}^m g_n^*) \leq \int (\sum_{n=m+1}^\infty g_n) d\nu \longrightarrow 0$$
,

where g_n^* is the restriction of g_n to B.

References

- [1] Ahern, P. and Nagel, A.: Strong L^P estimates for maximal functions with respect to singular measures; With applications to exceptional sets. Duke Math. J. 53 (1986), 359-393.
- [2] Bauer, H.: Harmonisches Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Berlin-Heidelberg-New York, Springer, 1966.
- [3] Bauer, H.: Fine boundary limits of harmonic and caloric functions. Bull. Sci. Meth. 2^e série 109 (1985), 337-361.
- [4] Bauer, H.: Fine boundary limits and maximal sequences, Research Inst. Math. Sci. Kyoto Univ. RIMS 610 (1987), 85-102.
- [5] Bliedtner, J. and Hansen, W.: Potential theory, Universitext, Berlin-Heidelberg-New York-Tokyo, Springer, 1986.
- [6] Carleson, L.: Selected problems on exceptional sets, Toronto-London-Melbourne, Van Notstrand, 1967.
- [7] Fuglede, B.: Capacity as a sublinear functional generalizing an integral, Mat. Fys. Medd. Danske Vid. Selsk. 38 (1971), no. 7, 1-44.
- [8] Hansen, W.: Fine boundary limits of finely harmonic functions, Math. Ann. 274 (1986), 643-647.
- [9] Hunt, R.A. and Wheeden, R.L.: On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 147 (1970), 507-527.
- [10] Jerison, D.S. and Kenig, C.E.: Boundary behavior of harmonic functions in non-tangentially accessible domains, Advances in Math. 46 (1982), 80-147.
- [11] Nagel, A., Rudin, W. and Shapiro, J.: Tangential boundary behavior of functions in Dirichlet-type spaces. Annals of Math. 116 (1982), 331-360.
- [12] Nagel, A. and Stein, E.M.: On certain maximal functions and approach regions. Advances in Math. 54 (1984), 83-106.