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Path Integral Theory of Brownian Motion
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On the basis of a mathematical theorem of stochastic processes, a path
integral theory of Brownian motion is formulated. The abstract mathemat-
ical formula is transformed into a tractable path integral form. Besides
formal manipulation, a practical method of evaluating the path integrals
is presented and applied to linear and nonlinear problems of irreversible
processes including Brownian motion of spins. Results are shown to be
satisfactory.

1. Introduction

Many years ago the concept of path probability was introduced in the
theoy of irreversible processes'~. There have been a large literature on
the subject'~'”. We give here a systematic method of path integrals on
the basis of a mathematical theorem. This may be the simplest and trans-
parent way to formulate a path integral theory of Brownian motion.

In the first part of the paper (sections 2~3), we summarize rather
formal aspects of the theory which lead to a ‘‘Lagrangian’ formalism of
the Brownian motion, some of which are already known. In the second
part (sections 4~7), we propose a practical method of evaluating the path
integrals and apply the method to linear and nonlinear problems of the ir-
reversible processes including Brownian motion of spins.

A preliminary report’ and numerical examples'® have already been
given.

2. Preliminaries

As the preliminary of path integrals, we summarize here mathematical
notations and basic results in the theory of stochastic processes!”.
We consider a stochastic differential equation of Ito type:

dX(t)=0(X(¢))dB(t)+b(X(t))dt (2.1)
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where {B(t); t=0} is the Brownian motion, i.e., the Wiener process. This
is equivalent to the following equation (backward equation) :

P f@)=T@P.f () (2.2)

where the generator /'(x) is given by
1 , 0°

P@)=go@)r 2 +b(ac)a—ax 2.3)
and
Ptf(szPt(x,dmf(xt)
- SP(x, 0., 8) f (w,)daee
—E.(F(X (). (2.4)

In (2.4), P.,x,¢) is the transition probability and P(x,0|x,,t) the cor-
responding probability density. The last expression of (2.4) represents the
conditional average of an arbitrary function f(X(?)).

A quantity I' conjugate to I" satisfying

\(F@) rang@iz=\ 7@ @g()da (2.5)

is given by
~ _Jo 1 ., 0 | .
F(x)-—{—a—x—zgo(m) — @) (2.6)

We note that the Fokker-Planck type equation (forward equation) is
written in the form
0.
ot
Thus it is equivalent to solve (2.2) in stead of the Fokker-Planck type equa-
tion (2.7) as far as the probability density exists.
To solve (2.2) or (2.7), the following theorem (Cameron-Martin'®,
Maruyama'®, Girsanov®”) plays an essential role:
A formal solution of (2.2) is given by

P, t)=T(2,)P(x,, t) . (2.7)

P.f (2)= B2, f (X (1)) (2.9
where
Zi=exo| || 1(X()aB(e)— 5 | Xty | (2.9
with
r(x)=0a(x) 'b(x) . (2.10)

A symbol E, represents an average over a stochastic procss having the
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following generator :

aZ
ox?

o). =>o)*-

5 (2.11)

These are generalized to multi-dimensional systems. For a stochastic
differential equation

dX(t)a(X(t)dB(t)+b(X(t))dt (2.12)
we have
S PR =T(®)Pf () (2.13)

where X(t), B(t),b(X(t)) and x are vectors and ¢(X(¢)) is a tensor. The
generator in (2.13) is giveu by

() = ¢ _9
I'(x)= ng(x)” 52.5, +2 b(x), 3o (2.14)
where the diffusion ‘‘constant’’ is given by
1
D(x);;= E) % 0(X):20(X) 1 (2.15)

Then the theorem states that (2.13) is solved to give

Po(x) = EZ.f (X(1)) (2.16)
where
Zi=exp| | Sr(XE)aBE)— 5 | 2rXende] e
~and
F(X(5) =a(X(5)'b(X(0) . (2.18)

The symbol E. represents a stochastic average over a process with the
generator

[ (0)= 3 D),

i Y owi0x; (2°19)

These results will play important roles in our subsequent development.

