On Some Cylindrical Vector-Valued Measures

Michie Maeda

Department of Mathematics, Ochanomizu University, Tokyo

§ 1. Introduction

I. Kluvánek has introduced an operator-valued measure M_t which is called SPt-measure in [4, 5] as follows:

Let E be a Banach space and L(E) the space of bounded linear operators on E. Let $S: \{(t,s): 0 \le s \le t < \infty\} \to L(E)$ be a map such that

- (i) S(t,t)=I, the identity operator, for every $t \ge 0$;
- (ii) $S(t,r) = S(t,s) \cdot S(s,r)$ for any r, s and t such that $0 \le r \le s \le t < \infty$;
- (iii) S is continuous in the strong operator topology of L(E).

Such a map is called a propagator in the space E. If S(t,s)=S(t-s,0), for any $0 \le s \le t < \infty$, then we write without ambiguity S(t)=S(t,0), for every $t \ge 0$. Then we call it a semigroup.

Let Λ be a locally compact Hausdorff space, $\mathcal{B}(\Lambda)$ the σ -algebra of Baire sets in Λ . Let $P: \mathcal{B}(\Lambda) \to L(E)$ be a spectral measure. That is, P is σ -additive in the strong operator topology, $P(\Lambda) = I$ and $P(B \cap C) = P(B)P(C)$ for any $B \in \mathcal{B}(\Lambda)$ and $C \in \mathcal{B}(\Lambda)$.

For every $t \ge 0$, let Γ_t be a set of maps $v: [0, t] \to \Lambda$ to be called paths. Let P_t be the family of all sets

$$\Gamma = \{v \in \Gamma_t : v(t_j) \in B_j, j=1,2,\cdots,k\}$$

corresponding to arbitrary $k=1,2,\cdots$, numbers $0 \le t_1 < t_2 < \cdots < t_{k-1} < t_k \le t$ and sets $B_j \in \mathcal{B}(\Lambda)$, $j=1,2,\cdots,k$. Let $M_t: P_t \to L(E)$ be a map such that $M_t(\Gamma) = S(t,t_k)P(B_k)S(t_k,t_{k-1})P(B_{k-1})\cdots P(B_2)S(t_2,t_1)P(B_1)S(t_1,0)$ for every set $\Gamma \in P_t$.

We consider the case that $A=R^n$, where n is a positive integer and $\Gamma_t=Y_t$ consists of all continuous paths $v:[0,t]\to R^n$. M_t is a cylindrical operator-valued measure. I. Kluvánek has considered in [4] the case that M_t is extensible to a σ -additive measure on $\sigma(P_t)$ which is the σ -algebra generated by P_t . However, it is very rare cases except the Wiener measure. So, we investigate the special case of M_t which is available to get some kind of extension.

$\S 2$. An operator S_t

In this section we investigate a special operator which relates to M_t . We follow Nelson's method of construction of the Wiener measure ([6]) (see also Ichinose [3]).

Let $\dot{R}^n = R^n \cup \{\infty\}$ be the one-point compactification of R^n . In section 1 we have defined Y_t . We introduce the infinite path $v_\infty : [0,t] \to \dot{R}^n$ defined by $v_\infty(s) = \infty$, for $0 \le s \le t$. Then we understand that Y_t contains the infinite path.

Let $C(\dot{R}^n)$ be the Banach space of the C-valued, where C is the complex number field, continuous functions on \dot{R}^n , denote by X. Let \tilde{X} be the Banach space of all C-valued bounded Borel measurable functions defined on \dot{R}^n . Let $Z = C(\prod_{[0,t]} \dot{R}^n; C)$ denote the Banach space of the C-valued continuous functions on $\prod_{[0,t]} \dot{R}^n$, where $\prod_{[0,t]} \dot{R}^n$ is the product of the uncountably many \dot{R}^n ; $Z_{\text{fin}} = C_{\text{fin}}(\prod_{[0,t]} \dot{R}^n; C)$ the subspace of those Φ in Z for which there exist a finite partition $0 = t_0 < t_1 < \cdots < t_m = t$ of the interval [0,t] and a C-valued bounded continuous function $F(x^{(0)},x^{(1)},\cdots,x^{(m)})$ on $(\dot{R}^n)^{m+1}$ such that

(*)
$$\Phi(v) = F(v(t_0), v(t_1), \dots, v(t_m))$$
.

