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Introduction. Unless explicitly stated otherwise, every set considered
in this paper will be linear and every function will mean a mapping of
the real line R into itself.

A function ¢(x) will be called AC superposable on a set E, if ¢(x) is
expressible on E in the composite form ¢(x)=@oy(x), where the inner
function Y (x) and the outer function # are absolutely continuous on the
set K and on the image V[FE], respectively.

There are two well-known interesting theorems, due to Nina Bary, on
superposition of functions (see p. 283 of Saks [6]):

THEOREM (a). In order that a function ¢(x) which is continuous on
a closed interval I be expressible on this interval as a superposition of
two functions of which the inner function Y(x) s, on I, both continuous
and BV, while the outer function is AC on the set V[[], it is necessary
and sufficient that the function ¢(x) fulfil the condition (T,) on I

THEOREM (b). In order that a function which 1s continuous on a
closed interval I be AC superposable on this interval, it is mecessary and
suffictent that the function fulfil on I both the conditions (T,) and (N), or
what amounts to the same, the condition (S).

We are interested in investigating what will become of the above
theorems if the underlying closed interval I is replaced by a general set.
The answer to each of the two problems will be embodied respectively in
Theorem 14 and Theorem 27, which will together constitute the main
results of this paper. It will turn out that the conditions (T,) and (S) of
Banach, although certainly extensible to the case of a general underlying
set, are not strong enough to serve the purpose. In order to tide over
this situation, we shall find it appropriate to introduce two new conditions
called (U) and (W).

The final section, which is independent of the main theorems, will
supplement § 1 with a few results of their own interest.
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§1. Conditions (F), (@), and (T).

DEFINITION. Let N denote the set of the positive integers. A function
o(x) will be said to fulfil the condition (F) on a set E, if for each non-
overlapping infinite sequence of closed intervals, <[, I, ---->, the upper
limit of the sequence <p[ENI,]; n=N) is a null set.

DEFINITION. A function ¢(x) will be said to fulfil the condition (G)
on a set E, if for each compact set C and each number ¢>0 there exists
an open set DDOC such that |p[EN(D\C)]| <e.

In this definition we may clearly replace the existence of the set D
by that of an elementary figure Z whose interior contains C and which
fulfils the inequality |p[EN(Z\C)]|<e.

In the present paper, use will be made here and there of a few funda-
mental properties of analytic sets. All of them are contained, for instance,
in §35 of Kuratowski [5]. As a rule, we shall employ them without
quoting them from the literature.

THEOREM 1. Let a function ¢(x) be continuous on an analytic set A,
subject to the condition (F) on this set, and such that |p[A]|<+4oco. Then
the function necessarily fulfils the condition (G) on A.

PROOF. With each number & we associate two infinite sequences of
closed intervals, <[, I,, ----> and <K, K,, - --->, which are defined by

(= W, (P Y|

The intervals I, are non-overlapping, while ¢(x) fulfils the condition
(F) on A. Hence the upper limit of the sequence <p[ANI,]; neN> is a
null set. But this upper limit contains all, except perhaps one, of the
points of the limit of the descending sequence <(p[ANK,]; n=N)>. On the
other hand, the set ¢[ANK,], which is a continuous image of an analytic
set, is measurable for every = and we have |p[ANK,]|=|p[A]l<+co.
Consequently lim|p[ANK,]|=0. We shall write K,=K,(§) in the sequel.

This being so, let C be any compact set. We shall prove that there
exists for each ¢>0 a figure Z containing C in its interior and satisfying
the relation [p[AN(Z\C)]|<e. As easily seen, C is expressible as the
limit of a descending infinite sequence, say Z,DZ,D----, of figures each of
which contains C in its interior (see p. 8 of [2] for the proof). Now con-
sider any open interval U=(p, q) disjoint with C. From what we have
just proved, it follows that



Dec. 1987 On Two Theorems of the Nina Bary Type 35
lim [g[ANKa(p)]| =0 and lim [o[ANK.(@)]|=0.

But if we keep an integer m >0 fixed, then for large »n the set UnZ, is
contained in the union Kn(p)JKn(g). Accordingly lim|e[ANUNZ,]|=0.
This implies the more general result that if 4 is the union of any finite
number of open intervals none of which intersects the set C, then neces-
sarily lim |p[AN4dNZ,]]=0.

Choosing an open interval IDZ,, let us write D=I\C, so that D isan
open set. If D has at most a finite number of component intervals, then
the result obtained just now, in combination with the evident relation
DNZ,=(INCYNZ,=Z,\C, shows that the figure Z=27,, where n is suf-
ficiently large, conforms to the requirement. We may therefore assume,
in the sequel, that the open set D has an infinity of component intervals.

Let us arrange all the components of D in a distinct infinite sequence
{Jy s -++>. If we replace here the open interval J, by its closure for
each n, we obtain a non-overlapping infinite sequence of closed intervals.
But the function ¢(x) fulfils the condition (F) on A. Thus the sequence
<plANJ,]> has a null set for its upper limit. This fact implies the rela-
tion lim|p[ANR,]|=0, where we write R,=J,;\IJ,,\J---- for brevity.
Hence there corresponds to each number >0 an integer k>0 such that
lolANR,]| <. Keeping ¢ and k fixed and noting that

ZNC=(INCINZ,=DNZ,=(UNZn)\J (RN Z1)
for ne N, where U,=J,\J--.-UJ,, we find that, for every =,
ANZNCO)SANUNZ) VY (ANRY),
|p[ANZNON<|e[ANUinZ,]l 436 .

But U, is a bounded open set disjoint with C and having exactly k com-
ponent intervals. Consequently, by that has already been proved, there is
an index m such that |[ANU:NZ,]|<d. We thus obtain the appraisal
lolAN(Z,\C)]| <206, which completes the proof since ¢ is arbitrary.

REMARKS. (i) A scrutiny into the above proof shows that every
function ¢(x) which is monotone (namely nondecreasing or non-increasing)
on a set £ and subject to the condition |p[E]| <+ co, fulfils the condition
(G) on E. Such a function, although not always continuous on FE, neces-
sarily fulfils the condition (F') on E, as we find easily.

(ii) On the other hand, the hypothesis [¢[A]] <+ oco is not superfluous
for the validity of the theorem. To see this, consider the function ¢(x)
which vanishes for =0 and equals z7! for x=0. If A is the set of the
real numbers =0, then ¢(x) is continuous on A. Further, ¢(x) fulfils the
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condition (F) on A4, as this function is biunique on A. In the case where
C={0}, however, |o[AN(D\C)]| is infinite for any open set DDC, so that
¢(x) cannot fulfil the condition (G) on A.