3. Path Integrals

The backward equation (2.2) and (2.14) are solved in the form of (2.8)
and (2.16), respectively. However, these are rather formal and therefore
are of little practical use. In the following we transform the formulas of
section 2 into more tractable ones, namely, into the form of path integrals.

As was shown in the previous section, a stochastic differential equation

dX(t)=a(X(t))dB(t) +b(X(t))dt (3.1)
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has a corresponding generator /'(x), (2.3), and is equivalent to the Fokker-
Planck equation

2P, )=F (@) P, 1), (3.2

I'(z) being given by (2.6).
By a change of variable®”

dy=o(x) 'dw (3.3)
we can transform (3.2) into
-y, =AW, 1 (3.4)
where
Qy, t)=a(2)P(x, 1) (3.5)
and
Aly)= %—aa—;? - :—ycz(y) (3.6)
with
1) =o(a) | b(o)~ yo@)o@) |, (3.7)
Thus we find a generator of the form
AW =g s +e) 5 (3.8)

and a corresponding stochastic differential equation
dY(t)=dB(t)+c,(Y(t))dt . (3.9)
Applying the theorem (2.8) to the system of (3.8)~(3.9), we have
QfW)=E,Z f(Y(t)
={ew, o, 11wy, (3.10)
where
Zi=exp| { e(VienaBe) -5 | e, (ve)yae . (3.11)

Consequently the probability density is found to be

N-1
Qy, 0ly,, t)= ZIVI—’IEJI:II dejQ(O)(yj—l, ti-l ¥, t) X QP (Yn-1, ty-1|Yn, ty)

X eX [S:c,(y(r))dB(f)— %S:c,(Y(T))de], (3.12)

where y,=y and yy=v,. In (3.12), Q is a solution of the equation with
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the generator

1 ¢°

A(O)(y):“é"_a‘y—g (3.13)

that is, Q is given by
1
Q(O)(yj—lytj-llyj; 7) \/2 At, exp|— yj—l)z/(ZAtj)] (3.14)

which determines the conditional average E,(-).
We further transform (3.12) into more familiar form. First we rewrite
the conditional average E, as

E, -)=SDy, exp[—%g:yﬁdr} (3.15)
where
(Dy. =lim 11\ ———d 1
D=1 1 gy v (8.16)
and use has been made of
V t
lim 2 exp[(y;— yj-l)/Atj]ZAt,:Soyfdr . (3.17)
e 2

The first Ito integral in the exponential function of (3.12) is written
in terms of the usual (Stratonovich) integral by the formula :

([ ox(en B = oxeaBE -+ | o(xiene K

o/

Thus we have

ro=Dy.exo[ = Lotw., 9dz [ £ w0 (3.18)
and
Qs Olye, )=\ D'y exp| ' Lty e (3.19)
where
1. , 1,
Lz(y,y)=j2—{y—cz(y)} +5¢1) (3.20)
and
, . 1 - 1
SD y":}vlfflx/znmml}sx/zmt ;- - (8.21)

In terms of the original variable z, the path integral solutions are given
by

Ptf(oc):SDx, eXpl:— S;L,(x,, obr)drilf(act) (3.22)

and
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Pwy, 0, )=\ D', exp [— | L., ob,)dr:| (3.23)
where
Lz, &)= ﬁ%)z{w—h(w)}zwL %dx){%}, (3.24)
with
Ha)=b(z)— 5 ' (x)alz) (3.25)

This is a known result®.
In these expressions the path integrals are of the form
1
VD =im i1 | g o (3.26)
and

o 1 v 1
SD ber = ]1.\71—?-} \/27T0(xN)2Athl=]i S\/Zzw(xj)zAtjdxj ' (3'27)

