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§1. Introduction

It was R. Fuchs who derived the sixth Painlevé equation

2
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by the isomonodromic deformation for the linear differential equation
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da? \z +x——1 +x—t+x~2 +x2 + (90—1)2+ (x—1t)® +4(x—2)2 v
which is of Fuchsian type. Here a, b and ¢ are complex constants and
a, B, 7, 2 and 0 are functions of ¢ satisfying

a+B+r+0=0,
B+ tr+ 16 =constant,

and x=2a is a regular singularity with exponents —1/2 and 8/2 around
which there exists a fundamental system of solutions without logarithmic
term.

The other five Painleve equations were obtained by R. Garnier as de-
formation equations for linear differential equations of the second order
with irregular points. We restrict ourselves to the sixth Painlevé equa-
tion and its related equations.

K. Okamoto gave a new standpoint. First he converted the sixth
Painlevé equation into a Hamiltonian system, which we call the sixth
Painlevé system and denote by Py; ((O1]), and then, normalizing the linear
differential equation above, he derived the Painlevé system Py: as defor-
mation system for the normalized equation. ([02], [O3])

The normalized linear differential equation is written as
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and its Rieman scheme is given by
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where g+, +0+r.+2y=1 (Fuchs relation). The singularity z=2 is sup-
posed to be apparent. From this assumption, we have

AA=1DQA=t) [ 4 [k K1 6—1 XX+ k)
H= t(t—1) < _<7+1—1+z—t>’“‘+ z(z—1)>'

Okamoto proved that the Painlevé system Py; is given by

]
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dt "~ ap

Py, .
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and Py; is a deformation system for the normalized equation.
Considering the equation
@Ey__‘_(l_lfo 1—‘/61 1_6 n \dy

dx? x + z—1 +x~t—xﬁ2/ dax

1+rs)  HE—1H A= \
+<x(x—1) w(e—1)(x—t) w(x—l)(x—2)> =0,

where n=1,2,3,:--, T. Kimura tried to obtain the deformation systems.
He succeeded in the case n=2 and gave a conjecture saying that the equa-
tion above admits the deformation system for n=1,2,3,---. ([K1], [K2])

The purpose of this paper is to prove that Kimura’s conjecture is true
for n=38 and to give the deformation system in an explicit form.

§2. Condition for x=21 to be apparent
We consider the equation

@_l_(l—ﬁ:o 1*‘—/ﬂ1 1_0 8 \dy

& x—1 "x—t x—2i/dzx

AA+es)  tE—DH A= \
+<x(x—1) x(x—1) (x—1) x(x—l)(w——l))y_o’
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where the Fuchs relation reads #,+#;+60+r.+2y=—1, and suppose that x=21
is an apparent singularity. We shall search for a condition for x=21 to be
apparent, or we shall determine H as function of ¢, 2 and x. To apply
the Frobenius method, we write (2.1) in the form

(x— %" +(x—Dp@@)y’+q(@)y=0,

where
p(x)=—3+<1_xﬁo +1w_—ﬁ11 +910:i>(w_2)’
q(x):#(x_2)+<_<t;1_x21+xit>H
1—1 2 XX+ £o) 2
+( x *x—1>‘u+ x(x—1) >(x—2)
Putting
P(x)~1—wx° +195_E11+3c16t
=1t 1 tt=1)
Q) == x_1+m—t—x(:}c—1)(m—t)’
_ XA trs)
S(e) = x(x—1) ’
we have
p(x):—3—|-P(2)(9c—2)+P’(3)(W_Z)Z+#(m_l)g_"%(x_z)‘i_'_ e

q(®) = p(x—2A) +(— QU H+ R(2) 1+ S(2)) (% — 2)?
+(—QWH+R (D p+ S () (—2)°

o (@ WH+ R () 8" (D) =2+ -

We define
Jop)=plp—1)—3p,

filo)=P Qo+,
flo)=P' (Ap+(—QQ)H+R(2)p+S(2)),
fi(o) = —;—P”(Z)pﬂL (—Q(WH+R (D p+S'(2),

filo) =P+ 5 (~ Q" (WH+R' D" (D)
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Then a condition x=21 to be apparent is given by

£0) fi(1) 0 0
£(0) A1) fil(2) 0
£0) A1) AR fil3)
J0) A1) f(2) fiB)

We see easily that 4 is a polynomial in H and gz with rational coefficients
in 2 and ¢ and that the degrees with respect to H and p are 2 and 4
respectively. Hence H is an algebraic function in ¢, 2 and p which we
denote by H(t, 2, p).

