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Abstract

In order to expand the Coulson and Longuet-Higgins’ integral method
to infinitely large conjugated r-electronic networks, such as branched
polyenes and periodic polyacenes, two new efficient techniques are proposed.
The analytical solutions of bond orders and =-electronic energy of these
two kinds of networks with various modes of bond alternation are derived,
which are expressd in terms of the three kinds of the elliptic integrals.
The benzene characters for polycyclic aromatics are also obtained. The
dependency of these results on the bond alternation parameter can explic-
itly be discussed.

I. Introduction

Although calculations of the Hiickel molecular orbitals for various
series of hydrocarbon molecules have been studied by many people [1-21},
the analytical solutions of r-electronic energy and bond orders with bond
alternation were rarely obtained, especially for infinitely large networks.
The Coulson’s integral method for deriving the analytical solutions of the
n-electronic energy and bond orders are found to be powerful for fairly
large molecules. However, for infinitely large polymers, this method cannot
be used directly. '

One of the present authors proposed two counting polynomials [22] to
enable the calculation for infinitely large polyenes by the use of their
recursive relations [23]. Further, the method for applying the Coulson’s
integral to infinitely large periodic networks is also found, and has been
used for infinitely large polyacene and polyphenanthrene successfully [24].

In this paper, we give a brief account of our methods for the calcu-
lations of several series of infinitely large networks, and summarize their
analytical solutions. Several new results are also given.

In the following discussion, we will be concerned with the case in
which bond alternation is explicitly taken into consideration. TFor the
simplest case the bonds are grouped into single (s) and double (d) bonds.
The bond alternation parameter a is defined as the ratio of the resonance
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integral of an s bond (3,) to that of a d bond (8;) in the HMO scheme,
namely a=p,/B;, with 0=<a<1.

II. Coulson’s Integral Method

The total m-electronic energy E. of the closed shell ground state of an
unsaturated molecule G with N-electrons can be expressed as

[N/2]

E.=2 El 2y
=i [ o
L[ e

where 7 is the infinitely large semicircle in the complex plane. Pg(x) is
the characteristic polynomial of (7, also denoted as Ag(x),

aeN T, (2)
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and Agz(x) is the first derivative of Ag(x).
The Coulson’s bond order of bond ! in G is expressed as
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P Y Pole)
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where A, (x) is the subdeterminant obtained by deleting the r-th row and
s-th column from Ag(x).

Equations (1) and (3) can directly be applied to small molecules. How-
ever, for infinitely large networks, the first problem we encounter is that
the integrands of (1) and (3) cannot easily be expressed. Here, we propose
two approaches for extending the Coulson’s integral method to infinitely
large branched polymers and periodic networks, respectively.

ITI. Calculation of the Infinitely Large Polyenes

For the calculation of the infinitely large branched polyenes, the key
point is to break down the large structure into several smaller parts, in
other words, to express the integrands of Egs. (1) and (3) in terms of the
recursive relations involving the step-up operators « and 8.
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Two polynomials f;(x) and gqg(x) are defined as follows [22],

[N/2]

gow)= 3 (—1D*as*, (4)
[N/2]
fa(x): kgn (— 1)ka2kwN_2k, (5)

in which, a,, are the coefficients of Ps(x) in Eq. (2).
These polynomials are related with each other as

Qo(®)=(V @ [))"Pe(i/vV ), (6)
and
fa(x):(l/’i)NPG(ix) . (7)

Two \sets of the recursion formulas of ¢s(x) and fg(x) are written
down as follows, depending on the choice of the pivot bond as s (single) or
d (double), ' ’

Go(@) =)+ @0oon@), (8)
26(®) = s -a(@) +2qgea(®) , (9)
Fol@)= Foy@) 0 soul®), (10)
Fol@) = fo-a(®)+ Fooal@) . (11)

Then the z-electronic energy E, and the bond order can be expressed as

(12)

s
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Further, we define the step-up operators aj.(x), Bl...(x) for the poly-
nomial f;(x) as

@)= T @ (14)
ﬁﬁm(x):Ml— o (15)

Fon@) U ali(w)

For infinitely large networks, af.(x), Bf..:(x) are expected to converge to
certain limits, which are solved, respectively, to be
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2+ (1—a®)+ vVat+2(1+ad)z’+ (1 —a?)?
2 ?

ab(x)—a’ (x)= (16)

and

—(1—a)+ Va2 +2(1+ad)x®+(1— a)
22

Binsi(@)— B (2) = (17)
Then the integrands of Egs. (1) and (3) for infinitely large polyenes can
be obtained easily.
Consider polyacetylene as shown in Chart 1, with 2»n carbon atoms, and
see how it behaves when = tends to infinity. In order to calculate the
bond order of the terminal bond 1, 2, we get

Se(@)=fon(®), (18)
Jeo(@) = fon-o(x). ’ (19)
12345  ndnmd _ 2n
Pd Ps
Chart 1.