In deriving these results we used (3.3) and (3.5).
The Stratonovich stochastic differential equation

dX(t)=o(X(2))°dB(1) + b(X(£))dt (3.28)
is equivalent to the following Ito equation :
dX(t)=a(X(£))dB(t) + {b(X(t))+ %—o’((X(t))a((X(t))}dt (3.29)
and therefore we have only to make a replacement
b(X(t)) — (X(t))—#*d (X(1))a(X(2)) (3.30)

in the preceding results.
We have thus

Plas, 01z, t):SD’wT eXp]:— S:Ls(ocr, g‘c,)dr] (3.31)
and so on. In (3.31), Ly is given by
. el i b(x) |’
L(a, )= (x)z (i — b))+ ox){—(x)} . (3.32)
For the multi-dimensional Ito equation
X(t)y=0(X(t))dB(t)+b(X(t))dt (3.33)
we have
P(x,,0|x,, t):SD’x, exp ':— g:LJ(xT, xr)drjl (3.34)

where
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L, (x, &) =5 (x— h())- (2D(0) "+ (&~ h(x)

+ 5 Dol —a% 2 (5(0) e h(X). (3.5)
and
J(x)=b(x); — %M a"a(;)k o(x),1 (3.36)
with
D(x) =y a(x)o ()" (3.37)

Similarly, for the Stratonovich equation

dX(t)=a(X(t))°dB(t)+b(X(t))dt (3.38)
we find
P(x,,0]x,, t) ::SD’x, exp [— SZLS(x,, .i:r)dz-:l (3.39)
where
Lg(x, x)= % (x—b(x)) - (2D(x))" - (x—b(x))
+ L S0 S 0(0) enbl) (3.40
2k,zgx“8xlmgx #mOL L) - -40)

These are the straightforward generalizations of the single variable results.

4. Method of Numerical Evaluation of Path Integrals

Although the results of section 3 are rather formal, they have own
right in connection with the long historical development in irreversible
statistical mechanics since the pioneering work of Onsager-Machlup’ and
Hashitsume?®.

Besides this, we give here a practical numerical method of evaluating
the path integrals which is quite useful when we treat nonlinear problems
in Brownian motion.

For this puppose it is convenient to use (3.12) in the following form

N-1
Q, Oly,, 1) =15 TT 2y, QO Wy 1, sl 69X QP Wyos, bl L)
00 j=

N

xexp| £ {er, )~y — gers ) — o0} | (@)

j=1
whereQ‘” has been given by (3.14).

We must calculate (4.1) by fixing ¥ and y, during time interval [0, ¢].
It is useful in practical calculations to take advantage of an interpolation
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method?® which was originally devised in solving ordinary differential
equations :

Y= Yi-(ty—t)+ynlt;—t;-1) +§[ (tN_tj)(tj—ltj:ll:ll/z

tN—tj_l tN—‘t'_

YN )+ +E[ tN—j) Jw
N—(j—1) —(—1)
where & is a Gaussian random number with zero mean and variance of

unity. In the original expression (4.1), the path is generated with the
probability density

(4.2)

1
VoA &P Wi —y,-)°/(241)] (4.3)
whereas the path is weighted by
1
Voo Pl (A0)%/(2A0)] (4.4)

when (4.2) is used. Thus we must multiply the ratio of (4.3) and (4.4) in
each time step.
Then (4.1) becomes

M N

Qy, 0]y, t) = limlim-—- > I exp [ Viy; ™, y;-,™)] (4.5)

Moo N M m=1j=1

where

V(yj:yj~1):Cl(yj~1)(yj_yj—l)_cl(yj—l)zAt/z
Yn—Yi-1 \? Yn—Yi-1 { AY(N—j) }“?
— 2At)— : . ;
(WG55) /a0 ity ¢ v
g :
—— 4.6
2(N—(G—1)) (4.6)
and the superscript (m) on y; specifies M different paths.
We finally obtain the desired probability density (3.3):

+

o(x,)P(x, 0]z, t)=Q(y, 0y, t) . (4.7)
In actual calculations, we normalize P by
S ,0la,, t)dw, , (4.8)

because M is finite.
For the Stratonovich equation, we have only to make a substitution :

cr(y;-1) —> cs(y;-1) (4.9)

where ¢, has been defined by (3.7) and
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es(y)=b(x)/o(x) . (4.10)