§3. Transformed linear differential equation

We transform the equation (2.1) into an equation of the form
(38.1) ——=A(x)z

by a change of variable y=a(x)z. We can write A(x) as

_a B r v @ b c 15
Alw)= % +9c—1+x—t x—2+ x? +(m—1)2+(90—t)2+4(x—2)2’
where a, b and ¢ are constants given by
k51 ki1 =1
o= » b=Tg o, =y
and 'a, 8, y and v are given by
(i (1 _(1_’50)(1—’51)_(l‘ﬁo)(l—ﬁ) 3(1—/50)
=(t—1)H—A—1)p 2 o7 + 27 + XX+ k),
_ (1_150)(1—151) . (1_51)(1—19) 3(1"51)_
f=—tH+2Ap+ 5 56—1  TeG-1) 2+ )
(1—x)(1—0) | (1—£)(1—6) , 3(1—6)
2 =
(3.2) r=HT 2t oG- 20—
31— ko  3(1—k) , 3(1—0)
3 =yt 2
(3.3) v=pt T +2(241)+2(z~t)'
We have
at+B+r—v=0,

Btityr—Av=(kZ—ki—ki—0*—13)/4.
Putting

d=(rl—rki—r2—6—13)/4,
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we obtain
(3.4) a=({t—1)yr—A—1)v—d,
(8.5) B=—tr+2v+d.

The following proposition will be used in §5.
PROPOSITION 3.1. The change of variables
(’2) )u) t) H) > (2; Y, t; 7)

gtven by (3.2) and (3.3) is a time dependent canowical transformation,

namely
dy NdA+dt ANdy=dp ANdA+dt NdH
holds.

The proof is strightforward.

From the assumption that x=2 is an apparent singularity of (2.1), the
singularity =21 of (3.1) is such that there exists a fundamental system
of solutions of (3.1) which are expressed as

(x—A)732

M

an@— )", (@ S baa— )"

n=0
Although a condition for that is obtained from 4=0, we seek the condi-
tion immediately by applying the Frobenius method to (3.1). We write
(38.1) as
(x— A" =(x— A)2A(x)z .

We put
Fay=2+ 8 4 7 &, b _,_¢
7 T ox—1 x—t 22 (x—1)?% (x—1t)?°
Then we have
(ac—l)ZA(x)-——lf—u(x—l)%—F(Z)(m;2)2+F’(2)(x—2)3+—F—Z('D(x—l)“—{-
It is easy to see that
Y -3 0 0

—F'(2) Y —4 0

—F"(2) —F(2) y —3 |1 =0

S ¢ N 7

is a desired condition. We have from (3.4) and (3.5)

FPQ)=QPQr—REPQy—dTP@)+ U2 (5=0,1,2,-),
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where
__ =1 e T
Q@) = e  Hw—y: FO=" —51
1 1 _a b ¢
Tw= o1 U(x)#x2+(x~1)2+(x—t)2'

Therefore y is determined as an algebraic function of ¢, 2 and v by the
equation
(3.6) E(t,2,v,7)=0,
where
E=9F(A)—10F(A)*—24F" (Q)y—18F"(2) +»*.
We denote this function by I'(¢, 2,v). We want to obtain the derivatives

0l’[04, oI'[oy and oI'/ot. For this purpose, it is sufficient to calculate’
the derivetives 05/dy, 0504, 05/0v and 05/9t. Some calculations lead us to

ford
05

737 =18F(2)Q(2) —10Q(2)»*—24Q" ()»—18Q" (1) ,

0=
el

EThn 18F(A)(F(2) — T(2)v) —10(F"(2) — T(2)v) —24(F" () — T’ (2)v)
—18(F"(A)—T"(2)y) ,

% = —18F(Q)R(2)+ 10R(2)*— 20 F(2) v+ 24 R’ (2)y — 24F" (2) + 18R" (1) + 4",
65 1 20 1 20 ;
o = 18F (T + e Jr+ i )= 0T+ g Jr+ g )

ve(r 02 i (T e )

§4. Isomonodromic deformation for (3.1)

In this section we make the isomonodromic deformation for (3.1) as
taking t as a deformation parameter. For this purpose it is sufficient to
show that there exists a function D(x,¢t, 4, v), rational in x and complex
analytic in ¢, 2 and v, which satisfies the equation

1#D 0D 9A, 9A_
2 o _QAax _amD+ ot =0.