THEOREM 2. If ¢(x) 18 a function which is continuous on an analytic

set A, then we have |p[A]l=suple[Q]l, where Q 1is a generic compact set
contained wn A.

PROOF. Let J! denote the set of all the irrational numbers of the
unit interval I=[0,1]. We shall begin with the following particular case
of the assertion: If (f) is a function which is, on the set J7, both con-
tinuous and bounded, then for each number &<|¢[Jl]| the set JI contains
a compact set C such that |[V[C]|=&.

To establish this proposition, it is convenient to preface the following.
Consider any set MCJ! and any rational number » of the interval L
Writing M,=M\(r—n"Y, r+n"!) for each neN, we find at once that
M,CcM,Z---- and that M is the limit of this ascending sequence. It fol-
lows that y[M,JC¥[M,])C---- and that this latter sequence converges to
v[M]. Hence we have |V [M]|=lim|y[M,]]. This result will be used as a
lemma in the sequel.

Let us arrange all the rational numbers of the interval I in a distinct
infinite sequence {7y, 7y, ---->. Given any number &<|{[J7]|, we can easily
construct by induction an infinite sequence of open intervals, <H, H,, «--->,
such that for every n we have both

rneH, and |V[ITIN\S,]|>&, -where S,=H\...-UH,.

In fact, if the first k intervals H, ----, H, have already been determined
so as to fulfil this condition for n=k, then writing r=7r,,, and M=TI\S,
in the above lemma, we find the existence of an open interval H,,, con-
taining 7,.; and such that

WISl = [V [MNHyn ][> €.

On the other hand, the choice of H, is similar and simpler.

Now JIN\S, is a Borel set and hence [JI\S,] must be a measurable
set, for every m. But ¥[JI\S,] clearly descends for increasing n. We
have moreover |V[TINS.]|Z|¢[T]| for every =, where |¢[J7]] is finite
since ¥[J7] is a bounded set. Thus

Hm | P[TINS, | =11, where L=1im [JI\S.].

It is obvious that |L|=&.
Let us write S=1im S,=H,\VH,\J---- and C=JI\.S, so that the set S
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is open and contains all the numbers »,. Then C=I\S, and consequently
C is a compact set. We shall go on to show further that ¥[C] coincides
with the set L introduced just now. We need only verify the inclusion
LC{[C], the converse inclusion being evident. Let 2 be any point of L.
Then 2 belongs to Y¥[JI\S,] for every », and so there is an infinite se-
quence of points, say <t, t, --->, such that

t,e€IINS, and A=P(t,)

for every m. This sequence, which is bounded, must contain a convergent

infinite subsequence, say <u, s, ---->. Then there is for each n an index
m=n such that u,=t,. It follows that

U €TINS, CITINS, CI\S, for each n.

On the other hand, the sequence <I\S,;neN) is descending and consists
of compact sets. The set {un, Uniy, -+ -} is therefore contained in I\S,.
Hence, if we write t,=limu,, we have t,cI\S, for every =, so that

telim (IN\S,) =IN\S=C=JI\S.

But the function v (x) is continuous on J/, and thus

Pt =lim P (u,)=lim1=21.

This implies the inclusion LC+[C], whence L=+[C].

We have thus shown that there exists for each £<|¥[Jl]| a compact
set CcJl fulfilling |V [C]|=&. However, this result still holds good with-
out assuming the boundedness of the function (¢) on the set Jl, as we
shall now go on to establish. .

Supposing merely that +(¢) is continuous on 77, let V,(¢t) denote for
each ne N the function [¥(t)],, where the symbol [x], means z, n, —n
according as |x|=<n, x>n, < —n respectively. Since [z], is a continuous
function of z, the function +,(¢) is continuous on J.. On the other hand,
writing E, for the set of the points t=J] at which [V(¢t)|<n, we find at
once that E\CFE,C---- and that J/ is the limit of this ascending sequence.
Then |[Y[J7]|=lim|v[E,]| and hence, if £<|y[J1]], there is a k such that
[Vv[E,]|>&  This, together with [V, [J7]|=]|Vv.[E.]|=]|V[E.]], shows that
[V [Tl >&. The function +r,(¢) being continuous on J7 and satisfying
[P (t)| =k for any ¢, we can apply to () what has already been proved.
The set J7 thus contains a compact set C such that [¥.[C]|=¢&. But

[T S WA [CA B + [ [CNEl
where |¥,[C\E.]|=0 since |V,(t)]=Fk for tIJI\E,. Hence
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W [Cl = 1 [CNE] =V [CNE] = [V [C]].

Combining the above results we conclude that |[[C]|=¢&.

We are now in a position to deduce the theorem. Suppose given a
function ¢(x) which is continuous on an analytic set A. Assuming A4
nonvoid as we may, we choose a function f(¢) which is continuous on JI-
and which maps Jl onto A. Then the composite function Y (t)=¢of(t) is
continuous on JI. Hence there exists for each &<|¥[J1]] a compact set
CcJl such that |¥[Cl|=&. On the other hand, writing K=f[C], we
evidently have V[Cl=¢of[C]=¢[K], so that |o[K]|=&. But the set K is
compact, being a continuous image of a compact set. This completes the
proof of the theorem, since |p[All=|@of[T1]|=|¥[T1]|.

REMARK. The theorem will cease to hold, if the set A is merely as-
sumed to be measurable. This will incidentally be verified later on by a
function constructed in the Example just after the proof of Theorem 35.

THEOREM 3. If a function is continuwous over a compact set Q, then
this set mecessarily contains a Borel set on which the function assumes
exactly once each value that the function assumes on Q.

This proposition is slightly preciser than Lemma (7.1) on p. 282 of
Saks [6]; but the proof is word for word the same as in that lemma.

PREFATORY REMARKS. In §5 of [4], the fluctuation E(p;M) of a
function ¢(x) on a set M was defined in the case in which M is a Borel
set and ¢(x) is continuous on M. The definition can, however, be extended
to the case where M is an analytic set, ¢(x) being still continuous on M.
This will now be set forth briefly.

As in [4], let us denote by N(y;¢;E) the multiplicity (perhaps -+ o)
of a real number y with respect to a function ¢(x) and a set . Regarded
as a function of %, this multiplicity will be called multiplicity function
associated with ¢(x) and E.