Generalization of (4.5) to the multi-dimensional system is straightfor-
ward :

Q. Oly., )= limlim 5 11 exo| 5 Vig, ™, m)] (4.11)

M 00 N—oo lfm 14

where

Viy,, yj—l)k:Cl(yj—l)k(yj_yj—l)k—cl(yj—l zAt/2

_ y; ) —Yi-1)e . AUN—j) |12
(G h Regey) eso— 5 S ey
+~—52ﬁ (4.12)
2(N—(j—1)) "’ '
and
lo(x)| P(x, 0lx,, t)=Q(y, 0ly., t) . (4.13)

For the multi-dimensional Stratonovich equation, we should make a
substitution :

c;/y;-1) —> csly,-1) (4.14)
where

cs(y)=a(x)"'b(x) . (4.15)

We have thus given a numerical method in evaluating path integrals.

5. Linear Relaxation

A simple nevertheless non-trivial model of relaxation is represented by
a stochastic differential equation,

X(t)=+2DdB(t)—rX(t)dt . (5.1)

We can solve (5.1) analytically with the use of (3.23) or (3.31) together
with the following formula .

N-1

Hgdx]exp[ (@51 —be,)%) (2a)] exp [ — (@y_ — b)/(20)]

j=1

—(VZra)" - -exp (g~ bay)(2ac?)| (5.2)

1_h2N
c—\/lT_bT. (5.3)

The solution is well-known :

where

xt—xoe(t))zJ

N _
P(xO,Olmz,t)—\/mexpli Z0(t)? (5.4)
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1.5
1.0 F =
(]
=
5
0.5 r
0.0 + , l
-4 4
X t
Fig. 1. Probability density: 7=1, D=1 and x,=0.
1): t=0.1 for M=10 and N=100.
2): t=0.5 for M=10 and N=100.
3): t=2.0 for M=10 and N=500.
1.9
1.0t =
=)
=
Q.
0.5
0.0
-4 0 4
Xt
Fig. 2. Probability density: y=1, D=1 and x,=1.

1): t=0.1, (2): t=0.5,
B): t=2.0 for M=10 and N=100.
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where
e(t)y=e 7"
and
p(t)*=(D[7){1—e(t)*} . (5.5)

We have calculated the probability density by the method of section
4 and compared with (5.4). This is shown in figures 1~2 where excellent
agreement is found.

6. Relaxing Angular Velocity

For a three-dimensional rotator, time evolution of angular velocity is
determined by*’

d)i:Ziijk“ﬁiwi‘l’Ri(t) (6-1)

where 1, 7, k represent a cyclic permutation of 1,2,3: 2, is the ratio of the

Path Integral 1)

P
o a1 T =0.5 11=1.0
12=1.0
13=2.0

ftnalytic solution 1)

0.4 T =0.5 11=1.0
12=1.0
13=2.0

Fig. 3. 1), 1) in w,—w, plane.
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principal moment of inertia:
A=(L—=I)I . (6.2)

In (6.1) the damping term, — B.w:(t), is related with R;(¢t) which is due
to random torque. We assume that R;({) has a white spectrum. Thus the
Langevin type equation (6.2) is equivalent to the following stochastic diff-
erential equation :

dw, g, dB, 210,05 — B10;
dw, |= a, dB; |+| 2,00, — B0, |dt (6.3)
dw, g3/ \dBs 230105 — B3
or
dw(t)=cd B(t)+be(t))dt . (6.4)

The elements of ¢ is determined by the fluctuation-dissipation theorem :
Path Integral 2)

.0
.0
13=2.0

2), 2) in w,—w, plane.
Fig. 3. Probability density P(w,, Olw, t): I,=1,=1.0, 1,=2.0, w,=0, t=0.5.
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UiZZZICBT/(L‘,Bi) (6.5)

where T is the temperature.

