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§1. Introduction

Let & be a foliation on a manifold M. By the transversal geometry
of a foliation, we mean ‘‘the differential geometry’’ of the leaf space M/SF.
It is the geometry infinitesimally modeled by the normal bundle @ of <.
In this paper, we shall study the transversal geometry corresponding to
the geometry of almost complex manifolds. That is, we call a foliation &F
an almost complex foliation if it has a holonomy-invariant almost complex
structure J, on Q.

The notion of almost Hermitian foliations, almost Kéahler foliations,
and Kahler foliations are introduced in §3. Our main results for almost
complex foliations are the following :

THEOREM A. Let & be an almost Hermitian foliation on M. For
the differentiable complex vector bundle (Q,Jy) we have

CXI(Q,JQ) Czi(Q;JQ):O for 2(;+ -+ + ;) >q=dimQ,
where Ci(Q,Jy) denotes the A-th Chern class of (Q,Jq).

THEOREM B. Let M be a compact orientable manifold and F be a
harmonic, Einstein, almost Kahler foliation on M whose transversal scalar
curvature is non-negative. Then F is a Kahler foliation.

Theorem B is a foliation version of a Theorem of K. Sekigawa ([3]).
We can find examples of almost Kéhler foliations and Kéahler foliations
in contact Riemannian manifolds. Let M be a contact Riemannian mani-
fold with a contact form » and & be a foliation defined by integral curves
of the characteristic vector field. In §4, we will view contact Riemannian
manifolds from the point of the transversal geometry of <. Applying
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Theorem B, we obtain

THEOREM C. Let M be a (2n+1)-dvmensional compact K-contact mani-

fold. If the Ricci curvature p satisfies that for a comstant c¢=—2, o=
2n—c)nQn+cg, then M is a Sasakian manifold.

For basic knowledge of the transversal geometry of foliations, see Ph.
Tondeur [4].

§ 2. Invariant connections and characteristic classes
of the normal bundle

Let &F be a foliation on a manifold M. It is given by an exact
sequence of vector bundles

T

(2.1) 0 —>L-—T1TM—Q—0,

where L is the tangent bundle and @ the normal bundle of &F. A vector
field Y& I'TM is called an infinitesimal automorphism of & if [X, Y]<I'L
for any XeI'l.. The action of the Lie algebra I'L on I'Q is defined by
O0(X)s=xzlX, Y] for XeI'L, scI'Q, where Y,e['TM with =(Y,)=s. A
section s=/'Q is called an tnvariant section if it satisfies @(X)s=0 for any
X< I'L. We can consider an invariant section as a vector field on the leaf
space M/SF of the foliation. We denote by V(F) and I'Q* the set of in-
finitesimal automorphisms of & and that of invariant sections of @ re-
spectively. Then we have an exact sequence of Lie algebras:
0 —> I'L — V() —ﬂ> rQr — o0,

which is associated with (2.1) ([4] Chapter 9)

A differential form we= Q7(M) is said to be basic if 1 (X)w=0, O (X)w
=0 for Xe/lI'L. A basic form is considered as a differential form on the
leaf space. The set 2% (F) of all basic forms constitutes a subcomplex of
the de Rham complex (2*(M),d). Its cohomology HF%(F) is called the
basic cohomology of <F. It plays the role of the de Rham cohomology of
the leaf space ([4] Chapter 9).

In @, a partial connection v along L is defined by

(2.2) Vxs=0(X)s=x[X, Y,] for Xel'L, seI'Q.

It is known as the Bott connection. We consider a connection in @ which
extends the Bott connection.

DEFINITION 2.1. A connection V in @ is called an invariant connection
if it satisfies the following conditions :
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(1) it is the extension of the Bott connection, i.e.,
Vstﬁxs for XeI'L, s=I'Q,
(2) it is holonomy invariant, i.e.,
(@ (X)V)ys=0 (X) (Vr8)—Vourrs— Vr (O (X)s)=0
for Xel'L, YelI'TM, s=I'Q.

Let V be an invariant connection in Q. If Y= V(&) and s=1'Q", then
we have Vys=I'Q*. Therefore the connection may be seen as a connection
of the leaf space. We denote by Ry the curvature tensor field of V defined
by ’

RV(X, Y)S:VXVYS“-Vvas_V[X,y]S. fOI‘ X, YEFTM, SQE[‘Q.