A partition of a set is defined in the same way as in [4]. A partition
will be called analytic, if all its constituents are analytic sets. We shall
deal exclusively with countable partitions, without explicitly mentioning
so. If ¢(x) is a function and & a partition of a set E, the quantity
O(y; ¢;©) is defined, as in [4], for each number y by the formula

Oy; ¢;9) :)‘E@c (y; o[ X)) .

Theorem 15 of [4] is now extensible to the following form, the proof
remaining quite the same: ‘Given any function ¢(x) which is continuous
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on an analytic set A, let & be a generic analytic partition of A. Then
both O(y;¢;&) and N(y;¢;A) are nonnegative measurable functions of y
and we have

Zlelxl—\ Nwip;dy  as a@—0.

This integral will be written E(¢;A) and called ﬂuctuation of the func-
tion ¢(x) over A.
There holds further the following extension of Theorem 16 of [4]. If
a function ¢(x) is continuous on an analytic set A and if S is any
analytic partition of A, we have the additivity relation
E(p; A)= 2 B(p; X).

Xee

In the sequel we shall make free use of the above results, without
being at the trouble of quoting them from these remarks.

The following simple fact will also be useful sometimes. Given a
Junction ¢(x) which 1is continuous on an analytic set A, let D be any
open set and Q any closed set. Then both ANe '[D] and Ane [Q] are
analytic sets. Indeed, the function ¢(x) being continuous on A, each point
x of the set L=A¢ '[D] is contained in an open interval I(x) such that
ANnI(xz)C L. Accordingly, denoting by U the union of all the I(x), where
2 ranges over L, we obviously have L=ANU. Then L must be analytic
as the intersection of two analytic sets. Again, if @ is a closed set and
if we write D=R\Q, then D is open and so the set L=ANo [D] is ex-
pressible in the form L=ANU, where U is an open set. It follows that

ANe T QI=ANL=ANANU)=AN(R\U),

which shows that AN '[Q] is analytic. This terminates the prefatory
remarks.

DEFINITION. Generalizing the condition (T, of Banach which refers
to an interval (see p. 277 of Saks [6]), we shall say that a function fulfils
the condition (T,) on a set E, if almost every one of its values on E is
assumed by the function at most a finite number of times on this set.

A function which is monotone on a set E, is a typical example of
such a function. It is obvious that every function which filfils the condi-
tion (T) on a set, fulfils the condition (F) on this set. But we do not
know if the converse of this assertion is true. The converse does hold,
however, in the case where the underlying set is analytic and where the
function is continuous on this set, as we shall now establish.
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THEOREM 4. FEwvery function ¢(x) which is continuous on an analytic
set A and subject to the condition (F') on this set, fulfils the condition (T,)
on A.

PROOF. Supposing, if possible, that the function ¢(z) of the theorem
does not fulfil the condition (T,) on the set A, we shall derive a contra-
diction. Let Y be the set of all the values of ¢(x) each of which is as-
sumed by ¢(x) infinitely often on A, namely the set of the numbers 7
such that N(p;p;4)=+oc. The set ¥ must be measurable, since the
multiplicity function N(y;¢;A) is measurable. But we have [Y]|>0 by
hypothesis. Consequently Y contains a compact set S of positive measure.
The function ¢(x) being continuous on A, the points x of A such that
p(x) =S, together form an analytic set, say M, and we evidently have
o[M]=S. Moreover, ¢(x) fulfils the condition (F) on M.

Let ¢ be any positive number <37'|S|, kept fixed in the sequel. We
shall associate with each n= N a compact set C,CM and a figure Z,, so
as to fulfil the following three conditions:

(1) The function ¢(x) is biunique on the set C, and the image ¢[C,]
has measure [p[C,]|>|S|—3¢>0.

(2) The interior of the figure Z, contains C, and we have the in-
equality [o[MN(Z,\C,)]I <2 ™.

(3) The sequence {Z,, Z,, ----> is disjoint.

We shall proceed by induction. The function ¢(x) is continuous on M,
which is an analytic set. Hence, by Theorem 2, there exists in M a com-
pact set K such that [p[K]|>|S|—s. By Theorem 3, the set K contains a
Borel set B, on which ¢(x) assumes each value y= ¢[K] exactly once. Us-
ing Theorem 2 once more, we can further choose in B, a compact set C,
such that |¢[Ci]|>|e[B]|—e=|¢[C]|—e>|S|—2¢. The function ¢(x) is
plainly biunique on C,. Moreover, noting that the set p[M]=S is bounded,
we find by Theorem 1 that ¢(x) fulfils the condition (G) on M. Con-
sequently, there is a figure Z, whose interior contains C, and which fulfils
the inequality |o[MN(Z\C)]|<27%. The choice of the set C, and the
figure Z; is thus complete.

This being so, let k=N and suppose that two sequences <C,, ----, Co>
and <Z, :----, Z,> have been constructed in such a manner that the three
conditions (1), (2), and C,C M are satisfied for every n=1, ----, k and that
the latter sequence is disjoint. Writing now

C:CIU""UCk, Z:ZIU""UZk, and X:Z\C

for brevity, we find immediately that
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AMAXT=| U oIMAZNC)] = 3 [oIMA(ZNC <e.

Further, each value y belonging to the set SN\¢[MNX] is assumed by
¢(x) infinitely often on the set M \X. On the other hand, such a value y
is assumed by ¢(x) at most k times on C, and hence infinitely often on
the set (MN\X)\C=M\Z. Consequently it follows that ¢o[M \Z] contains
the set SN\¢[MNX] and therefore that

lp[MNZ]| =z SN\ MNX]| =S| =p[MNX]| >|S|—e.

We now argue as in the above choice of C;, and Z,. The set M\ Z,
which is analytic, contains a compact set @ such that

lo[@Q)] > |p[M\Z]| —e>|S| —2¢.

The set @ then contains a Borel set B,,, on which the function ¢(z) as-
sumes each value y< ¢[Q] exactly once. In this set B,,; we can further
choose a compact set C,,; such that

le[Crrdl| > @[ Byia]l —e=|p[Q]| —e> S| =3¢

The function ¢(x) is plainly biunique on the set Cpy. Moreover, there is
a figure Z,,, whose interior contains C,., and which fulfils the inequality
loIM N (Z s \Cii)]]| <27% . Since C,.,CQCM\Z, we may require that
Zs1 1s disjoint with the figure Z. This completes the inductive construc-
tion of the two sequences <C,; neN) and <{Z,; ncN).

Now the figure Z, is nonvoid for every =, since

lo[Z ]| = | o[C,l] > |S]—8¢>0.