According to Eq. (13), we have

f2n 2 w)
Pi2=— - So For(@) (20)
By using the step-up operators, Eq. (20) can be expressed as
S S S
Pre= - SO a(@)f(@) dx (21)

By substituting Eqgs. (16) and (17) into (21), the analytical expression of p,
is obtained as

Pule) = [(@+ 1 B(@)— (1 - K(@)], 22)

where K and E are the first and second kind complete elliptic integrals,
respectively [26],

/2 dﬁ
K=\ s %)
E(k)= SO/ VI=TFsin®d do . (24)

Similarly, p., s and p,; are derived as
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and

_ 20 (* fa@)fons(®@) ,  2a(~  x(z*+2)
v So fonlw) 0O So Ta(@) F AT 2

T
Finally, they can be expressed as,

pula) = (@ + 90*— 9 Bla)— (= (1 a)K(@)],  28)

Pula) = 1058 ———2(—a’+12a'—2a*+6) E(a)

—(a'+2a®+12)1—ad)K(a)], (29)
and

Pila) = 3158 ~[2(2a°+2a°+ 420"+ 5a*— 16) E(a)
+ (2a°—THa'+6a%+32)(1—a’) K(a)] . (30)

The bond orders of other bonds, such as bonds 5,6 and 6,7 can also be
obtained with the same approach. However, the closer the bond is to the
center of the infinitely long chain, the more complicated the calculation is.

The bond orders pi, Pss, Pu and p, are plotted against the bond alter-
nation parameter ¢ as shown in Fig. 1, where the curves of the central
bond orders p, and p, are also plotted. Although p, and p, can be obtained
by the same method, the calculations become easier by using the method
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Fig. 1. The curves of the bond orders of the terminal bonds
for polyacetylene as a function of the bond alter-
nation parameter a. The —.—- lines are those of
the central bonds.
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for the periodic networks. In the next section, we will give the deriva-
tions in detail.

v Next, let us consider infinitely large branched polyene Y as shown in
Chart 2(a). It is composed of one polyacetylene of length 2k+1 and two
identical polyacetylenes of length 2k. The f; polynomial of Y can be
derived by cutting d1 in Chart 2(a), and we get

Jo(®) = fure1(T) forsr() + fu(2)
= forl@)[ [ s () +a2f2k—1(m)f2k+l(x)] + far(x) . (31)
For the central double bond p,,

Seou(®) zfzsk.(x) . (32)
Then, according to Egs. (11), (14) and (15), we have

—,1 - Sorl)
o= T SO Ser(@) LS Fa1() + 0" Fon- 1 () Fors 1 () |+ fe(2) dz
_ 2 (" 1
B So B(x) +a?B(x)/alx)+1 de. (33)
When a=1,
Pu= “\‘/1—2*4-%—" -é;z-arctan v 8 =0.53333 , (34)

but for the case of a1, the analytical expression of p,, is very compli-
cated as shown in Appendix.
Similarly, for the central single bond p,,,

Seos (@) :fzk(w)[afZH1(90)f2k—1(«70)], (35)
then,

:ESOO Soe(@)[ 0241 () for-1(2)] dax
P 7 Jo forl@) foesi() + 0% or-1(@) forsr(2) + fh(x)]

_2a(* B(x)/a(x)
=\, F@) T a) 177 (36)

The final result with a=1 is the same as that of p,,,
'\/? 1 /\/E‘ o | ¢
psl—T+7—TnarctanV 8 —053333 . (37)
The analytical expression for the case with a#1 is given in Appendix.
It is interesting to see that the bond orders of the central double and
single bonds are equal when a=1 for infinitely large Y polymer. It means

that as long as all the bond lengths are assumed equal, the bond orders of
the central single and double bonds of infinitely large Y network tend to
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Chart 2.

be identical. This is just as the case with infinitely large polyacetylene [22].

