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Introduction

Let M(g,J) be a Hermitian manifold with complex dimension n, where
¢g is a Riemann metric, J is a complex structure. M is called a locally
conformal Kahler (l.c.K.) manifold if its metric is conformally related
to a Kéhler metric in some neighborhood of every point of M. The main
characterization of a 1.c. K. manifold is that the equation

d2=w N2

holds, where £ is a fundamental 2-form and « is a closed 1-form in M.
Because o is uniquely determined, we call it a Lee form. On the other
hand, if M is a 1.c. K. manifold, then
1
Viij:g(ﬁj‘sik*w#}ik_gij@k+Jijwk),

where V; is the covariant differentiation with respect to the Christoffel
symbols {} of g¢,; and @&;=J, w;, Particularly we call M a Generalized
Hopf (G.H.) manifold if the Lee form is parallel. In this paper we prove
that in a compact G.H. manifold a vector » is covariant analytic iff »
is harmonic and orthogonal to w. Next we take a look at the following
two facts. One is that in a G.H. manifold the foliation defined by w=0
is a Sasakian space with a contact form & [3]. The other is that in a
Sasakian space a transversal foliation defined by a contact form % has a
Kahler foliation structure [7]. Thus we think that certain vectors in a
G. H. manifold have similar properties to contravariant analytic and killing
vectors in a Ké&hler manifold. Then we define V,-contravariant analytic
and V,-killing vectors. In addition we define a V,-Einstein space. Thus
we can get the second main theorem: In a compact V,-Einstein G.H.
manifold, a V,-contravariant analytic vector is uniquely decomposed into
the sum of a V,-killing vector and a V,-killing vector transformed by

* Present Adress: Industrial Computer Development Department, Information Systems
Engeneering Laboratory, Toshiba Coorporation Fuchu Works 1, Fuchu-Shi Tokyo.



16 K. Fujin NSR. 0.U., Vol. 42

J. This theorem corresponds to the well-known theorem of Matsushima
in a Ké&hler case.

I would like to express my sincere thanks to Prof. Y. Ogawa for his
kind suggestions and many fruitful advices.

1. Notations

In this paper, we assume:

(1) M?**(g,J) is a G.H. manifold.
(2) g¢(,) is denoted by <, >.

(3) The Einstein’s convention holds.
4) v,=Jv,.

LEMMA 1.1. In a compact G. H. manifold if v s harmownic and or-
thogonal to w and @&, then ¥ is harmonic, too.

PROOF. We calculate
Vtvlf),—— Rlﬂ—)l = (1”%) </U, (U>(;)j** v]'<’l), (t)> —-inViQ), (l~)> =0. (1 1)

Thus we can get Lemma 1.1. q.e.d.

2. A covariant analytic vector in a G.H. manifold

A covariant analytic wvector v=(v') in a Hermitian manifold is
defined by

Jijvjvk—kaVi’Uj*(Vika*VkJ;j)’Uj:O. (2.1)

In a G.H. manifold (2.1) can be written as

1
Vi’vijJiijlevﬁ— E(@id)j+@i@j+mwj+wwj)—— <’U, w>g”‘:0 . (22)

Contracting (2.2) with ¢*/, we get
vrvi=(n—1)<w, 0. (2.3)

Thus we get easily the following lemma.

LEMMA 2.1. In a compact G.H. manifold, a covariant analytic vector
v=(v") satisfies the following properties.

SM@"WVWJOZM: _;_ S {0, @>°+ <, &> |v]|*}d M, (2.4)

M

S 0, @ IV d M= (n— 1>§ (v, @2 v, wpHdM . (2.5)

oM
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THEOREM 2.2. In a compact G. H. manifold, the mecessary and suf-
Jictent conditions for a wector v to be covariant analytic are that v is
harmonic and orthogonal to w. In this case v s also orthogonal to .