Thus the set Z,\VZ,\J-.-. is partitionable into a disjoint infinite sequence
of closed intervals, say <, L, ---->. If we write R,=1,JI,,,\J---- for
short, then o[MNR,]=o[MNL]Y o[MNI, ]\ -+ -+ for every n. Hence the
limit of the descending sequence <{p[MNR,]; n=N) is the upper limit, say
U, of the sequence <p[MNI,]; neN)>. But U must be a null set, since
the function ¢(x) fulfils the condition (F) on M. Moreover, the sets
o[MNR,] are measurable and the set ¢[M]=S is bounded. We thus have

lignlsD[MmRn]l:Hign elMNR,]|=|U|=0.
On the other hand, there certainly corresponds to each » an index p>0
such that Z,CR,. It follows that
lo[MNER] = olMNZ,]| =z | o[ MNCpll = ¢[Cpll > S| —3e

for every m, whence we get lim|o[MNR,]|=]S|—8¢>0. This contradicts
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what we stated above, and the theorem is thus established.

THEOREM 5. FEwvery function 6(t) which is absolutely continuous on a
set W of finite measure, fulfils the condition (T,) on this set and maps W
onto a set of finite measure.

PROOF. Since every function which is AC on a set is uniformly con-
tinuous on this set, we may assume without loss of generality that the
function #(¢) is continuous on the closure S of the set W. It follows that
6(t) is AC on the whole set S. Plainly we need only consider the case in
which S contains at least two points.

Let L(t) be the linear modification of the function 6(t) with respect
to the set S. This means that L(t)=6(t) unless ¢ belongs to an open
interval contiguous to S, and further that L(¢) is linear on each closed
interval contiguous to S. Consider any closed interval I pertaining to S
(that is, with its end points belonging to S). Then L(t) is AC on I by
Theorem 15 of [1], and hence BV on I. Thus the Banach Theorem (6.4)
on p. 280 of Saks [6] shows that the function L(¢) fulfils the condition (T,)
on the interval I and a fortior: that the function 4(¢) fulfils the same
condition on the set SNI.

On the other hand, since #(f) is AC on S, there corresponds to each
e>0 a number 0>0 such that for every non-overlapping infinite sequence
(K, K,, +-+-> of closed intervals, the inequality

||+ K| +---- <8  implies [8[SNK]+10[SNEK,]|+ -+ <e.

Indeed, to each n for which we have |#[SNK,]| >0, there obviously corre-
sponds a closed interval L, pertaining to the set SNK, and fulfilling the
inequality |0[SNK,]|=<16(L,)|. The numbers ¢ and 6 will be kept fixed in
the sequel.

Since W is measurable and |W]| is finite, there exists a closed interval
I, pertaining to S and such that |W\J,|<d. We can enclose the set
WX\, in a nonvoid open set D disjoint with I, and such that |D|<é. It
is obvious that WN\JI,=WnND. Expressing the set D as the union of a
non-overlapping infinite sequence <K, K,, ----> of closed intervals, we thus
have the relation

DLW NI =10LW Al =| Y oTW K]

é%lﬂ[WmKdl.

This, together with the above choice of 4, implies that

0[N\l éZn)iﬁ[Sr\Kn]( <e.
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But 4(¢t) fulfils the condition (T,) on SnI, by what was stated above, and
hence this function does so too on W1, Therefore, if E denotes the set
of the values of A(¢) each of which is assumed by 6(f) infinitely often on
W, we must have |E|<e. This implies |E|=0, since ¢ is arbitrary. We
conclude that the function 4(¢) fulfils the condition (T,) on W.

The set W is measurable and therefore expressible in the form W=
QUT, where @ is a sigma-compact set and 7 a null set. Then the set
0[Q], being a continuous image of @, is also sigma-compact. On the other
hand, the image 4[7] is null, since every function which is AC on a set
fulfils the condition (N) on this set (see the top of p. 225 of Saks [6]). It
follows that #[W] is a measurable set.

It remains to verify that |#[W]| is finite. Let I, be the same closed
interval as above. By what has already been proved we have

LW = 10LWANLI +0IWN\L]| S 0[WNL]| +e.

But the function 6(¢), which is AC on W, is bounded on the bounded set
WL W, so that |]WNI,)| <4 co. This completes the proof.

NOTATION. Let ¢(x) be a function and E a set. By means of the
multiplicity function N(y;¢;FE) we define a function P(y;¢;E) for yeR,
as follows. P(y;¢;E) is equal to 1/N(y;¢;E) for yeo[E], and to 1 for
all other numbers y. Thus 0=P(y;¢;E)=1.

Suppose that a function ¢(x) is continuous on an analytic set A, and
write for short f(y)=P(y;¢;A). The function N(y;¢;A) being measurable
as already remarked, we see that f(y) is a measurable function. We have
further 0=f(y)=<1. Thus f(y) has an indefinite integral, say F'(y). It is
obvious that F'(y) is continuous and nondecreasing. Moreover, as f(y) is
bounded, F(y) is AC on the real line and hence maps every measurable
set onto a measurable set.

If we assume further that the function ¢(x) fulfils the condition (T))
on the set A, then N(y;¢;A)<+oo, or equivalently f(y)>0, for almost
every y. In this case, therefore, F(y) is an increasing function, and hence
we can consider the inverse mapping of F(y). The range of F(y), namely
the image F[R], is clearly an interval which is an open set, and the do-
main of the inverse mapping coincides with this interwval.

The above properties of the function F(y) will be used freely without
any quotation hereafter.

THEOREM 6. Given a function ¢(x) which ts continuous on an analytic
set A and subject to the condition (T,) on this set, let F(y) be an indef-
wnite Lebesgue integral of the function fly)=P(y;¢;A) and let us write
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Y(x)=Fop(x) for xR, so that the function V(x) is continuous over the
set A.

Then we have E(V;M)=<|p[M]| for every analytic set MCA, where
E(Y; M) denotes as before the fluctuation of the function Y(x) over the
set M.