We want to introduce a linear operator S_t mapping Z_{fin} into X using S which is a propagator in X.

Take Φ from $Z_{\rm fin}$, so that there exist a finite partition $0=t_0< t_1<\cdots< t_m=t$ of [0,t] and a C-valued bounded continuous function $F(x^{(0)},x^{(1)},\cdots,x^{(m)})$ on $(\dot{R}^n)^{m+1}$ such that (*) holds. We may suppose F is defined everywhere and continuous in $(\dot{R}^n)^{m+1}$ so that $\|\Phi\|_{\infty}=\|F\|_{\infty}$, where $\|\cdot\|_{\infty}$ means the supnorm. Suppose that S defines a kernel function K such that

(**)
$$(S(t,s)f)(x) = \int K(t,x;s,y)f(y)dy, \quad \text{for} \quad f \in C(\dot{R}^n).$$

Define $S_t(\Phi)$ by

$$(S_{t}\Phi)(x) = \int_{\dot{R}^{n}}^{m} \cdots \int_{\dot{R}^{n}} K(t_{m}, x^{(m)}; t_{m-1}, x^{(m-1)}) \cdots K(t_{2}, x^{(2)}; t_{1}, x^{(1)}) K(t_{1}, x^{(1)}; t_{0}, x^{(0)}) F(x^{(0)}, x^{(1)}, \cdots, x^{(m)}) dx^{(0)} \cdots dx^{(m-1)},$$

where $x^{(m)} = x \in \dot{R}^n$. $S_t \Phi$ is independent of the choice of F, then S_t is well-defined. We have the following proposition.

PROPOSITION 1. If $\{S(t); 0 \le t < +\infty\}$ is a contraction semigroup and also defines a kernel function K satisfying (**), then S_t is uniquely extended to

a continuous operator of $C(\prod_{[0,t]}(\dot{R}^n))$ (=Z) into $C(\dot{R}^n)$ (=X).

We also denote the extension S_t .

The following theorem is well known. All notations are the same as above.

THEOREM 1. If S_t is a continuous linear operator of Z into X, then there exists a unique set function μ , defined on the Borel sets in $\prod_{[0,t]} \dot{R}^n$ and having values in X'', where X'' is the second dual of X, such that

- (a) $\mu(\cdot)x'$ is in $rca(\prod_{[0,t]}\dot{R}^n)$ for each x' in X', where rca(A) is the space of all regular countably additive measures on A;
- (b) the mapping $x' \rightarrow \mu(\cdot)x'$ of X' into $rca(\prod_{[0,t]}\dot{R}^n)$ is continuous with the X and Z topologies in these spaces respectively;
 - (c) $x'S_tf = \int_{\prod_{t \in A} \hat{R}^n} f(u)\mu(du)x'$, for $f \in Z$ and $x' \in X'$;
 - (d) $||S_t|| = ||\mu|| (\prod_{[0,t]} \dot{R}^n)$, $||\mu|| (A)$ means the total variation of μ on A.

If S_t is weakly compact, we have the following one instead of Theorem 1.

THEOREM 2. If S_t is a weakly compact operator of Z into X, then there exists a vector-valued measure μ defined on the Borel sets in $\prod_{[0,t]} \dot{R}^n$ and having values in X such that

- (a) $x'\mu$ is in rea $(\prod_{[0,t]}\dot{R}^n)$, for $x'\in X'$;
- (b) $S_{\iota}f = \int_{\Pi_{\Gamma_0, \iota} \uparrow \dot{R}^n} f(u) \mu(du), \text{ for } f \in Z;$
- (c) $||S_t|| = ||\mu|| (\prod_{[0,t]} \dot{R}^n);$
- (d) $S'_tx'=x'\mu$, for $x'\in X'$, where S'_t is the dual operator of S_t .