Following Kimura’s suggestion, we put

M, M M,

. o 1
D=K@—+Lt 5+ ot o

v
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where K, L, M,, M, and M; are complex analytic in ¢, 1, v. Inserting D
and A=—y(x—2)'+15(x—2)?/4+ F(x) into this equation, we have

. 8M,  12M,  30MM,
(x—=2* (x—2° (x—2)°

_(_ 2v 15 )2+2F(x)><K'— M, 2M, 3Mg>

(4.1)

x—A 2(x—2 (x—2A)2 (x—A)°® (x— )

y 15 , M, M, M;
_<(m—z)2_2(x—z)3+F(W)XK(’”—ZHL%%+(x—z)2+(x—z)3>
A7 4 1527 a’ B 7’ 8 2¢

22 =2 a2 T m o1 et metf T@—pp O

We expand the left-hand side into partial fraction and equate the coeffici-
ents to zero.
From the coefficients of 1/x°, 1/a% 1/(x—1)}, 1/(x—1)?, 1/(x—¢)® and
1/(x—t)%, we have
M, M, M

(4.2) ——ZK-}-L—T—{——Z?*—Z—{:O,
_ Ml M, M, _
(4.4) —(A—t)K+L— M, M, it s +1=0.

A—t (A—t? (A—t)

The coefficient of 1/(x—2)° is equal to zero. From the coefficients of
1/(x—2)°® and 1/(x—2)* we have

(4.5) 3My,—2vM,=0,
(4.6) 12M,— 5y M+ 6 F(2) M;=0

From the coefficients of 1/x, 1/(x—1) and 1/(x—t) we have

2 2 12
(4.7) le‘t“ — oK — ( +2 >M1+< =y ba )M2 (i‘j‘ “)Ms,

7 ﬁ1)2+ A1y )M“L(( 2[31)3+( 6bl) >M2

£
( 23,81)4+ 12b >
( 6c

S M (o i 5 )M

_ ((2 120 o >M3

(4.9) —dr— = K—
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Finally, we have from the coefficients of 1/(x—2)%, 1/(x—4)* and 1/(x—21)

(4.10) % L+ 20M,5—8F () M,/ 15— 2F () M3 |
(4.11) y% = VL 2P MA3F (D) Mo+ 2F" ()M,
(4.12) %:»Iﬁ FrQ)M+ F" () M+ F"(2) M2 |

The equalities (4.5) and (4.6) give us
(4.13) M,=2vM,/3,
(4.14) M, = (5v*—9F(1)) M,/18 .
From (4.2) and (4.3) we have

K=—TQQ)M,—T"QM;— T" (A) M,/2,

L=—RQ)M,— R (A) M;— R" (2)M,/2,
from which we have, using (4.4),

Q)M +Q (A M+ Q" (A Ms/2=1.

The equalities (4.13) and (4.14) yield

(4.15) 25 M= —36.

We eliminate dA/dt from (4.10), (4.11). We have then
(226 —2F(A))M,— BF(Q)y/154+3F " () My,— 2F” () +2F ' (A)v/3) M;=0,
which coincides with
E(t, A, v, r)Ms/9=0.

This means that (4.11) is derived from (4.10) and (3.6).
Consider the equation (4.10). We see that the right-hand side of (4.10)
becomes

(R(2)+2v/5) M+ (R’ (2) —8F(A)/15) My+ (R” (2)/2—2F(2)[3) M,

which is equal to

05
EMg/?)G .

Using (4.15) and 87" [dv=—(05/dv)/(05/0y), we obtain

di _ar

(4.16) PR PR
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In the same way we have

dv _ o

dt 91"

We shall prove that (4.9) holds. By (4.16) and (4.17) we have

dr 9l da oI dv oI ol
dt — 0A dt ov dt ot ot

(4.17)

It is sufficient, therefore, to show that

=K ((z Lt ictf >MI+<(1 irtf T ECt)‘* ).

(@t g -

calculations similar to the above lead us to the conclusion.

Finally we check the equalities (4.7) and (4.8). We expand the left-
hand side into a Taylor series at x=oc, and equating the coefficients of
of 1/x and 1/2?, we have

(4.18) a' +pB +r'—v' —(a+B+r—v)K=0
(4.19) B +ty' +r—2v—a'—(a+p+r—v)AK—L)=0.

This means that (4.7) and (4.8) can be replaced by (4.18) and (4.19). It is
clear that (4.18) and (4.19) are immediate consequences of (3.4) and (3.5).
We arrive thus at the following theorem.

THEOREM 4.1. An 1somonodromic deformation system for (3.1) s
given

da_or

dt oy
1@__*3_5

dt =~ 91’

§5. Isomonodromic deformation for (2.1)
The proposition 3.1 and the theorem 4.1 yield the following theorem.

THEOREM 5.1. Amn isomonodromic deformation for (2.1) is governed by
J di _oH

dt — op

dp _ _oH
dt 02 °
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