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~ The Bruck-Ryser-Chowla theorem gave necessary conditions for the

existence of symmetric designs (cf. [1] and [3]). We generalized this
theorem to some family of square matrices with rational entries and ap-
plied it to the adjacency matrices of some strongly regular graphs.

THEOREM 1. Levt I denote the nXn identity matriz and J the nXn
matriec each entry of which is 1. If m is odd and an nXn matrixz with
rational entries A satisfies

‘A-A=ml+1J

where m is a positive integer and A is a rational number, then the equa-
tion

xz___/my2_+_(__ 1)(n #1)/2222

must have a solution in integers x,y, 2, not all zero.

Remark 1. Since (det A)?=det(*4-A)=(m+ni)m”™ ', A is non-singular
if and only if m+ni>0. Note that this theorem holds even if m+n2=0.

Remark 2. If m-+ni>0, the converse of this theorem is true, that
is, a rational matrix A satisfying ‘A-A=mlI+ AJ does esist whenever the
equation has an integral solution. The proof needs the Hasse-Minkowsky
theorem (cf. [3]).

Ly
PROOF. Putting x:[ : ], tA-A defines the following quadratic form
Ln
over rationals:

(‘A A)x=m(x}+ o+ +ai)+Aw+ o Fa,).

21
Putting Ax:z:[ :

}, we have
2

(*) 224 oo F22=m(xi+ e Fad)+ A+ o L)
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According to Lagrange’s four square theorem in elementary number
theory (cf. [4]), m can be written as the sum of (at most) four squares as
m=mi+mi+mi+m? Consider the following matrix :

My M, My M,

Mg —m1 m4 _‘mg
H=
ms —my —m, my

My Ms — My —MmM,

43 Y1
We have ‘H-H=ml, so that if H[ : J:[ J then yi+ -+ +yi=[w, - ] H
x Y,
1
H[ : sz(w?+ e d).
Xy
Suppose first that =1 (mod. 4). Consider the following » X% non-
singular matrix:

(H 0« ... 0
0 -H-
M= :
‘H-0
0 0 IJ
Y
and put Mx=y=|: | and w=a,+ --- +x,. From (*), we get
Y.
(**) Rit e F2i=ytd e byl iyl 4 At
A 21 Y
Using (n+1)Xn matrix A'= , we have =A'"M" .|, so that
1.+1 2, Y
w

21,'**2, and w are rational linear combinations of y,,--+,y,. Put A’M '=
(b)) 1=i=n+1,1=<7<n). If b,+#1, we set

ylz(l—bu)—l(b12?/2+ o+ biaYa),
while if b,,=1 we set
Y1=—(1+b11) N (byayy+ - +b1nYn)

In both cases, we have z{=y} and 2, is a rational linear combination of
Ys,** 5, Ya- In the same way as above, we fix y, as a rational linear com-
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bination of ¥s, -+, ¥., such as z;=y3. Continuing this, we obtain y,, =+, ¥n-1,
Z,,**,%2, and w as rational multiples of y,, satisfying z;=%; (1=it=n—1).
Choose any non-zero rational value for y,. In the relation obtained above,
all remaining variables z;,:**,%., Y1, **,¥n.-1 and w take rational values,
and substituting these values in (**), we obtain

22=myi+ Aw’.

Multiplying by a suitable integer we have an integral solution for the
equation, and the theorem is proved in the case n=1 (mod. 4).

In the case n=3 (mod. 4), we add an extra term max2,, to both sides
of identity (*) and put

H A 0 Xy Y
S R R e
H 1.--10 Ln+1 Yntt

21 | Y

Then we have| : :A’M‘l[ : ] and 22+ -+ +zi+mar, =yi+ o FYno AW
2n Yn+1
w\

Repeat the argument given above, we obtain ma?:.,=y..,+Aw”. The proof
is now completed.

THEOREM 2. If n=1 (mod. 4) and an nXn matriez with rational
entries A satisfies either ‘A-A=nl+n—1)J or 'A-A=nl—J, then n must
be a sum of two squares of integers.

PROOF. Note that A is singular in the latter case. By Theorem 1
either x?=ny?+ (n—1)z? or x*=ny*—2*has an integral solution. Hence n(y*-+2%
=22+22 or ny*=xa%+2% holds. From elementary number theory it follows
that » is a sum of two squares.

THEOREM 3. Let I’ be a strongly regular graph with parameters
(n,a,c,d), where n 1is the number of wvertices, a the valency, and the
number of wvertices adjacent to p, and p, is ¢ or d according as p, and
p. are adjacent or non-adjacent.

If n is odd, then the equation

2= (4(a —d) + (c—d))y?+ (— 1)~ P124d2*

must have a solution in integers x,vy, 2z, not all zero.

PROOF. Let A be the adjacency matrix of I". Then A satisfies

AJ=JA=al,
A=(c—d)A+(a—d)I+dJ.
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Putting B=24—(c—d)I, we have
B=(4(a—d)+(c—d)) I+ 4d.J .

By Theorem 1, ‘the equation stated above has. an integral solution.

COROLLARY. If a strongly regular graph has parameters (4d+'1, Zd,
d—1,d), then n must be a sum of two squares.

PROOF. This follows immediately from Theorem 3 and Theorém 2.
Or, if we put B—2A+I —J where A is the adjacency matrix of ‘this graph,
then we have B?=nI—J. Again from Theorem 2, the result follows
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