A set of equation (6.4) can be solved by a direct application of the
method of section 4. Our results should be compared with an analytic
solution for a symmetric top (I,=L,+1):

1 — —ﬂlb 2 e *1926 9
P(wo,0|wc,t):szexp[—~ (@, —one” ")+ (@, — e ") ]
1

(2{)12)
1 (0 —wge )’
X \/Q?P? exp [ (207) J (6.6)
where
0.2=(ksT/I;)(1—e ?7i) (6.7)

Both solutions are shown in fig. 3~4. Our path integral calculations
give satisfactory results.

Path Integral

Analytic solution

P

1
0.4 T =0.5 11=1.0
12=1.0
13=2.0

Fig. 4. Probability density P(w,, 0lo, t) with w,=(0, 2.0, 0):
The other conditions are the same as in Fig. 3.
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7. Relaxing Spins

When a fluctuating field in a condensed phase exerts its influence upon
spins, orientational ‘‘random walks’’ are observed: This is called Brownian
motion of spins®’.

Let the magnetization be M(t). Then we have a torque equation with
the Landau-Lifshitz term:

M) =" H(t) x M(t)— [ H(ty x M(t)] x M(t) (7.1)
where 7’ is the gyromagnetic ratio and the magnetic field is of the form
H(t)=H,+H'(t) . (7.2)

In the above expressions » is determined by a requirement of the fluctua-
tion-dissipation theorem :

n=1/2c,kzT) (7.3)

where 7, is a measure of the longitudinal relaxation time. The magnetic
field is composed of the static field H, and the fluctuation field H'(t).
When the narrowing and high temperature conditions are satisfied, H(t) in
the second term of the right hand side of (7.1) can be replaced by H,.

A probability density W(M,t) to find M at time ¢ is determined by
the stochastic Liouville equation :

0 __ 0 ¥
W'W(M’ t)=— oM (MW(M, t)) (7.4)
which is written in the form
%W(M, £)= —iQ) WM, t) (7.5)
where
Lt)=L+L'(t). (7.6)
In (7.6) we have put
L=woL,+nH(Lx M), , (7.7)
'(t)=7"H'(t)-L (7.8)
where
o P
L= —1M x W (7.9)
and
w,=7'H, (7.10)

fOI' H():(O, 0, Ho).
In an interaction representation defined by
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W(t)=e** " W(t) (7.11)
(7.5) becomes
vg?W(t): — i ()W (t) (7.12)
where
Q' (t)=e' '@’ (t)e "% (7.18)

Now we take a stochastic average over the process of the fluctuating
field. This procedure denoted by <:-->5 is conveniently performed by the
time-convolutionless projection operator method®. Up to the lowest non-
trivial order, it is explicitly given by

o - .
S, t)>B:{*z<>3 ()2

+«~—iﬁS:dr<@'uo@%r)>&o.o}<VV<ﬂl,w>3 (7.14)

where
P(M, t)=W(M,t)z (7.15)

and {-->z.o.c. is the ordered cumulant defined by
(AByg, 0.c.=<AB)—<(A){B). (7.16)

After some algebra, we finally obtain

(-2 +ir' 1+ ) Hy L—GL-D-iL) [ WM, 1)y=0  (T.17
where
HH\ . HH
Q:D1<1— };02 >+D0 f}oz" (7.18)
and
- —:S“ (1) cos (wat)dt
! 2‘[.'1 OSDL 0 ’
Dy — =S°° (t)dt (7.19)
0 21_0 0SDII . o

In these expressions we used the narrowing condition and put

@ (0)=71"CH J(OH (L —7))5

=7 }H ,()H [(t—1)5, (7.20)
oln)=7"}H (O)H (t—7))p, (7.21)

and
P :(1/%)8:011%(7) sin (@o7) - (7.22)

For later application, it is convenient to express (7.17) in a polar co-
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ordinate rotating with an angular velocity w,’ =w,+ dw,.