§ 3. Relations between S_t and M_t

Let $\{S(t); 0 \le t < +\infty\}$ be a contraction semigroup in \tilde{X} and also having a kernel function K satisfying (**), and P be defined as follows:

$$P(B)f = 1_B \cdot f$$
 where $f \in \tilde{X}$ and $B \in \mathcal{B}(\dot{R}^n)$.

P is a spectral measure. Then we have an SPt-measure M_t defined by S and P.

Here we consider the relation between M_t and the operator S_t defined by S.

First we suppose that S_t is weakly compact. In this case we have the X-valued measure μ . If $f \in X$ and $\Gamma = \{v \in Y_t ; v(t_j) \in B_j, j = 1, 2, \cdots, m\}$, where $B_j \in \mathcal{B}(R^n)$ for every j, then $M_t(\Gamma)f = \int_{\Gamma} F \, d\mu$, where F is in Z_{fin} and

 $F(v) = f(v(t_0))$. Therefore $M_t(\Gamma) \in L(X)$ and M_t is countably additive on $\sigma(P_t)$ in the strong topology.

Second we consider the general case. In this case we have the X''-valued measure μ such that

$$x'S_tF = \int F(u)\mu(du)x'$$
 for $F \in Z$ and $x' \in X'$.

If $f \in X$ and $\Gamma = \{v \in Y_t; v(t_j) \in B_j, j = 1, 2, \dots, m\}$, then $x'(M_t(\Gamma)f) = \int_{\Gamma} F(u)\mu(du)x'$, where F is in Z_{fin} and $F(v) = f(v(t_0))$. Therefore M_t is countably additive on $\sigma(P_t)$ in the weak topology.

§ 4. Examples

In this section we treat some examples.

EXAMPLE 1. Let $K(t, x; s, y) = \{4\pi D(t-s)\}^{-1/2} \exp(-|x-y|^2/4D(t-s))$, where D is a constant and $|\cdot|$ means the norm of R^n . It is clear that S is a contraction semigroup. The following results are known.

$$\text{Let } (\tilde{S}_t \varPhi)(x) = \int_{\vec{R}^n}^{\frac{m+1}{m}} \cdots \int_{\vec{R}^n} K(t_m, x^{(m)}; t_{m-1}, x^{(m-1)}) \cdots K(t_1, x^{(1)}; t_0, x^{(0)}) F(x^{(0)}, \cdots \\ x^{(m)}) dx^{(0)} dx^{(1)} \cdots dx^{(m)}, \text{ then } \tilde{S}_t \text{ defines the Wiener measure } \gamma \text{ on } \Pi_{[0,t]} R^n.$$

Also let $(\widetilde{\widetilde{S}}_t \Phi)(x) = \int_{\widetilde{K}^n} \cdots \int_{\widetilde{K}^n} K(t_m, x^{(m)}; t_{m-1}, x^{(m-1)}) \cdots K(t_1, x^{(1)}; t_0, x^{(0)}) F(x^{(0)}, \cdots x^{(m)}) dx^{(0)} \cdots dx^{(m-1)} d\mu(x^{(m)})$, where $\mu \in \operatorname{rca}(R^n)$, then $\widetilde{\widetilde{S}}_t$ defines the measure γ_{μ} on $\Pi_{[0,t]}R^n$. Consider the dual operator S'_t , then we have $S'_t \mu = \gamma_{\mu}$ for every $\mu \in \operatorname{rca}(R^n)$. Therefore S'_t is weakly compact ([2]). Then S_t is also weakly compact, so that we have $C(R^n)$ -valued measure defined on $\Pi_{[0,t]}R^n$.