Then Ry has the following property.

LEMMA 2.2. Ry is an End(Q)-valued basic 2-form, 1.e.,

1(X)Rv=0, O(X)Ry=0 for X&I'L.

PrOOF. For XeI'L,Y,Z=I'TM and s<['Q, we have
Re(X, Y)s=VVys—VpVxs— Vi x y8
=0(X)Vys—VyO(X)s—Vgx ¥s
=(O(X)V)ys=0
and
(OX)RINY, Z)s=O(X)Re(Y, Z)s— Rvy(O(X) Y, Z)s

— Ry(Y,0(X)Z)s—Ry(Y, Z)O(X)s

=0(X){IVyV 28—V Vy8— iy 78}
—{VourrrV2z8—VzVourrrs— Viowor. 218}
—{V¥Vexrz8— Vo zVv8— Viv, 001 238}
—{VyV,0(X)s—V,;VyO0(X)s— iy, 1,0(X)s}

=Vy(B(X)V 28) — V2(0(X)Vrs) — Vocrrv, z:
+V2V6nrs+Vier. 28— VrVewn 28+ Vir, 60218
—VyV,0(X)s+7Y,9,0(X)s

= —Vix. v, 2140702, x0+02.cx, 18 =0

The above lemma means that Ry is the tensor field on the leaf space.

EXAMPLE. (Riemannian foliation).
Let ¥ be Riemannian with a bundle-like metric g, on M inducing the
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holonomy invariant metric g, on @=L*. The holonomy invariance means
that O(X)g,=0 for all Xe/I'L. We denote by V¥ the Riemannian con-
nection associated with g,. Define a connection V in @ by

v xS . for XeI'L.
VXS:
n(V%Y,). for XeI'L*.
where Y,=/['L* with n(Y,)=s. Then V is the unique metric and torsion-
free connection in @ ([4] Chapter 5). Moreover we can prove that this
connection is holonomy invariant, using the identity :

290(Vys, )=Ygqo(s, ) + Z,go(n(Y), t) = Z,go(n(Y), s)
+gQ(Tf[ Y; ZS]) t)+gQ(7r[Z£; Y]; s)——gQ(n[Zsy ZL]) ﬂ(Y))
for YeI'TM, s, teI'Q, Z,, Z,=I'TM with n(Z)=s, n(Z,)=t

(4] Chapter 5 (5.13)). In particular V is an invariant connection in Q.

Let P,(V) be the ¢-th Pontrjagin form of @ defined by an invariant
connection V. Then P;(V) is basic. Suppose that both V° and V! are in-
variant. Then we have

PROPOSITION 2.3. There exists a basic form ¢ such that P(V')—
P.(V")=de.

PROOF. We put d=V'—V" Then § can be considered as an End(Q)—
valued 1-form on M. Moreover we have ¢(X)é=0, O(X)6=0 for X<=I'L.
Namely ¢ is basic. We define connection V* in @ by V¢=¢V!4(1—¢)V° for
0=¢=1 and denote by R’ the curvature tensor of V. We easily see that
V' is an invariant connection and by Lemma 2.2 R! is an End(Q)-valued
basic 2-form.

Choosing a basis in @, at x=M, we identify Q, with R?. Then we
have RY(X, Y)=gl(RY), the set of ¢Xxg-real matrices. Suppose P is a sym-
metric, Adg. m-invariant, k-linear form on gl(RY);

P:gl(R)X -+ xgl(RY) —> R
We define an exterior 2k-form P(RY) on M by
(2.3) P(R') (X, -+, Xp) =2 sgn O'P(Rt(Xcrm: Xoy), oo, Rt(Xa(zk—l); Xocar))

where the summation is taken over all permutations ¢ of (1,2, -+, 2k) and
sgno denotes the sign of the permutation ¢. We note that by Ad, Lyck>-
invariance, the right hand side of (2.3) is evaluated independently on the
choice of bases. Let A<gl(R?) and consider the polynomial



July 1992 Almost Complex Foliations and its Application 15

A q
det (u-— ?): ST 5, (A)20" |
w k=0

Let P, be a symmetric k-linear form such that P(A, -+, A)=d,(A), A<= gl(R?).
Then P, is an Adg Lo (Ry-tNVaTiant form. Then ¢-th Pontrjagin form P,(V?)
is given by P,;(RY) ([2] Chapter 12).