PROOF. Putting the left hand side of (2.2) as T,;,, we compute
S I T2 d M.
M
SM 1T*d M= SM{TZHVUJI P ol 22T TNV (Y v5) + 20 0’V 0
+2T)i®jvivj+ Zwi'vjvq;vj + 2G)i®jviv]’+ (2%— 3)<'U, (0>2
— 4w, )Vt — <, @>3dM . (2.6)
Suppose v is covariant analytic. Substituting (2.2)-(2.5) into (2.6), we get
\, (17012 (n—1)<0, 0>*+ Rup'v?)d =0, 2.7)

where R,; is the Ricei curvature of ¢,;, On the other hand for any vector
v, we have

SM{(vivj)(vw) (V)2 Re o dM=0. 2.8)
Comparing (2.7) with (2.8) we get

SM{%(vivj—vjvi)(vw—vwf)+(n—1)(n—2)<v,w>2 dM=0, (2.9)

from which we get V,v,—V,v,=0, hence v is closed. Moreover we compute
respectively

Svaw"Viv,-dM—-—-SMw"v"Vivde, (2.10)

) oV dM=\ o' T0dM, (2.11)

from which we get v is orthogonal to w and @. From (2.3), we can see
V:v*=0. Thus we conclude that » is harmonic.

Conversely suppose v is harmonic and orthogonal to . Because v is
closed, we have

S @i@fvivde—_—S 59T, d M
M M

= _.1. ~\ 2 _1_ g_i 2
‘SMKH 2)@, @)+ 2 v, w» 5 ol }dM (2.12)

On the other hand, the condition for a vector v to be harmonic is given by
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SM{IIVvIIZvLR”v"v"}dM:O. (2.13)

Substituting (2.12),(2.13), V,2*=0 and <v,w>=0 into the right hand side
of (2.6), we have

S |\ Tl2dM = —2(n—1)(n—2)§ w0, a5 dM, (2.14)
M JM

which shows 7T=0, i.e. v is a covariant analytic vector. q.e.d.

3. A Vi-contravariant analytic vector in a G. H. manifold.
A Vi-contravariant analytic vector v=(v") is defined by
Lo+ wid" —d,07) = — (v, — v, o, — v, @>@;)d’ . (3.1)

This equation can be written as

1 1 a b .
?cﬁj’ﬁl-— '“2_7.7]'0)1_" Eﬁjd)l_*_ —gijl—aa”)jd)l—}— Ea)]‘djl‘*‘ bc?)jwl—JﬁJlkVivk—l—Vﬂ)l
fwj(I)iJlkaﬁ—cDjwiJlkVivk — (Vj(l)(!)l - (V]b)(Dl =( B (3.2)

where a=<{, w), b=, ).
Now we investigate some properties of a Vi-contravariant analytic
vector in a G. H. manifold.

PROPOSITION 3.1. In a G. H. mamfold M, a Vi-contravariant analytic
vector v={(v') has the following properties: there exist scalars a,7 in M
satisfying V.;{v, w)=aw;, V:;{v, d>=7w; and

c>£,a)(vi - <'U, (’)>w7‘ - <'U, (D>(Dl):0 ]
(= o'V, =aw,+718,), (3.3)
L' — v, w0t — W, a>a')=0,

. 1 1 1
<{—:)(I)]v]"vl:_?@l“‘§<’v,d)'>wl+E‘<'v, w>(61>. (3.4)

PROOF. Transvecting (3.2) with @'J,7, 'J;’ respectively, we get
da=aw+ Ba, db=rw+da, (3.5)

where a=<{v,w>,b=<v,a>,a, B,7,0 are scalars in M. Differentiating (3.5),
we find
O0=daNw+dB e+ LANde, - (3.6)

O0=dr No+déNe+dNda . (3.7)

Calculating the value for w, @ satisfying <u,®>=<u,®>=0 on (3.6) and
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(3.7), we get

0=RBlul? 0=aful?, (3.8)
which means =0 and 6=0. On the other hand transvecting (3.2) with
w’, @' respectively, we obtain Proposition 3.1. q.e.d.