That is, for :
P(M, t)=e® " PO W (M, t) 5 (7.23)
we have
O M t)sina)z{ O Dt Dyt D, cot? )
ot ' Y Tt
— %Dl(cot 6— 1’ sin 0)}(P(M, t) sin 6)
=1'(0, $)(P(M, t) sin 6) (7.24)
where
M=(Msin 0 cos ¢, Msin 0 sin ¢, M cos ) (7.25)
and
0 =HM|[ksT. (7.26)

Thus the corresponding generator is found to be

0* . ke , . 0
I, gZS)':{DI»W-F(D(&D1 cot20)~5¢—2+Dl(cot0—1j smﬁ)—a—ﬁ—}-. (7.27)

Extension of (7.17) to quantum spin system has already been done®. Then
the stochastic differential equations are obtained as

dé V2D, 0 dB, D, (cot §—»' sin @)
( >_< >< >+< >dt. (7.28)

d¢ 0  ~2(Dy+D,cot?6)/\dB, 0
Transforming (4, ¢) into (Y7, Y,):
dY, de
dY= =g! , (7.29)
ay, d¢
we find
V' D,/2 (cot §— 7’ sin 6)
dY=dB+ dt (7.30)
0

and the method of sectiod 4 can be applied.
Time evolution of the probability density

P8, ¢, 010, 6, t)

is shown in fig. 5: the upper diagram represents a distribution in the
Northern hemisphere whereas the lower for the Southern hemisphere both
of which are viewed from the North.
It is clearly seen that the initially localized spins at (6,, ¢o) move toward
the equilibrium: The static magnetic field H, is applied along z-axis.
Averages of spin S (proportional to M) are obtained by the following
formulas (d2=sin0dodg) :
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N %)

t/T1 = 0.5 YT1 = 1.00
Fig. 5. Time-evolution of probability density P(6,, ¢, 016, ¢, t): »'=10,
D=D,/D,=1, (0,, 0,)=(110°, 0°); {=¢/T,=0.01 [for 1)], 0.05 [for

2)], 0.1 [for 3)], 0.2 [for 4)], 0.5 [for 5)], 1.0 [for 6)].

<Sz>t:SSdQ sin 6 cos ¢P/Sd!)ﬁ, (7.81)
<Sy>L:SSdQ sin 6 sin ¢P/gd[)f’, (7.32)
(8,50 =482 —(Sp,° (7.33)

and so on.

We show in fig. 6 these quantities, where <{S,)>, tends to the correct
equilibrium value:

(S0 ee=SL(n") (7.34)
where
L(x)=cot (x)—(1/x) (7.35)

is the Langevin function.
The problem of Brownian motion of spins (nonlinear spin relaxation)
has been solved completely.
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<SX.Y;Z>t/S 1)
1.0

0.5

-0.5 C_ o Sot/S
o Sy>t/S
o St/ ---<S2>ea/S

—1IO
Fig. 6-1) <S,>:/S as a function of {=t/T\. The parameters
are the same as in Fig. 5.

Szt e/S? 2)
1.0

0.8
0.6
0.4
0.2 o Szdt,c/s?

0.0 m

0.5 1.0 /Tl

Fig. 6-2) <S.®../S® as a function of /. The parameters
are the same as in Fig. 5.

n’=10.0

T

8. Summary

We have formulated a path integral theory of Brownian motion. This
is based on a mathematical theorem of the stochastic process. Besides
formal manipulation which leads to the ‘“Lagrangian’” path integral
formulas of section 3, we have given a practical method of numerical
evaluation of path integrals. Indeed the method is applied to the solvable
models of relaxation in sections 5~6 meeting with good agreement with the
exact solutions.

Our formulation is further applied to the problem of Brownian motion
of spins. An approach to the correct equilibrium 1is guaranteed by the
nonlinear Landau-Lifshitz term and hence the nonlinearity plays an essential
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role in this problem. Our theory has been proved to be successful in section
7 even for this kind of nonlinearities.
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