Example 2. ([3])

Consider the homogeneous hyperbolic system of the first order

$$(***) \qquad \partial_t \phi(t,x) = \left[\sum_{i=1}^n P_i \partial_i + iQ(t,x) \right] \phi(t,x) , \qquad 0 < t < T, \ x \in \mathbb{R}^n ,$$

where $0 < T < \infty$. We assume, for the $N \times N$ -matrices P_1 and Q(t, x), (P) and one of $(Q)_i$, $(Q_b)_i$ and $(Q_c)_i$, i = 0, 1.

(P) The P_i , $1 \le i \le n$, are mutually commuting, constant matrices having only real eigenvalues $\{\lambda_j\}_{j=1,\cdots,N}$, so that they are simultaneously diagonalizable. $(Q)_i \ Q: [0,T) \ni t \mapsto Q(t,\cdot) \in E^i(R^n;C^{N^2})$ is continuous; $(Q_b)_i \ Q: [0,T) \ni t \mapsto Q(t,\cdot) \in C^i(R^n;C^{N^2})$ is continuous; $(Q_c)_i \ Q: [0,T) \ni t \mapsto Q(t,\cdot) \in C^i(R^n;C^{N^2})$ is continuous; E^i is the Fréchet space of the C^{N^2} -valued C^i (*i*-times continuously differentiable) function in R^n , B^i the Banach space of those func-

tions in E^i which together with their derivatives up to the ith order are bounded and C^i is the Banach space of those functions in B^i which together with their derivatives up to the ith order have the finite limits as $|x| \to \infty$.

By (S(t,s)g)(x) we denote the solution $\phi(t,x)$ of the Cauchy problem for (***) with datum $\phi(s,x)=g(x)$ at time s:

$$(S(t,s)g)(x) = \int_{\mathbb{R}^n} K(t,x;s,y)g(y)dy$$

with the fundamental solution K(t, x; s, y) for (***).

This case S is not necessarily a contraction semigroup, however S_t is a continuous linear operator. Then we have $(C(R^n))''$ -valued measure on $\Pi_{[0,t]}R^n$.

EXAMPLE 3. ([1])

Assume that K(t, x; s, y) satisfies the following conditions:

- (i) The real-valued function K(t, x; s, y) is continuous with respect to (x, y) for s < t.
 - (ii) $\int_{\mathbb{R}^n} K(t, x; s, y) K(r, z; t, x) dx = K(r, z; s, y)$ (r < t < s).
- (iii) For each x and y, $|K(t,x;s,y)|^2$ is integrable with respect to the Lebesgue measure.
 - (iv) $\int_{\mathbb{R}^n} K(t, x; s, y) dy = 1$ for s < t, $x \in \mathbb{R}^n$.

$$(v) \sup_{x,t,s} \frac{1}{t-s} \left\{ \int_{\mathbb{R}^n} |K(t,x;s,y)| dy - 1 \right\} < +\infty.$$

Consider \tilde{S}_t as the same as in Example 1, then we have the signed measure which is of bounded variation on $\Pi_{[0,t]}R^n$ ([1]). Using the same method of Example 1, we have $C(R^n)$ -valued measure on $\Pi_{[0,t]}R^n$.

References

- [1] Yu. L. Daletskii: Functional integrals connected with operator evolution equations, Uspehi Mat. Nauk., 17(5) (1962), 3-115; English transl., Russ. Math. Surveys, 17 (1962), 1-107.
- [[2] N. Dunford and J.T. Schwartz: Linear operators part I, Interscience publishers, INC., New York, 1957.
- [3] T. Ichinose: Path integral for a hyperbolic system of the first order, Duke Math. J., 51 (1984), 1-36.
- [4] I. Kluvánek: Operator-valued measures and perturbations of semi-groups, preprint.
- [5] _____: Integration and the Feynman-Kac formula, Studia Math., 86 (1987),
- [6] E. Nelson: Feynman integrals and the Schrödinger equation, J. Math. Phys., 5 (1964), 332-343.