PROOF. Let E, denote for n=N the set of the points y at which
N(y;¢; M)=mn, so that E, is a measurable set. If we write
E=E\E\J-.. ) S:SIUSZU ) EooZQD[M]\E; Sm—'—1#[M]\S,
where S, denotes for n= N the measurable set F[FE,], then E. is plainly
a null set and so is also the set S.. In fact, we have
Se=(Foo[M)\F[E]=F[E.]

on account of the biuniqueness of F(y), and this implies the nullity of S.
since F(y) is AC on the real line and since |F.|=0.
Now the function f(y) is estimated for y= K, as follows:
1 1 1
=P(y;0;4)= = =
F=PW:0: 0= (y0,4) =Nro M)~

On the other hand, we have F'(y)=S(y) at almost every y. Therefore, if
D, denotes for neN the set of the points yeE, at which F'(y)=f(y),
then E,\D, is a null set and D, is measurable. Using again the absolute
continuity of the function F'(y) on the real line, we see that the difference
F[E,\F[D,], which is contained in F[E,\D,], must be null. It follows,
in virtue of Theorem (6.5) on p. 227 of Saks [6], that

ISul=|FE,]|=|F[Ds)l =n7*| Dy =n""|Ey] .

To each point ¢ of S, there corresponds a point y of E, such that
t=F(y). We then have N(t;Vv; M)=N(y;¢;M)=n. As to the fluctuation
E(y; M) we thus conclude that

B0 M)={ N(t;¥; ) dt= SIS, S SIE,|=[elM]],
which completes the proof.

THEOREM 7. In order that a function ¢(x) which 1is continuous on
an analytic set A, be expressible on A in the form ¢(x)=~0oY(x), where
the function Y(x) is continuous on A and has finite fluctuation Z(y;A),
and where the function 6(t) is absolutely continuous on the set Y[A), it is
necessary and sufficient that the function ¢(x) fulfil on A the condition
(T) and the condition |@[A]]<+ oo,
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PROOF. (i) Necessity. Let E(¥) be the set of the numbers ¢ such
that N(¢;¢;A)=-+oo. Then E(y) is null, i.e. the function Y (x) fulfils the
condition (T,) on the set A4, since we have

S+MN(t;«Ir;A)dt::(wp;A)<+oo.

~ 00

On the other hand, if we write W for the analytic set Y [A], the function
6(t) is AC on W. But plainly E(y)C W, and it follows that [#[E(¥)]|=0.

Since |W|=[¥[A]l|<E(Yr;A)<+ oo, the function 6(t) fulfils the condi-
tion (Ty) on W by Theorem 5. Therefore, denoting by L(F) the set of
the numbers y such that N(y;8; W)=+ oo, we have |L(8)]|=0.

Now each value that is assumed infinitely often on A by the function
@(x) =00V (x), plainly belongs to the union L(6)JE[E()], which is a null
set by what we have already proved. The function ¢(x) thus fulfils the
condition (T,) on the set A.

Finally Theorem 5 shows that |¢[A]|=]|0oy[A]|=|0[W]] <+ oo, which
completes the necessity proof.

(ii) Sufficiency. Given a function ¢(x) which is continuous on an
analytic set A and subject on this set to both the conditions (T, and
[p[A]l <+ oo, let F(y) be a Lebesgue indefinite integral of the function
Sy)=P(y;¢;A), and let us write Y (x)=Fo¢(x) for x=R. The function
Y(x) is evidently continuous on the set A4, and Theorem 6 shows that
E(W; A)<|p[A]]. It follows that E(yr;A) is finite.

We know that the function F'(y) is increasing and AC on the real
line. The range of F'(y) is also R, since f(y)=1 unless y belongs to the
measurable set ¢[A] of finite measure. Thus the inverse function 6(¢) of
the function t=F(y) is increasing and continuous on R, and we have the
relation ¢(x)=60oy(xz) for x<= R since Y (x)=Fop(x).

Let us show that the function #4(t) is AC on R. For this purpose,
let H, denote for ne N the set of the points y=¢[A] at which f(y)<n ™.
Then H, is measurable and we have |H,|<¢[A]|<-+oo. Further the limit,
say H, of the descending sequence H,DH,D---- is the set of the points
yee[A] at which f(y)=0, that is to say, N(y;¢;A)=+oco. But the func-
tion ¢(x) fulfils the condition (T,) on A. We thus have |H|=0, and it
follows that lim|H,|=|H|=0. Hence, given a p>0, there exists an index
k such that [H,<p. Now consider an arbitrary figure Z and write for
short Y=0[Z], so that Y is also a figure and we have Z=F[Y]. Then

1Z1=1F1Y1I=\ f@)dyzk [ YNHI > (Y=o,

and thus the inequality |Z|<k™p implies |Y|<2p. The function 6(¢) is
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therefore AC on the real line, and this completes the sufficiency proof.

REMARK. The present theorem, although a generalization of Theorem
(a) of the Introduction on account of the Banach Theorem (6.4) on p. 280
of Saks [6], is unsatisfactory in that the underlying set is not general,
but restricted to an analytic set. It appears to us, however, that such a
restriction is inherent in the theorem itself and hence inevitable. In fact,
we find it difficult to think out a usable definition of the fluctuation of
a function on a set E, if we go outside the case where £ is an analytic
set and where the function is continuous on E.

§ 2. Extension of Theorem (a) by means of condition (U).

For each set M we shall denote by [JM the intersection of all the
closed connected sets that contain M. In other words, [J[M means the
smallest closed connected set containing M. Thus [JM is either void, or
singletonic, or else an interval which is a closed set (but which need not
be a closed interwval).

DEFINITION. A function ¢(x) will be said to fulfil the condition (U)
on a set K, if for each non-overlapping sequence <I,;n=N) of closed
intervals, the upper limit of the sequence <([le[ENI,]; ne N> is null

It is obvious that for any function which is continuous on an interval
I, the condition (U) on this interval is equivalent to the condition (F) on
I and hence to the condition (T)) on I.

DEFINITION. Given a function ¢(x), a set E, and a family I (perhaps
void) of sets, we shall denote by Iim([J¢;E; M) the set of all the numbers
y for each of which there exists in M an infinity of sets X such that
yelle[ENnX]. This set will be called upper limit of [Je[ENX], where X
ranges over WM. In the special case in which M is a finite family, this
upper limit reduces to the void set.

As we find at once, a function ¢(x) fulfils the condition (U) on a set
E if, and only if, the upper limit Iim (J¢;E; M) is a null set for every
non-overlapping family IMM of closed intervals.

THEOREM 8. FEwery function ¢(x) which s subject to the condition (U)
on a set E and continuous on the closure S of E, fulfils the condition (U)

on the whole set S.

PROOF. We shall show that |Iim (J¢;S;M)|=0 whenever M is a non-
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overlapping family of closed intervals. We may plainly suppose that each
interval of the family M intersects S. Let M, be the family of all the
intervals K such that SNK is a singletonic set. Noting that every
non-overlapping family of intervals is countable, we find that the union
of M, has a countable set as its intersection with the set S. Then this
intersection is mapped by the function ¢(x) onto a countable set. Hence
we may assume that the family M, is void, or in other words, that every
interval of M contains at least two points of S. Then we may assume
further that every K< pertains to S, namely has its end points belong-
ing to S.