The radical Y’ (see Chart 2(b)) looks analogous to network Y, which
has three identical polyacetylenes having 2k+1 carbon atoms. The three
central bonds are all single bonds.

The bond order of the central bond of Y’ is similarly calculated as
follows :

Jo(x) = fE(@)] far+(2) +2a/2f2k—1(50)] ’ (38)
Sfoon(®) =af(x) for-1(x), (39)
;__2__ ~ afor() for-1(2)
b= T SO Fou(®) fors1() +20°for -1 () dw
_a(~ 1
=\ s (40}

The final results are:

for a=1: psz%z— +%~~%arctanx/§:0.53333,

and
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4a°—1 1 (1—a)da+1)

T 83132 T POt ga 1y

_ Qa—171—a) H<(2a+1)2 2«/E>
6ra(l+a)(2a?+1) 6a*+3 °’ 14+a/’

for a#1: p,

K(a)

(41)
where /I is the complete elliptic integral of the third kind,

][ k B 72 dﬁ ‘
(c, )_So (1+c¢sin®)v1—k?sin *

(42)

In Fig. 2, the curves of the a-dependencies of p,, p, for Y, and of p,
for Y’ are shown.
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Fig. 2. The curves of the bond orders of the central bonds
as a function of a. The lines are those of
polymer Y. The — — — line is that of Y’.

The analytical expressions of bond orders for infinitely large polyenes
cannot always be obtained. For example, by extending the four linear
branches at both ends of ethylene, we get the polyene skeleton X as shown
in Chart 2(c). The py, ps of X are expressed as

N f_gmgw,f@@(xl du :“Q_S"" 1 de, (43)

o) felx) r Jo [B(x)+a?alx)P+1
2 (feel@) , 2 (% alf@)al®)+a’]
om SO Selx) dw= T So [ﬁ(w)a(m)+a2]2+a2(x)d : (44)

The integrands of Egs. (43) and (44) are so complicated that we cannot
obtain the analytical expressions of the p, and p, for X. We draw the
numerical solutions against o as in Fig. 3. It can be seen from it that
when o is larger than 0.947 for X, the bond order of the central double
bond is smaller than that of the single bond, so it can be said that for
polymer X, bond alternation inevitably occurs.
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Fig. 8. The curves of the bond orders of the central bonds
as a function of bond alternation parameter a
for polymer X.

IV. Calculation of Infinitely Large Periodic Networks

Infinitely large one-dimensional periodic networks can be considered as
cyclic polymers, as their physical properties are independent of the boundary
conditions [27, 28]. For example, infinitely large polyacetylene can be con-
structed from the ethylene units as shown in Chart 3. Its characteristic
polynomial is expressed as

N
Po(x)=As(x)= 11 Aw(x), (45)
where A,(x), the k-th factor of the characteristic polynomial, is

—x  14ac*
Ay(x)=

) =22—(1+2a cos k6 +a?) , (46)
14+ac* —x

with c¢=exp(t0) and c¢*=exp(—1i0), (#=2x/N). Note that for large N, the
argument kf can be deemed as a continuously changing variable in the
range of 0=<Fkf#<2x.

2

ck
Chart 3.

Then, the bond order can be obtained from the following double inte-
gration involving k vectors,

Prs=(—1)

T+3+1;71_82TFS°0 Ak,‘l‘s(%y) dydkﬁ, (47)

2r° —eo Ay(2Yy)

0
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where A, ,(x) is the subdeterminant obtained by deleting the »-th row and
s-th column from A,(x).

For example, in order to calculate the bond order p, of the central
double bond for infinitely large polyacetylene, we get

Ay o(x)=—(1+a cos kf) , (48)

by taking the average of the two cofactors (», s) and (s, 7) of A,(x). Thus,
according to KEq. (47), we can derive p, as,

_ 2 ("~ Apaliz) __Z_S”S"" 1+a cos k6
b= SOSO A1) dudk = 7% JoJo 2+ (1+a’+2a cos k) dudkd . (49)
Finally, we get the known result,
2

Calculation of the single bond can be performed just by interchanging
the double and single bonds along the chain. Namely, we only need to
change the 1+ac* and 1+ac™ in the off-diagonal element in A,(z) into a+c¢*
and a+c™, respectively. Thus we have,