Given a symmetric, Adg. r-tnvariant, k-linear form P, we construct
the exterior (2k—1)-form:

(P(Xl,v Tty X2k~1)
1
:kSO S sgnoP(0(X,1y), R X, Xoay), o0y B X con-2), Xoan-1r))dt .

Then it is known that de=P(V")—P(V°) ([2], Chapter 12). Since 4 and R’
are End(Q)-valued basic forms, ¢ is a basic (2k—1)-form.

§3. Almost complex foliations

In this section, we study the transversal geometry of foliations cor-
responding to the geometry of almost complex manifolds.

We call & an almost complex foliotion when it has a holonomy in-
variant almost complex structure J, on the normal bundle ¢. The geometric
meaning of the holonomy invariance is the following: Let U, be a dis-
tinguished chart and f,: U,—R? (¢g=2n) the associated submersion. Then
we can define an almost complex structure J, on f,(U,) such that f, Jo=
JoSay If UsnUz#0, we have 7gaJa=J57 54, Where 75, is a local dif-
feomorphism of R*" such that fs=7s.f. in U.nUsz. Conversely, consider
an atlas U={U,} of distinguished charts and f,: U,— R*" submersions
related by transition function 75, such that there exist almost complex
structures J, on f,(U,) and they satisfy 7safa=Js7 54, Then &F is an
almost complex foliation.

& is called a holomorphic foliation if there exists an atlas U ={U,}
of distinguished charts and f,: U,—C" submersions related by transition
functions 75, such that 75, are holomorphic. Naturally, a holomorphic
foliation has a holonomy invariant almost complex structure J, on @ and
then is necessarily almost complex.

Given a holonomy invariant almost complex structure .J,, we define a
tensor field Ny, of type (1,2) on the normal bundle @ by

Ny (8, t)=—xla(s), a(t) ]+ nla(Jes), a(Jot)]
—Jorla(Jys), a(t)]—Jgxla(s), 6(Jot)]
for s, t=I'Q, where ¢: Q— TM denotes a splitting of the sequence (2.1).
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We remark that if J, is holonomy invariant, NJQ is defined independently
on the choice of splittings. Ny, is holonomy invariant and the following is
easily seen.

PROPOSITION 3.1. An almost complex foliation F is holomorphic if
and only 1f N, , vanishes identically.

An almost complex foliation (resp. a holomorphic foliation) is called
an almost Hermitian foliation (resp. a Hermitian foliation) if it has a
holonomy invariant metric g, on @ whic is invariant by Jo, 1.€., golJgs, Jot)
=gols, t) for s,t<I'Q. The fundamental 2-form @ of an almost Hermitian
foliation & is defined by

DX, Y)=go(zX,JorY) for X,Y=I'TM.

Then @ is a basic 2-form of &. An almost Hermitian foliation (resp. a
Hermitian foliation) is called an almost Kahler foliation (resp. a Kahler
foliation) if the fundamental 2-form @ is closed. Similarly to the case of
Kéhler manifolds, the following is shown :

PROPOSITION 3.2.  An almost Hermitian foliation F with J, and g,
18 a Kahler foliation if and only if VJ,=0 holds, where ¥ denotes the
unique metric and torsion-free conmection associated with g,.

Applying the results of §2, we will show a vanishing theorem for
Chern classes of an almost Hermitian foliation. Let < be an almost
Hermitian foliation on M with a holonomy invariant almost complex
structure J, and a holonomy invariant Hermitian metric g,. We denote
by V the unique metric and torsion-free connection associated with go. As
it is shown in §2, V is an invariant connection. Since VyJ,=O(X)J,=0
for X&I'L,, VJ, may be considered as a tensor field on @ and it is holonomy
invariant. Define a new connection V' in @ by

V' xs=Tas— o Jo(Talods for seI'Q, X=I'TM.

Then the following facts are proved by straightforward calculation :

(i) Jq is parallel with respect to V', i.e., V'J,=0

(ii) V'’ is an invariant connection.

We denote by Ci(Q,J,) the k-th Chern class of the differentiable com-
plex vector bundle (Q,J¢) over M. We calculate Chern classes of (@Q,.J,),
using the connection V' and by Lemma 2.2, we have

THEOREM A. If 2(A,+ -4+ 2,)>q¢=dimQ, we have
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C,(@,J4) -+ C1,(Q, Jg)=0.