Let us now introduce a temporary concept in reference to the set E.
By an admaissible interval we shall understand any closed interval J which
pertains to the closure of the set EnJ. Such an interval clearly pertains
to the set S.

As we find without difficulty, any closed interval pertaining to S is
expressible as the union of at most three non-overlapping closed intervals
each of which is either admissible or contiguous to the closed set S (the
two alternatives may occur simultaneously). We now replace each interval
KeM by at most three intervals of this description. We thus obtain
from M a new non-overlapping family of closed intervals, which will be
denoted by 9.

If an interval K of the family I is expressed as the union of a finite
non-overlapping sequence, say <K ----,K,>, of closed intervals each of
which is either admissible or contiguous to the set S, then

Oe[SNKI=0e[SNK IV - - - V[o[SNK,],

as we find easily on noting that all the intervals K, K, ----, K, pertain
to S. From this relation it follows at once that

im (J¢;S; M)=1im (D¢; S; N) .

Let M, be the family of all the admissible intervals belonging to M, and
let us write 9L,=90\N,. Then obviously

im (Oe;S; W =Tim ([Je;S; NI Viim (Je;S; Ny) .

The nullity of Iim ({J¢;S; M) is thus reduced to the same property of the
two sets Iim (Jo;S;N,), where 1=1, 2.

Given a function Y (xz), a set 7, and a figure Z, let I be a generic
component interval of Z. We write by definition

00 T;Z)ZKIJD\HTNI] and - d(v; T;Z):Zjd(ﬂ/‘[Tf\I]) ,
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where d(X) denotes the diameter of X for any set X, so that d(X)=+
if the set X is not bounded. It is obvious that |J(V;T;2)|=d(¥;T;2Z).
In the particular case in which the figure Z is void, the set J(¥;T;Z) is
void and the number d(yr;T;Z) vanishes.

In order to ascertain |Iim (J¢;S;M)|=0, we may assume N, to be an
infinite family. Then the intervals of N, can be arranged in an infinite
non-overlapping sequence, say <@, &, ---->. Now the function ¢(z) is con-
tinuous on S. Hence, given any ¢>0, there exists an infinite sequence of
closed intervals pertaining to the set F, say <H,, H,, ---->, such that

H,cQ, and d(¢:;S;Q.0H, <2 "

for every m, where the reader is referred to p. 59 of Saks [6] for the
symbol ©. From the obvious equality

UelSNQ.]=UelSNH,]Ul(e; S; Q.0 H,)
it follows immediately that

im (J¢;S; M) =Im Je[SNQ,]
=lmJe[SNH,]UIIm [((p;S; Q.OH,) .

But the interval H, pertains to £, and so the set SN\H, is the closure of
ENH, Hence ¢[SnH,] is the closure of ¢[ENH,], the function ¢(x) be-
ing continuous on S. We thus have (Je[SNH,]=[¢[ENH,]. Furthermore,
¢(x) fulfils the condition (U) on E. Consequently

=0.

lim[Je[SNH,]

im[Je[ENH,]

On the other hand, we find at once that

i (03 53 QuOH)| 2| U Ligs S; QO )

éZﬂ)lD(@;S;Qn@Hn)Iég d(e;S; Q:0H,) .
Combining the above results, we deduce that

Him (J¢;S; )| = +

lim Qe[S H,]

Iim (93 S5 QOH,)

=3 d(¢;S;R.OCH)< 2 "e=c¢.

Since ¢ is arbitrary, we obtain |Iim (J¢;S;%N,)| =0, as desired.

It remains to show the nullity of 1lim (J¢;S;%,). For this purpose, we
may assume the family %, infinite. The intervals of M, then can be ar-
ranged in a non-overlapping infinite sequence, say <[, I, ---->. By defini-
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tion of N,, every I, is a closed interval contiguous to the set S.

Given any ¢>0, we shall temporarily understand by an e-suttable pair
any couple of non-overlapping finite sequences of closed intervals, say
Cy, ++++,Cp and <Ly, +---, Ly, of equal length k>0, such that

(1y C,cL,, C,eMN, and L, pertains to K for n=1,----,k;
(2) we have 3 d(p;S;L.OC,)<e.

Let us show that if <C, ----,Cy> and <L, ----, L,> form an e-suitable
pair and if every interval of the family 9, is contained in the union
L,\J-...UL, (and hence in one of the intervals L, ----, L,), then we neces-
sarily have the inclusion

T (09355 R © U (9383 LOC,)
so that |lim ((J¢;S; %) <e on account of the relation
k k
nEzll[l(GD;S;Ln@Cn)lénzz)ld(SD;S;Ln@Cn)<e-

The above inclusion may be verified as follows. Let 7 be any point
of the set Iim ([J¢;S;9,). Then there is an infinity of values of % such
that p=Je[SNI,]. It is now convenient to introduce a nonce wording in
reference to the pair <C, ----,Cw», <Ly, -+, L;,>. Any pair <n,1> of posi-
tive integers, where 1<k, will be termed »-admissible, if we have both

I,cL; and pelelSNIL].

Plainly there exists for each » an infinity of 7-admissible pairs. We can
therefore choose an p-admissible pair <r,s> such that I,=C,. Then I, does
not overlap C; and hence we have I,CL©OC,. Accordingly I, is contained
in a component, say I, of the figure L,©C,. We thus have

pelelSNIL]COelSNIIC(¢;S; LCy),

whence the announced inclusion.

It follows from the above that if there exists for every ¢>0 an e-
suitable pair <C,, ---+,Cw, {Ly, +--+, Ly with L,\J----\UL, containing the
union of M, then necessarily |lim (J¢;S;%)|=0. We may hence assume in
the sequel that this hypothesis does not take place. We then can choose
an ¢>0 such that whenever 0<e<e, there is no e-suitable pair of the
mentioned description.

Now suppose given a positive number ¢<<e,. We shall construct two
infinite sequences of closed intervals, <Cy, C,, ----> and <Ly, Ls, -+ -->, such
that for every k=N the partial sequences <C, ----,Cy and {Ly ----, Ly
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together constitute an s-suitable pair.