A, ()= —(a+cos kf), (51)

and the bond order p, is obtained as

_2 A5(12) S”S” a-+cos k6
P 8080 Air) WIRO="2) ), 7+ (1 + a*+ 2a cos kg) V7Ik0

_ %[E(a) —(1—a)K(a)]. (52)

The zeroes of P,(x) for infinitely large polyacetylene can easily be
obtained from (46) as

x==++v1+2acoskf+a?. (53)

Then the total r-electronic energy is derived as

N
E',,:2k2 V1+2a cos kf+a?, (54)
=1

For large N, the sum can be converted into an integral as

E. 2—S V1524 cos kbt a2 dko . (55)

Since one unit has two electrons, the energy per z-electron is obtained as
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5= ZEJG :i_SZ\/H—Za cos kO +a?dk6
=2 [2B() - (1- a9 K(@)] . (56)

It is obvious that, by using the cyclic model, the calculations are very
simple and effective for infinitely large chains. In Ref. [23], we have shown
the calculations by using this method for several periodic branched polyenes,
and discussed the effects of branching on the bond alternation and electronic
structure of polyacetylene.

Not only for the polyacetylene-like networks, but also for infinitely
large periodic one-dimensional polycyclic aromatics, this method is found
to be effective. In the following, we calculate the r-electronic energy and
bond orders for the infinitely large polyacene and polyphenanthrene, with
various modes of bond alternation, as shown in Fig. 4.

(a) (b)
Fig. 4. The structual isomers of polyacene (a) and polyphenanthrene (b).

Infinitely large polyacene can be considered to be constructed from
butadiene units as shown in Fig. 5(a). Then the Ek-th factor of the
characteristic polynomial with the bond alternation scheme of PA1 is

—x  l+4ac® 0 0
xp .
A(w)= 1+ac % a 0
0 a —x 1l4ac™
0 0 1l4ac® —ux
=5 — (3a®+4a cos k6 +2)x*+ (a*+2a cos k6 +1)*, (57)

The subdeterminant A, ,,(x) for bond 1, 2 is
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Ay io(2)=—(14a cos k0)[x°— (1 +a*+2a cos k6)]. (58)

Thus, according to Eq. (47), we can derive p;, as follows,
_ 2 (" Apiz(i2)
Pre="7 Sogo AyGim) Lodkl

_igﬂgw (1+a cos kf)[x*+ (1 +a’+ 2a cos k)]
o 0Jo &'+ (3a*+4a cos kO +2)x*+ (a®+2a cos kO +1)°

dxdko

T © 2
:%S (1+acosk0)s { WG ek
0

o {&®+gHa?+ 1}

=horesmia| (ZL)g+ (=5 Vel oo

where

_[\/5@2-1—8@ COS kﬁ+4+a}2 f_[\/5a2+8a Cos k6+4~a:|2
- 2 ’ - 2 b

and e=(1+a’+2a cos k6).
Finally, we get the result as

dko

_“iig" 2(1+a cos k)
Pre="" 0V'Ba?+4+8a cos k

4—b5a’ K( «/T>

~ 22+v5a’+8a 1 4 5a?+8a+4
V5a2+ +8a+4 16a
T (*/Sa2+8a+4 > (60)
Similarly, for bonds 2,3, 1,4 and 17,2,
A p3() = —0"%2; (61)
Ay 1s(2) = —a(l+a*+2a cos k6) , (62)
and
Ay 1) = —(a+cos k) 2*— (1 +a*+ 2a cos kb)]. (63)
Then, we get the noticeable results,
2a 16a
P VBa £ 8a 1 4 K< 5a’+8a+4 )‘ TP (64)
Sa—4 16a
Pre="y i Vba + 8a+ 4 K<\/ 5a2+8a +4
\/5& +8a-+4 16a
2ar E<\/ 5a*+Ra 14 ) (65)
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As will be known from Section IV, apart from the para bond 1,4, the
bond order of the para bond p,s is also necessary for calculating the ben-
zene character of polyacene. However, since bond 2’,3 is not a bond in one
butadiene unit, its bond order cannot be obtained by the present topological
figure. We must expand the unit to be orthoquinodimethane, as shown in
Fig. 5(b). Then the bond 2,3 corresponds to the bond 4,7 in Fig. 5(b). The
L-th factor of the characteristic polynomial, A,(x), and the subdeterminant
A, »(x) are obtained as