K. Sekigawa has shown a condition for an almost Kahler manifold to
be a Kéhler manifold. That is,

THEOREM ([3]). Let M=(M,J, <,>) be a compact Einstein almost
Kahler manifold whose scalar curvature is mon-negative. Then M is a
Kahler manifold.

Now we will prove an analogous theorem for an almost Kahler foliation.

We prepare some notion of Riemannian foliation. Let & be a Rieman-
nian foliation on M with a holonomy invariant metric go. We denote by V
the unique metric and torsion-free connection in Q. Tts curvature tensor
Ry can be considered as a tensor on @ and satisfies the same identities as
Riemannian’s one. Therefore we can define the Ricei curvature gv and
the scalar curvature rv similarly to the usual ones in Riemannian geometry.
We call & an FEinstein foliation if the transversal scalar curvature zv is
constant and the Ricci curvature pv satisfies pv=(rv/q)g,y, ¢=dim Q.

Let g, be a bundle-like metric on M inducing g, on Q. If all leaves
of & are minimal submanifolds of (M, g,), & is said to be harmonic ([4]
Chapter 6). Assume that the tangent bundle L of & is oriented. The
characteristic form Xs of &F is defined in the following fashion. It is a
p-form (p=dim L) on M, which for Y, .-, Y,=I'TM is given by

Xa( Yy, -, Yp):det (93, E)i),

where (E\,---,E,> is a local oriented orthonormal frame of L. A folia-
tion & on a Riemannian manifold (M, gy) is harmonic if and only if
dys(Y, X, -+, X,)=0 for YeI'L*, X,,---,X,=I'L ([4] Chapter 6).

THEOREM B. Let M be a compact orientable manifold and F be a
harmonie, Einstein, almost Kahler foliation on M whose transversal scalar
curvature vs non-negative. Then F 1s a Kahler foliation.

PROOF. Put 2n=dim@. The tangent bundle L of & is orientable,
since M and the normal bundle @ are both orientable. We fix the orienta-
tion of L as follows: for the Riemannian volume form x of (M, g,) and
the fundamental 2-form @ of &F, p=(1/n!)®" Ays holds.

We denote by V' the connection introduced in the proof of Theorem A.
Let P,(V) and P,(V’) be the first Pontrjagin forms corresponding to V and
V' respectively. Then by Proposition 2.3, there exists a basic 3-form ¢
such that P,(V)—P(V')=d¢. Since &F is harmonic, we have dys(Y, Xy, -,
Xp;)=0for YeI'L*, X,,---X,€I'L. On the other hand, ¢ A®""? is a basic
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form. Therefore o A®" 2Adys=0 holds. Hence we have
(B-1) |, (PT)= PAT) A" * Ags=0.
In fact, the left hand side of (B-1)

:SM{d(go/\(D""Z/\xg)+90/\d(D”‘z/\xg+(,D//\(D""2/\dxg}
=0,

Now we will represent (P,(V)—P,(V))A®" * by the curvature tensor
Ry and VJ. For detailed calculation, see [3]. We denote the fiber metric
by <,> instead of go, if there is no confusion. We introduce a tensor
field o% of type (0,2) defined by

3(s, t):itrace of w —> Ry(s,Jt)Ju
o 2

for s, t,ucsQ, at x= M.

Let {e;} be an orthonormal basis of @, at any point <= M. From now on,
we shall adopt the following notational convention :

Rhijk: {Ry(en, ei)ej, er ,

Rﬁijk: <RV(J3;-L, ei)ej, ek\/ 3

Riize=<{RulJey,Je,)Je;, Jew ,
pi;=pv(es, e;5), +, p1;=pv(Je;, Je;) ,
Pfj:ﬁ(ei, e;), , oi5=pv(Je;, Je;) ,
Jij=<Jei, e, Vi =<V, )e;, ex .
For a Riemannian foliation, we have the following identities:
Ruijp=—Runge,
Ryijp=—Ruirs
Ruijpt Rijnt Rjnin=0,
Ruijn=Rjmi
VaRijn+ ViR +ViRyi =0,
By direct calculation, we get