We arranged the intervals of the family 9% in an infinite sequence
Ay I, - +>. Writing now I,=[a,, b.] for ne N, we put Ci=I,=[a, b}, so
that C, is contiguous to the set S. We then set L,=[p, ¢,], where p, and
q: are determined as follows. If a,=FE, we simply choose p;=a,. In the
opposite case, a; must be an accumulation point from the left for E, and
this fact, together with the continuity of the function ¢(x) on S, shows
that E contains a point p,<a, fulfilling d(¢;S;[p, a.])<27'. By symme-
try, we choose the point ¢, in a similar way. We find at once that <Cp
and <L,> constitute an e-suitable pair.

We now proceed by induction. Suppose that for a k=N we have an
e-suitable pair <C, ----,Cy, <Ly, +---, Ly of length k. As e<e, there is
an interval I,,&M, which is contained in none of the intervals L, --:-, L;.
We may assume that m is the smallest integer with this property. We
then choose as C,,; this interval I,=[an, b,], so that C,,, is contiguous to
S and does not overlap the union A=L,U----UL, This being so, we
define the interval L, =[Pu+1, Qss1] as follows. If a,€E, we simply take
Pra1=0n. In the opposite case, a, is an exterior point of the figure A and
at the same time an accumulation point from the left for E. Hence E
contains a point p,.;<a, such that the interval [p..;, a»] does not inter-
sect A and further that '

d(e;S; [Pe+1, anl) <8, where 26=e¢— é_ld(go_;S;Ln@Cn)>0 .

By symmetry, we choose the point ¢, in a similar way. It follows at
once that the pair <Cy, ----, Cis>, <Ly, -+, Lp, is e-suitable.

We have thus constructed two infinite sequences <C, C,, ----> and
{Ly, Ly, --++» such that the sequences <C, ----,C»> and <L -+--, Ly
together form an e-suitable pair for every k< N.

We shall show that each interval of W, is contained in one of the
intervals L,, L,, ----. For this purpose, suppose if possible that there is
an interval I, for which this does not take place. We then have g>1,
since we chose C,=1I,. Let k be the largest of the integers n>0 such that

all the intervals C,, ----, C, appear before I, in the sequence <Ij, I ---->.
Remembering the choice of the interval C,.;=1I, and noting that none of
the intervals L, ----, L, contains I,, we find at once that m=<g. But we

cannot have m <g, since this would be incompatible with the above choice
of the integer k. Consequently g=m, and hence I,=C,,,C L;.,, which con-
tradicts the choice of I,. This shows that each interval of 3, is contained
in one of L, Ly, +---.

Let us establish for <C,, C,, «---> and <Ly, L,, ----)> the inclusion
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(Fm Dol LN (T DelSNCT) = Ul S LOC

Suppose that a point 7 belongs to the left-hand side of this relation. We
then have y<[o[SNI,] for an infinity of values of m, while the relation
nele[SNC;] holds for at most a finite number of values of 7. Now a
pair <{n, > of positive integers will be called 7-permissible, if there hold
I,CL; and y<[Jp[SNI,]. Using this notion in place of the »-admissibility,
the argument proceeds quite as before. Thus there is an infinity of -
permissible pairs, while there is at most a finite number of »-permissible
pairs <{n, 4> for which I,=C;. Accordingly we can choose an »-permissible
pair <{r,s> such that I.=C,. Then, as before, we have successively

LCLOC, and pelelSNLICDp;S; LEC),

whence the desired inclusion.

Now, since each interval L, pertains to E and since ¢(x) is continuous
on S, the relation [Jp[SNL,]=[¢[ENL,] is verified in the same way as
the previous one [Jo[SNH,]=[e[ENH,]. It follows immediately that

limJe[SNC]1CTim Je[SNL,]=limJe[ENL,].

In this relation, the last upper limit, and hence also the first, must be
null since the function ¢(x) fulfils the condition (U) on E. Combining this
fact with what has already been proved, we find that

T (s S; 9| = g}uw;s;Ln@cn)

lim [Je[SNI,]
=X d(go;S;Ln@Cn)zlikm %d(@;S;Ln@Cn)ge.
n ns

Since the number e is arbitrary so long as 0<e<e, we conclude that
[lim (J¢;S; M) =0, as required. This completes the proof.

THEOREM 9. Suppose that a function f(v) is (i) continuous on the
closure S of a set L, (ii) subject to the condition (U) on L, and (iii) linear
on every closed interval K contiguous to S. Then f(v) fulfils the condi-
tion (T,) on the set [JS=[]L.

PROOF. On account of the hypothesis and Theorem 8, the function
S () fulfils the condition (U), and a fortior: the condition (F), on the set
S. It follows from Theorem 4 that f(v) fulfils the condition (Ty) on S.
We also find that if & denotes the family of all the closed intervals K
contiguous to S, the set Iim ([Jf;S; &) is null. Now a number g belongs to
this upper limit if, and only if, there exists an infinity of intervals K e
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such that ¢=[Jf[SNK]. But we have f[K]=[f[SNK] for every K, since
the function f(v) is linear on K. Accordingly the numbers ¢ for each of
which there is an infinity of intervals K< & such that gef[K], together
constitute a null set. It follows that f(v) fulfils the condition (T,) on the
union [8] of the family £ We conclude that f(v) fulfils the same
condition on the set [JS=SU[&], where we clearly have [JS=[L. This
completes the proof.

THEOREM 10. A fumnction ¢(x) which is bounded on o set E and which
fulfils the condition (U) on E, necessarily has a finite right-hand limit
oz(c+) [or left-hand limit ¢gr(c—)] relative to the set E at every point ¢
which 18 a right-hand [or left-hand] accumulation point of K.

Furthermore, there can exist at most a countable infinity of bilateral
accumulation points p of E at which oz(p+)>ez(p—).

REMARK. We have the same conclusions as above for any function
¢(x) which is BV on the set E. This well-known fact will, alongside of
the present theorem, be made use of in the proof of the first main theorem.

PROOF. To establish the first half of the assertion, we may confine
ourselves to the existence of the right-hand limit. Suppose that ¢ is an
accumulation point from the right for E. Let us extract from E an
arbitrary decreasing sequence of points, say ¢;>¢,>--+-, which converges
to the point ¢, so that ¢,>c¢ for each n. If we write A={c, ¢, ---+} and
I.=[¢ns1, ¢,] for ne N, the sequence <I;, I, ----> is non-overlapping and we
can write

IimJe[ANIL,]=NM,, where Mn=kU[]go[Af\[k].

As we verify without difficulty, each set M, is either a finite interval or
a singletonic set. We have moreover M, DM,D----, while by hypothesis
the function ¢(x) fulfils the condition (U) on E, and hence on 4. Accord-
ingly we find that

liman{:|Iim M,

|,

limJe[ANI,]=0.