—x1 0ac*0 0 0 O
l1—2za 0 0 0 a O
00 a—x1 0 0 0 O
A(x) = ac*0 1 —xa 0 0 O
0 0 0 a—21 0ac*
000 01—-xa 0
0O a 00 0 a-—ol
0 00 0ac*0 1 —x

=2*—2(3a®+2)2° + (11a' +12a°+ 6 — 4a® cos kb)x*
—2(3a’+6a*+3a%+2—2a* cos k6 — 4a? cos kB)x®
+(a*+1)2+4a! cos’kf —4a*(a*+1) cos k6, (66)
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and
Ay o) = —22%a(x®*—a’*—1)(cos kO +1) . (67)

Then the bond order p,; of the bond 2/,3 in Fig. 5(a) is derived as

__i (7 Ay u(1%) | :
Prs= " So So AL(T) dkbdz . (68)

However, the analytical expression of (68) cannot be obtained. Its
numerical results are plotted in Fig. 6, while the bond orders, p,s, Dss, D1s
and p,, as a function of bond alternation parameter a, are also plotted.

10 ﬂp
05

U]
q

-5

-.0

Fig. 6. The curves of the bond orders for PA1 and PA2
as a function of bond alternation parameter a.
All the bond orders are identical for PAl and
PA2, except pi..

Since the zeroes of Pg(x) for PA1 are derived from Eq. (57) as

L
2

t=+—(a+ vV5a*+8a cos kf+4), (69)

and one unit has 4n-electrons, the energy per n-electron for PA1 is given by

2
: —lim B= _¥5a +8a+4E<\/ 16a > 70)

Now AN 5a*+8a+4

It should be noted that, the relation between the bond orders and the
m-electronic energy is obtained to be

1
5”27(2p12+2ap1f2+ap23) s (71)

as expected from the scheme of the tight-binding approximation.
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For PA2 and PA3, the processes of deriving the =-electronic energy
and bond orders are the same as those applied to PA1, except that the
factors of the characteristic polynomials of them are different from that
of PA1, since they have different bond alternation patterns. The analytical
expressions for PA1l, PA2 and PA3 are given in Table I, while the bond
orders s, Pas, Pu, and p,s; for PAS are plotted in Fig. 7. Although the
bond orders and the energy per r-electron of PA2 are all identical with
those of PA1, the p,, for PA2 is much more complicated than that of PA1.

Table I. The analytical expressions of bond orders pi,,
D3, Pi's, Pu and energy per zn-electron &,

P12

4 - 5a’ [ 16 ] 502+ 8a +4 (j_ma—]

1 K + E
A 25+/5a2 + 8a + 4 (532+Ba+4 2x 5a2+8a+4
4 -5a% , 16a V522 +8a +4 ( 16a ]

PA2 K + E
2x+/5a +8a+4 [ 5a’+8a+4] 2x ,/5,2+8.+4

e ) ()

x| \Vat+16
P23
2a 16a
PA1 k[ [
u-\/;a2+8a+4 Vsal+8a+4
2a 16a
PA2 K(’ )
x/5a% +8a + 4 5a%+8a +4
2a 4
PA3 K( ]
a2+16 \~/a%+16
Pi2

3a%-4 K 16a )+ Vsa?+8a+4 E(jT]
P 2ax+/5a2+ 8a +4 522 +8a+4 2ax 5a2+8a+4
3al-4 16a ]+ Vsat+8a+4 s( T6a
P2 2ax+/5a% +8a +4 522 +8a +4 2ax J532+81+4l

\/‘72:—1_6{[‘:[\/&24+ 1 6)- ‘2:21 6K{JaT4+ : 6)]

PA

w

Pis

2a , 16a )
- K
PAT x/5a% +8a +4 ( 5a”+8a +4
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Table I. Continued
PA2 1+a? K( , 16a )_ a-a’ ﬂ( 4a_ [ 16a
wsa+8a+4 \VSa+8a+4) g 5028244 \@+a)’ VSa2+8a+d

PA3 2a

’ /a2 +16 K(\/a:+ 16)

€,

\/5: +8;+4 16a
PAl E( ’Sa T 8213 ' pn+2apn+lpn)

+/5a2 +Ba+4 16a »
PAZ E[-JS. 248a+4 -%(2')‘3*'2””*”3;

PA3 .x+l6ﬂ(_\/a +16] %(4"12'“?2:)

0P
05 12
23
00
da a5 a0
73
05 1%
4.0

Fig. 7. The curves of the bond orders for PAS as a
function of bond alternation parameter a.