Using Propositon 3.1, we can get the following proposition.

PROPOSITION 3.2. In a G. H. manifold M, v=(v?) 18 a Vi-contravariant
analytic vector iff the following properties hold: there are scalars a,7 in
M satisfying such that

Via:a(vi, Vlb:Ta)l y (3.9)

Vivj—Jiijle?)l—F ”E((T)ﬂj’j’*(!)ﬂ)j‘*"ﬁitbj_vzwj)“i“(a—a)(wiwj‘(ﬁi(bj)

+(b-7)(wicbj—d)iwj)=0, (3.10)
Lsi(v'—aw'—ba*)=0, (8.11)

where a=<{v,wy, b=<{v, ®).
We can get Theorem 3.3 and Corollary 3.4 from Proposition 3.2 easily.

THEOREM 3.3. In a G.H. manifold, when v is a Vi-contravariant
analytic vector, v is Vi-contravariant analytic, too.

COROLLARY 3.4. In a G.H. manifold, for a scalar a (resp.b) in M,
aw' (ba') 1s Vi-contravariant analytic vector iff there is a scalar a(y) in
M such that Vo=aw;VNb=7rw;).

THEOREM 3.5. In a compact G. H. manifold the mnecessary and suf-
fictent conditions for a wvector v=(v') with {v,w)=<{v,a&>=0 to be Vi -con-
travariant analytic are

vivi@j+R“vi+'I)]‘:O, (3.12)

. . 1
OE'J;J./U’L:O,<@(T)]V]/U[:§®1>. (3-13)

PROOF. First suppose a vector v with v,w)=<v,®>=0 to be V;-con-
travariant analytic. Applying the operator V' to (3.10), we find (3.12)
easily. Because we assume that v satisfies <v,w)=<v,a)>=0, we get (3.13)
easily.

Conversely putting the left hand side of (3.10) as P,;, we calculate
SMHPHZdM and have
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o | 1
SM | Pl2d M= —2SMv1{VJVjvi+R”W+vi+%Ji‘<ckakvl n §@l>} dM, (3.14)

which shows that if v satisfies (8.12) and (3.13), then » is V;-contravariant
analytic. q.e.d.

4. A V,killing vector and a V.-killing vector in a G. H. manifold.
A Vi-killing vector v=(v*) is defined by
Lo(gi;—00;— @:3;)=0. (4.1)
This equation can be written as
Viv;4+V,v;—20@,;6 ;+ b(@;0;+ 00 ;) + 06 -+ V6,
—(wVa+wNa)—(@Vb+a,N,0)=0, 4.2)

where a=<{,w),b=<v,a>. From (4.2) we get the following Corollary 4.1.

COROLLARY 4.1. In a G. H. manifold M, for scalars a, b in M, aw’,
ba* are Vy-killing vectors.

Transvecting (4.2) with o/, @7, (1/2)g*’ respectively, we find

ofw('vi4</v; w>wi4<fv) @,)@1)::0, (48)
L0 = v, 0o’ —<v, @>e")=0, (4.4)
Vv'=Na, w>+ b, @) . (4.5)

Particularly we call a vector v=(v') V,-killing when it satisfies V,a=
Na, w>w; and V,;b=<Vb, w>w;, where a=<{v,w>,b=<v, &).

Now we investigate some relations between a V,-killing vector and a
V,-contravariant analytic vector.

THEOREM 4.2. In a compact G.H. manifold 1f v 1s a Vi-killing
vector, then v is a Vi-contravariant analytic vector.