1
(B-2) P,(V)YND" 2= m{z RoaijRosi;—2 2 RapiRazis}O"
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’ n-— 1 7 4 7 ’
P,(N)YANQ" 2= W{E RiaisBResi;— 22 RopijRase O,

where R’ denotes the curvature tensor of V’'. R’ is related to Ry by

B-3)  R'(s, hu= %(Rv(s, Du—JTRy(s, £)Ju)

—%{(VSJ)(VtJ)u—(VtJ)(VsJ)u}, for s, t,ucl'Q.
By (B-2) and (B-3), we have

’ n-2__ 1 __ — —_ n
(P = PATNAD™ = o s (fim fut i 2f) A O™,

where differentiable functions f, -+, f, are defined by
J1=2 Ravij(Ragi;— Rag)
fe=3 (0ji—0%)*,
5= 2 Raaij(VsJ i) Vo i,
=2 Rapii (Vs i) Vo i
The formula (B-1) implies

(B-4) \ (A= fot fim2f)p=0.

o

Now, we evaluate fi(x) at x=M. Let ¢ be a symmetric bilinear form on
@, defined by
a(s, 1) =23 (Ve )e;, 5V, ey, £
1)

Let 4; be eigenvalues of ¢ and define f(x) by Sl@)=3 (2;—2;)%. Then we get
0.

—_ v 2__ i _ L 4
(B-5) Sol@)= 7;7HVJH in @ =5 IV
Next, we will prove
(B-6) |, i—2rou=—3 s,

where f;=2{(R(e; Ne;—Je; NJe;), eo Ney—Je, NJe,»®. In the above equation,
R means the curvature operator which acts on A2Q, as follows:

(R(sA\t),u Nv>=—{Rqy(s, tyu,v>, for s,t,u,veQ,.
We put é€7'Q by
E(’C):E( > Rabij(vb ik)ij)ea .

a b,i,5.k

Then & is an invariant section. The transversal divergence divz&é of & is
defined to be the unique scalar satisfying O(£)v=(divzé)y, v=0"/n! being
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the transvers.al volume form. The transversal divergence theorem ([4]
Chapter 9 Theorem 9.25) then implies S (divz&)p=0. On the other hand,

M

we have f,—2f,=—2divzé—(1/4)f;. Therefore (B-6) is proved.
By (B-4), (B-5), and (B-6), we have finally

SM(%fﬁ'fz)ﬂ: - SM<%HVJ||2+ ﬁf—l- 2—17% IIVJ]P);; ,

If v is non-negative, then V.J vanishes identically on M and by proposition
3.2, F is a Kéhler folianion. This completes the proof of Theorem B.

4. The application to the contact geometry.

In this section, we shall find examples of almost Kéahler foliations and
Kahler foliations in contact Riemannian manifolds and apply Theorem B.

We begin with the review of contact Riemannian geometry. For basic
properties of contact Riemannian manifolds, refer to Blair [1]. (2n—+1)-
dimensional manifold M is a contact manifold if it carries a global 1-form
y such that nA(dn)"+#0 everywhere on M and 7 is called a contact Jorm.
On a contact manifold, there is a unique vector field ¢ such that

n(§)=1,
i(€)dn=0.

It is called a characteristic vector field. The 2n-dimensional subbundle D
of TM is defined by

D=\ D,, D,={XeT,MnX)=0}.

TEM

Then the tangent bundle 7'M has the direct sum decomposition :
TM=D+ R¢ .

We note that if X<I'D, then @) X=I'D. 1t is well-known that there
exist a Riemannian metric g and a (1, 1)-tensor field ¢, which satisfy

9(§, X)=n(X)
¢*X=—X+9(X)&
dn(X, Y)=g(X,¢Y)
for X, Yel'TM.

The quadruple (¢, &, 7, g) is called a contact metric structure and a manifold
M with such a structure is called a contact Riemannian wmanifold. The
next properties follow from the above condition :

(a) The decomposition TM=D+ R-& is orthogonal.
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(b) The integral curve of & is a geodesic of (M, g)

(c) ¢&=0, ¢(D)CD and ¢ is an almost complex structure on D.

(d) The metric g restricted on D is invariant by ¢,
ie., g@X,¢Y)=g(X,Y) for X, YD

A contact Riemannian manifold is K-contact if the characteristic vector
field £ is a Killing vector field with respect to g, i.e., O(&)g=0. This
condition is equivalent to ©(§)¢=0.