The curves of the energy per =-electron for PAl, PA2 and PAS3 are
shown in Fig. 8 as a function of bond alternation parameter a. PAS3 is
more stable than PA1 and PA2 in all the range of 0<a<1. For an extreme
case with ¢=0, PA1l and PA2 are decomposed into isolated ethylenes, with
£.=1.0(8). However, for the limiting case of PA3 with a=0, we get the
result for polyacetylene with no bond alternation, having &, =1.27324(p3).

As shown in Fig. 5(c), polyphenanthrene can also be constructed from
butadiene units in a different mode from polyacene. The characteristic
polynomial for PP1 can be expressed as

Poln)=As(o)= 11 Aua) (72
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1.E8ER

15 p
PAI(PA2) ,
///
///
1.0 =
0.0 05 alo

Fig. 8. The curves of the energies per =n-electron as a
function of parameter a for PA1(PA2) and PA3.

where
—x 1 0 ack |
_ "k |
Aa) = 1 x a(l+c*® 0 J
0 a(l4c?) —=2 1 |
ac't 0 1 — |
=gt — 2} (3a*+ 2+ 2a%cos k6) +[2a*(1 + cos k6)

—2a*2 cos?kf+cosk6—1)+1]. (73)

Similarly for PP2, the factor of the characteristic polynomial can be
obtained according to the pattern of PP2 as in Fig. 4. Then, by the same
process as polyacene, we obtained the analytical expressions of z-electronic
energy and various bond orders for PP1 and PP2 as shown in Tables II
and III, respectively. It is worthy of notice that, when a=1, Tables II
and IIT coincide with each other.

The bond orders for PP1 and PP2 are plotted against parameter a as
shown in Figs. 9 and 10, respectively.

However, for PP3, we failed to obtain the analytical solutions of &,
and the bond orders. Whether Eqgs. (1) and (3) can be analytically integrated
mostly depend on the fact that the denominator of the integrands can be
factorized into a form like (x4 g)(x*+f) with perfectly squared g and f.
For PP3, since g and f are not perfectly squared, its analytical results
cannot be obtained. We plot the numerical values of the bond orders and
g, in Figs. 11 and 12, respectively. &. of PP1 and PP2 are also shown in
Fig. 12 by the dotted line and the dot-and-dash line respectively. Among
the three isomers with different mode of bond alternation, PP3 is the most
stable and PP1 the least stable.
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Table II. The coefficients in front of E(k,), K(k,), E(k,;) and
K (k,) in the expressions of bond orders pjs, P23, Dis
Das, P2z, P25 and pys for PP1. The expression of energy
per z-electron £, is also shown.

Py, A -B, A, -B,

\/a2+4+aA _(\/a2+4+a)B _(\/a2+4—a)A Vat+4 -a
1 2

) B

2 2

-\/a2+4—aA _[\/aTJ—a)B _(m+a)A m-n
1 2

Py, 3 1 3 3 > B,
1 1 1
Pus T A a B, ah, ':'Bz
2 2 2 2
P (\/a2+4 +a) A (\/az+4 +a) B [\/a2+4 -a a+4 -a
27 4a 1 T~ 4 )™ 4a A, da B,
P Va’+4 +a A Val+4 +a B a’+4 -a a’+4 -a
25 2a 1 2a v T A ),
[(‘\/az+4 +a)2—8a’] A [(\/a2+4 +a)2+8a2] B [(\/324-4 —a)z-sazj A
Pss 12 1 12a 1 12a 2

[(\/a1+ 4 - a)2 + 8az] B
12a 2

Tx=5e0a + Val+ )E(k ) + @ +a? +4)E(k,)]-;-(2p,,+ap2,+ap,,,+ ap,)

Al=a\/az+4 +2-a? A2=a\/a2+4 +2+a?
Bl=a al+4 —-2-a? Bz=n\/az+4—2+az

K =2\/23(\/a2+4 +a) " =2\/211(-\/112+4 +a)
! a.\—/az+4+2+a2 2 a3az+4+2+a2

Both in Figs. 9 and 10, there is a region where the relative values of
bond orders are in contradiction with the bond alternation pattern. For
example, for PP1, when @ is larger than 0.82, the bond order p, for a
single bond is larger than p,,, for a double bond. For PP2, when a is
larger than 0.85, p,, for a single bond is larger than that of the double
bond p,;. Thus only when ¢ is smaller than 0.82 and 0.85 for PPl and
PP2, respectively, the relative values of the bond orders are consistent
with their bond alternation patterns.