PROOF. Suppose v=(v*) to be a V,-killing vector. v can be uniquely
decomposed as

v=aw-+bi+u, (4.6)

where a=<,w>,b=<,d>. From Corollary 4.2, aw and bs are Vy-killing.
Because these scalars a,b satisfy

Via:<va, C()>C()i, VJ)Z(Vb, (€)>(U1, ’ (47)

and from Corollary 3.4, we can see that aw and b® are V,-contravariant
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analytic. Thus it is enough to show that u is V,-contravariant analytic.
We can easily see that u is also V,-killing because of the linearity of a
V,-killing vector. Hence u satisfies

Vlu,-i—vjuﬂ—ﬁld)]-i-cblﬁ]:o. (4-8)
Applying the operator V' to (4.8), we find
vzvl%]"{*R“ul“f—u]"}" (J”Viul)(bj:() . (4.9)

Transvecting (4.9) with «/, we get

w{VVu,;+ R ut+u =0 (4.10)
On the other hand,
1
(I)kvkul+ —Z—al:O (411)

because u is Vi -killing. From (4.10), (4.11) and (3.14), we can see that u
is V,-contravariant analytic. Consequently v is V,-contravariant analytic.
q.e.d.

THEOREM 4.3. In a compact G. H. manifold, let v=(v') be a Vi-con-
travariant analytic vector. If v satisfies
V0t = v, w), w), (4.12)
then v is Vi-killing.
PROOF. Suppose v to be a Vi-contravariant analytic vector. v can be
uniquely decomposed as
v=aw+bd+u, (4.13)
where a=<,w>,b=<{v,®>. We apply the operator V; to (4.18) and find
V' =Na, w>+V.u', (4.14)
because
v.0=Na, w>w,, V:.b6=<Vb, w>w; . (4.15)
From the assumption, we get V,u'=0. Putting S;;=V,u;+Vu,+%.6;+
i;6;, we compute SMHSH%ZM. Using the Green’s theorem and Theorem
3.5, we get

SwirSH?sz -ng{ui(vajui F Ruwd + ue) + (Tou)) D d M =0, (4.16)

which shows u* is V,-killing. On the other hand it is clear that both aw’
and ba' are V,-killing. Consequently » is V,-killing. q.e.d.
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PROPOSITION 4.4. In a G.H. manifold if v 1is a Vi-contravariant
analytic vector with <v,w)=<w,ay=0 and v 1s Vi-killing, then v 1s closed.

PROOF. From the definition of a V,-killing vector, we get
Vi0;+ 9,0, — (v@;4+v;6;,)=0. (4.17)
Using that » is Vi -contravariant analytic, (4.17) can be written as
J (V0 —0,) =0, (4.18)

which shows v is closed. q.e.d.

PROPOSITION 4.5. In a compact G. H. manifold if v s Vi-killing and
closed with <{v,w>=<v,a>=0, then v=0.

PROOF. Since v is closed, (4.2) is written as

1
Vﬂ),-:— "é"(fh(bj“l“'ij]@,’) (4.19)

Contracting (4.19) with ¢*/, we get V,v*=0, which shows v is harmonic.
From Theorem 1.1 we can see ¥ is also harmonic. Then we get

V:i0;—V;0,=0. (4.20)
Substituting (4.19) into (4.20) we have
'Ui(T)j_"U]‘CDi:O, (4.21)

which means »=0. q.e.d.

5. The relation between V.-contravariant analytic and V,-killing
vectors in a G. H. manifold.

This section shows that a theorem similar to the theorem of Matsu-
shima in a Kéahler case holds. Now we define a Vi-Kinstein space as a
G. H. manifold satisfying

Rij::,lg“—%—/,ea)iwj—i—ucbicb;, (5.1)

where 4, p¢,v are scalars in M.

THEOREM 5.1. If a G.H. manifold M?**(g,J) 1s a Vi-Einstein space,
then

1o 2R—n+1  —2R+4n—1 _ —2R+(@2n—1)(n—1)
T~ TAn—1)  *T T am—1 T An—1) ’

(5.2)

where R 1s a scalar curvature of g:;;. In the case of n>2,4, p,v, and R
are constant.
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PROOF. From the Kéahler property of R*, we easily have

n—1 n—1

JiijleZ::Rij"i‘ 2 W,w; — 2

@b j, R-,;ja)i:() . (53)

Substituting (5.1) into (5.3), we get respectively

1 n
p—u*g‘i‘?fo, 2“{’,&—0. (54)