On a contact Riemannian manifold M, we define a tensor field N of
type (1,2) by

NX, V)=¢X, Y]+[¢X, ¢ Y]—-9¢l¢X, Y]—9lX, ¢ Y]+2d9(X, Y)E
for X, YeI'TM.

When this tensor field N vanishes on M identically, we say that the con-
tact metric structure (¢,&,7,9) is a Sasakian structure and that the con-
tact Riemannian manifold with such structure is a Sasakian mansfold.
It is known that if N vanishes identically, ©(§)¢=0 and hence, in par-
ticular, a Sasakian manifold is K-contact ([1] Chapter 4). Many examples
of K-contact and Sasakian manifolds are shown in [1].

The 1-dimensional foliation & is given by integral curves of & on a
contact Riemannian manifold with a contact metric structure (¢,£, 7, g).
So we will view contact Riemannian manifolds from the point of the
transversal geometry of F. We identify D with the normal bundle Q of &F.
Then ¢ and g induce an almost complex structure Jg and a Hermitian
metric go on Q. The fundamental form @ is given by @=dy.

PROPOSITION 4.1. Let M be a contact Riemannian manifold. Then
the following holds;

(1) M is a K-contact manifold if and only if <F is an almost Kahler
foliation with respect to (Jq, ge).

(2) M is o Sasakian manifold if and only if F is a Kahler foliation
with respect to (Jq, go)-

PROOF. (1) We see that & is a Killing vector field if and only if g
is holonomy invariant, i.e., ©(§)ge=0. In fact, we have

(O(£)9)(&, £)=0,

(O(&)9)(&, X)=(0(&)n)(X)=0,
O )X, Y)=(0(£)ge)(X, Y),
for X, Yel'D.

Therefore (1) is proved.
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(2) If M is a Sasakian manifold, by (1) &F is an almost Kahler folia-
tion with respect to (J,, gq). Moreover we have NJQ(X, Y)=NX,Y) for
X,Yel'D, In fact,

Ny oX, Y)=—z[X, Y]+zlpX, Y] —¢n[¢X, Y]—9n[X, ¢ Y],
=—[X, Y]—-2d9(X, Y)é+[¢X, 0 Y]+2d79(¢X, ¢ Y)E,
—¢loX, Y]—9lX, Y],
=¢’[X, Y]+[¢X, ¢ Y]-9[¢X, Y]—-9lX, ¢ Y]+2d7(X, V)¢,
=NX,Y).
Therefore < is a Kéhler foliation.

Conversely, suppose that S is a Kahler foliation with respect to (Jq,
ge). By the above argument, we have N(X, Y)zNJQ(X, Y)=0 for X, Ye
I'D. Since M is K-contact by (1), we get N(¢, X)=—¢(O@(£)$)X=0. Hence
M is a Sasakian manifold.

Applying Theorem B to a K-contact manifold, we obtain theorem
analogous to Sekigawa’s one ([3]). Let M be a (2n+1)-dimensional K-contact
manifold with a contact metric structure (¢, ¢, 7,9). Then by Proposition
4.1 (1), & is an almost Kéhler foliation with respect to (Jy, go). We denote
by V¥ and V the Riemannian connection associated with g and the unique
metric and torsion-free connection in the normal bundle @ respectively.
Identifying D with @, we obtain the following relation ([1] Chapter 4 §3).

ViY=V,Y+9g(¢X, Y)E,
VEE=— oX,
Vé”X:V5X— ¢X,
v¥E=0,
for X, YeI'D.
The next equations follow from the above :
R(X, §)é=X,
9(R(X, Y)Z, W)=g(Rv(X, Y)Z, W)—g(¢Y, Z)g(¢X, W),
+9(¢X, Z)g(@Y, W)+29(¢X, Y)g(¢pZ, W),
for X,Y,Z WeI'D,
where R and Ry denote the curvature tensor of V¥ and V respectively.
Let o and pv denote the Ricci curvatures of R and Ry respectively. The

above implies
p(é, §)=2n,

p(§, X)=0,
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o(X, Y)=pv(X, Y)—2¢9(X, Y),
for X, Yel'D.

Applying Theorem B and Proposition 4.1, we obtain

THEOREM C. Let M be a (2n+1)-dimensional compact K-contact mani-
fold. If the Ricci curvature p satisfies that for a constant c=—2, p=
(2n—c)p@n+cg, then M is a Sasakian manifold.
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