There is no crossing point in Fig. 11, and the relative values of bond
orders are consistent with the bond alternation pattern in Fig. 4. We



Jnly 1990

r-Electronic Structure of Infinitely Large Networks 19

Table III. The coefficients in front of E(k,), K(k,), E(k,) and
K (k,) in the expressions of bond orders p,s, Pss, Pis
Dss, P27, Pos and pge for PP2, The expression of energy

per w-electron z, is also shown.

1 1 1 l_
P, i—-Gl i—Gz "—63 .G4
V541 (JE+1) (\/E—l) V5-1
Pa; 2a G, "\ 2a G, 2a G, 2a G,
V31 (\/5'-1) (\/EH) V541
P4 n & Um)shq Umn)e 2 O
Pys G, G, G, G,
3+/5 3+4/5 3-5 3-45
Py 3G, 7 G, 7 G 7 Cs
V541 V5 +1 (\/;-‘) (‘/5—“')
Pys 7 G 7 G )% UJS
G+vV5pl-4 . G+\Su'+4 . G-vEu -4 . G-/Su’+4
Py 6 1 6 02 6 G: 6 04

_5+45 5-/5 1
E 2 GEk)+ = Gsa(kz)'f(zapu*'P23+p4s*p27)

2a+4/5-1 -2a++/5 -1
G = =
! 25 G, 2x+/5 !
24541 esEed
G, = =
? 2"_‘\;5 G 22/5 !
K = 2+4/2a(\/5 +1) = 24/2a/5 - 1)

U s+ nar2 27 s -1a+2

-1.0

-1.0

Fig. 9. The curves of the bond orders
as a function of parameter a
for PP1.

Fig. 10.

The curves of the bond orders
as a function of parameter a
for PP2.
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1.65%
1.D
1.5
1.0
-1.0 00 05 aio
Fig. 11. The a-dependency of the bond Fig. 12. The curves of the energies per

orders of PP3. For the values
at a=0.87, the bond orders
agree quite well with those
obtained by Tanaka et al., by
using the so-called one-dimen-

n-electron as a function of
parameter a. The dotted,
dashed line with dots and
solid lines are those for PP1,
PP2 and PP3, respectively.

sional tight-binding SCF.CO
method.

think PP3 is the most favorable isomer for polyphenanthrene with respect
to bond orders.

In Ref. [29], Tanaka et al. have given the calculated results of bond
orders of py, D1, P, and p.; as 0.785, 0.502, 0.463, and 0.615, respectively,
by the one-dimensional tight-binding SCF-CO (crystal orbital) method. Those
bond orders have no large difference from our results, 0.784, 0.499, 0.456,
and 0.635, obtained with the parameter a=0.87 for PP3. Here, it is
worthy of notice that when the bond alternation is properly considered in
the HMO calculation, one can reproduce the results obtained by a more
elaborate method.

IV. MO-Benzene Character for Polycyelic Aromatics

For an alternant hydrocarbon, MO-benzene character was defined by
Polansky et al. [30] by using the Coulson’s bond orders as follows,

1 1

L L '
rL="5" +7(2 2 Portho — E ppara>; (74)

2 18
where Porno is the Coulson’s bond order of a pair of adjacent atoms in a
given benzene ring L, and p,.. is that of a pair of para atoms.
In order to make the benzene character vary from 0 for three isolated
double bonds to 1.0 for benzene, Aida et al. [81] defined the normalized
MO-benzene character as
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r,=6r,—5
1 L L
:“.’3“><2 Z Portho — 2 ppara> —2. (75)

For the polyacene isomers, we get the following expression easily,

- 4 1
TL:“S—(p12+p23+p12')_"3—(p14+2p2'3) —2. (76)
For PAl and PA2, because only the bond order p,, is different, the differ-
ence of their benzene characters can simply be expressed as

- 1
A(TL):—?A(ZQM)- (77)
As the analytical expression of bond order p,; cannot be obtained, we
can only show the numerical results of 7, for the polyacene isomers as in’
Fig. 13. It is easily seen that PA3 has the largest benzene character as
expected.

1.0

a5

PA

05 #
Ve
|

-.0

Fig. 13. The curves of the benzene characters
against parameter a for PAl, PA2
and PA3, respectively.