Contracting (5.1) with ¢*/, we obtain
2ni+p+v=R. (5.5)

From (5.4) and (5.5), we get (5.2) easily. On the other hand, from the
Bianchi identity, we have

V.R=2V,R7. (5.6)
Substituting (5.1) and (5.2) into (5.6), we get
—(n—2)V;R=0,0’V;R+&,3'V,R . (5.7)
Transvecting (5.7) with o', @', we get respectively
w'V;R=0, @'V, R=0. (5.8)

Substituting (5.8) into (5.7) again, we get (n—2)V,R=0, which shows that
if n>2, then 2, p, v are constant. q.e.d.

THEOREM 5.2. Let g¥; be a locally conformal Kihler metric and R
be the Ricei curvature of g*. Then (M, g) is an Einstein, iff (M, g*) is a
Vi-Einstein and v=0. In this case naturally R}=0 holds.

PROOF. TUsing the properties of locally conformality, we have

—1 —1
Rfj:Rij“‘“n‘?z"wiwj _n—z'gij: (5.9)

R*ze"’(R— (“"1)(22“’1) ) (5.10)

where ¢ is defined by g*=e’¢g. From (5.9) and (5.10), we obtain Theorem
5.2 eagily. q.e.d.

Finally the second main theorem in this paper will be given.

THEOREM 5.3. In a compact Vi-Einstein G. H. manifold, if R #
(1—mn)/2, then any V,-contravariant analytic wvector v= (v') is uniquely
decomposed as

V=L, 0>0+ <V, d>d+p+q, (6.11)
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where p, q are Vi-killing vectors and <{p, w)=<p,d>=<q, ) =<q,d>=0 hold.

PROOF. v can be decomposed uniquely and orthogonally as
1=, >0+, &>a+u. (5.12)

From Theorem 3.5 we obtain V,V,u’ is V,-contravariant analytic. If we
put respectively

pr=utt e VA’ (5.13)
T 1 iyl h ‘ =4

then naturally we have u=p+4q and p?, ¢° are V,-contravariant analytic.
On the other hand, we can see easily

Vap"=0,  Vyg"=0, (5.15)
(p, w>=<p, d>={q,0)={q, &> =0, (5.16)

which show both p* and ¢" are V,-killing from Theorem 4.3. Thus we
find v can be decomposed as (5.11). Now suppose that we have another
decomposition :

u=p"+q’, (5.17)
from which we get

(pi—p')—J, (¢’ —q'7)=0. (5.18)

Applying the operator V,; to (5.18) and using that both p' and p’* are V-
killing, we have

Putting ¢,—q;=X;, (5.19) can be written as J*/V,X;=0, from which we get
Vle———_vl(leXJ):J”le]:O (5.20)

On the other hand, using Proposition 4.4 and that X* is V,-killing, we get
that X is closed. Thus X is harmonic from Theorem 1.1, and we find
that X is harmonic, too. Because X is clearly closed and V,-killing, we
have X=0 from Proposition 4.5. Thus p=p’,q=¢q’. Consequently, the
uniqueness of the decomposition is proved.

6. Remark

We take an almost 1. c. K. manifold M?"(g,J). Then we can also con-
sider another almost complex structure: F,/=J,’+2w;»’—24,0’. Then we
see the following properties:
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) F is an almost complex structure.

2) F' is integrable iff J is integrable.
) M?®*"(g,J) is a G. H. manifold iff M*"(g, F') is a G.H. manifold.
) If w is the Lee form of F, then u=—ow.

5) If we we put %,=F,’u;, then #t=a.

On the other hand from Theorem 2.2 we find that the property of a
covariant analytic vector is independent of the choice of J and F. Now
we have the fact:

Jij+(!)7;a~)j‘_ (I)i(.l)j: Fij_i" uﬂ_{j~ ﬂiuj .

From this point of view, it is natural to consider V,-contravariant analytic
vectors by (3.1) in this paper.
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