For the polyphenanthrene isomers, 7, can be expressed as

- 2 1
W'L:Tg)—(22712+2pzs+pz7+ 2045)-?(2]025+ Pas) — 2. (78)

We have obtained the analytical solutions of all the bond orders for
polyphenanthrene PP1 and PP2. Thus by substituting the formulas of
these bond orders into Eq. (78), the analytical expression of 7, for PP1
can be obtained as
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Fu= e [(17a—6)VaF 4+ (210> + 18a-+ 22)]4, B(k)
—[(7Ta+6)vVa?+4+ (11a®+ 300 —22)1B, K(k,)
—[(17a—6)vVa*+4— (21a’+ 18a+22) A, E(k,)
+[(Ta+6)vVa?+4—(11a’+30a—22) 1B, K(k,)} —2,  (79)

and for PP2, 7, is expressed as

_ _3+V5
"1="1gq

{[124+738— v 5)a—a’]G.E(k,)

—[12—-5(8—+'5)a+a*]G,K(k,)}
3—+v'5
T 1Ra

{12473+ v 5)a—a*|G:E(k,)

—[12—5(3+ v 5)a+a’]G,K(ks)} —2. (80)
For PP3, the numerical results of 7, are plotted in Fig. 14. The curves
of 7, as a function of parameter a for PP1 and PP2 are also plotted. It
is seen that the component hexagon of PP3 has the largest benzene property

in all the range of 0<a<1. The curve of PP3 has a maximum when a
is about 0.7.

1.0

0.5-_' __________________

Fig. 14. The curves of the benzene characters
against parameter a for PPl1l, PP2
and PP3, respectively.

According to Ref.[31], in the PPP calculation, as the network of
polyphenanthrene is large enough, (having about 25 rings), the value of
the benzene character 7, of the central ring converges to 0.56947. This
value is found to correspond with our result of PP3 with ¢=0.94. How-
ever, for PP1 and PP2, in all the range of 0<a =<1, 7, of HMO calculation
gets never larger than 0.52630, and there is no a value compatible with
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that PPP. In this respect, PP3 is also considered to be the best candidate
among the bond alternation isomers.

V. Concluding Remarks

(1) The two approaches proposed by us are shown to be very powerful
for calculating &. and bond orders of infinitely large networks. Further-
more, we found that these methods can also be expanded to two-dimensional
periodic networks, such as graphite, as will be discussed elsewhere.

(2) For infinitely large polyacene with bond alternation, the z-electronic
structure of PA3 is found to be the most stable in the range of 0=a<1.
For infinitely large polyphenanthrene with bond alternation, the n-electronic
structure of PP3 is the most stable, and the most plausible one with respect
to the bond orders and benzene character.

(3) It was shown that if the bond alternation is properly taken into
consideration in the HMO calculation of large periodic z-electronic networks,
we can get rather reliable results as compatible with more sophisticated
methods, such as PPP and SCF-CO calculations.
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Appendix

The analytical expression of the bond order of the central double bond
for polyene Y, is

V2 o1 A2 _
for a=1: Pur="p +*;——4n~arctan\/8 =().53333,
 4=a® 1 a’+2a—4
for a+1l: Pa1— 4'\/5'\/(},5—?8 T E((X/)"*‘ o K((l)
1—a ) _ N <a(8—a—3¢&31§ 2\/701,—)
+ 47r(1+a)\/af’+8{[a 430-+8—(a+3) Va1 811 e

—[a2+3a+8+(a+3>«/&i’z;fs']n( “(S—Z(ﬁa“)‘j ¥8 211‘; )} (81)

The analytical expression of the bond order p,; is

for a=1: pslzl/zg—k—}r——yzﬂgarctanV§20.53333,



for a=+1: p,=

(1]

[9]

(10}
(11]
[12]

113]
[14]
L16]

[16]
L17]
[18]
[19]
[20]
L21]
[22]
(23]
(24)
[25)
[26]

[27]
[28]
[29]

[30]
[31]
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9V 2a@*+2+ava®+8) 1 1502 —4a—8
16(0—a)vVats | ral@t g

1—a
2r(1+a)Va2+8

_|_

{(«/m_gm( a(8—a-+3vVa*+8) 2+ a >

4(1+a)? " 1+4a
a(8—a—3va>+8) 2+ a
4(1+a)? ’1+a>}' (82)

~(«/a_2¥8“+3>11(
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