But the set M, clearly contains the points ¢(c,), ¢(cnsr), - --. Accordingly
the sequence {¢(c,); n=N) converges. On the other hand, the sequence
¢ >e,> -+ was arbitrary so long as lime,=c¢ and ¢, FE for every n.
Thus the limit ¢z(c+) exists and is finite.

We pass on to the second half of the assertion. Let S be the set of
the bilateral accumulation points p of E at which ¢z(p+)>¢gz(p—). Then
S is the union of the sequence <(S,;n<N), where S, denotes the set of



Dec. 1987 On Two Theorems of the Nina Bary Type 53

the points peS such that |pz(p+)—¢e(p—)|>n"". It therefore suffices to
prove that the set S, is countable for every n. But this will follow at
once if we show that S, is an isolated set. For this purpose, consider any
point p of S,. The existence of the unilateral limits ¢z(p+) and ¢z(p—)
necessitates that the point p has a neighbourhood (p—d,p+4d) in which
there is exactly one point of S,, namely the point p itself. It follows
that every point of S, is an isolated point of this set. The proof is thus
complete.

DEFINITION. Given a function ¢(z), a set E, and a point p< R, take
any 6>0 and consider the oscillation O(p;M)=d(¢[M]), where M is short
for the set EN(p—a,p+438). When 6—0, this oscillation tends monotonely
towards a limit (finite or infinite), which will be written o(p;¢;E) and
called oscillation of the function ¢(x) on the set E at the point p.

This notion generalizes the oscillation oz(¢;p) introduced on p. 42 of
Saks [6]. In fact, og(¢;p) is considered only when pe< E, whereas we put
no such restriction on the definition of the quantity o(p;¢;F).

Making the point p vary arbitrarily, we obtain a function o(x;¢;E)
which is defined on the whole real line. Plainly, this function vanishes at
every point exterior to the set E and at every point of E at which ¢(x)
is continuous on K. We have 0=<o(x;¢; )< + oco.

DEFINITION. A function ¢(x) will be termed fully continuous on a
set E, if we have o(x;¢; E)=0 identically for every x< R.

This is certainly the case when ¢(x) is uniformly continuous on E;
but the converse is clearly false. On the other hand, it is easy to prove
the following proposition.

THEOREM 11. Let ¢(x) be a function and X a set. In order that
there should exist a function which coincides with ¢(x) on X and which is
continuous on the closure of X, it s mecessary and sufficient that the
SJunction ¢(x) be fully continuous on X.

THEOREM 12. Swuppose that a function w(x) is increasing on a set K
and that for each set XCE the image w[X] is bounded or mot, according
as X 18 bounded or mnot, respectively. Then a function g(v) fulfils the
condition (U) on the set P=w|lE], if and only if the composite function
h(x)=gew(x) fulfils the same condition on K.

PROOF. It clearly suffices to ascertain that if a function g(v) fulfils
the condition (U) on the set P, then so does also the function A(x) on
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the set E.

For this purpose, let M be any non-overlapping family of closed inter-
vals. We are to show that the set Iim (Jh;E; M) is null. As easily seen,
we may assume that for every interval I the set ENI contains at
least two points.

Noting that for each I the image w[ENI] is, together with ENI,
bounded and contains at least two points, we associate with [ the closed
interval J=[w[ENI]. Then the correspondence [/—J is biunique, and we
clearly have the inclusion

MENI]=gow[ENI]Cg[PNJ],
whence [JA[ENIIC[Jg[PNJ]. Consequently it follows that
lim (JA; E; M) Clim (Jg; P; N ,
where 9t is the family of all the intervals J. But it is obvious that the
family 9 is non-overlapping. We thus have successively
[lim (Jg; P;MW)|=0 and |lim (Oh;E; M)[=0.

This completes the proof.

THEOREM 13. In order that a function ¢(x) which s continuous on
an wmierval I be BV on this interval, it is mecessary and sufficient that
the function have finite fluctuation on I. When this is the case, we have
E(p; )=V (p;1), where V denotes the weak variation.

PROOF. The Banach Theorem (6.4) on p. 280 of Saks [6] shows that
E(p; K)=W(¢p;K) for every closed interval KCI, where W denotes the
absolute variation. But we have the relations

E(@;I)=sgp3(go;K) and V(@;I):SI;D Wi(p; K),

of which the latter one is obvious and the former an immediate con-
sequence of Theorem 16 of [4]. Hence E(p;I)=V(p;I).

We are now in a position to establish the following proposition which
generalizes Theorem (a) of the Introduction.

THEOREM 14 (first main theorem). In order that a function ()
which 18 continuous on a set K, be expressible on this set wn the composite
Jorm @(x)=00y(x), where the inner function (x) is both continuous and
BV on the set E and where the outer function 6 is AC on the set [E],
it 15 necessary ond sufficitent that the function ¢(x) be bounded on E and
Sulfil the condition (U) on this set.
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PROOF. (i) Necessity. Suppose that a function ¢(x) is continuous
on a set E and expressible on this set in the composite form ¢(x)=@0oy(2),
as specified in the theorem. Let M be the set of all the points xR at
which o(x;vy;F)*0. By hypothesis, the function +(x) is continuous and
BV on E. Consequently a point x belongs to M if, and only if, F has «
as a bilateral accumulation point which does not belong to K and at which
vr(@+)¥vg(x—). It follows that M is a countable set. Indeed, if a finite
sequence of points x,<-:---<x, is contained in M, then we plainly have

z (@) — Ve —) | < V(g B) < +o0

so that for each ¢>0 the number of the points = M subject to the con-
dition |yg(x+)—vz(x—)|=¢, cannot exceed ¢ '-V(y;E). Hence the result.

This being so, let p be a generic point of M. We can clearly associate
with each p a number &(p)>0 in such a manner that X &(p)<-+co, where
p ranges over M and where the sum vanishes when M is void. Let us
now define an increasing function w(x) by

w(x)=x-+ .§ &(p) for x=R.
p<lx

As we readily see, this function is everywhere continuous from the left
and exactly has M as the set of its points of discontinuity. As to the
saltus of w(x), we have w(x+)—w(x)=E&(x) for x= M. We observe further
that |I|<w(l) for every closed interval I

Let us write 2(x)=[w(x), o(x+)] for z= R, so that 2(x) means the
closed interval [w(x), w(x)+&(x)] for x=M and the singletonic set {w(z)}
for every other x. Then the family I of all the sets 2(x) is clearly dis-
joint. We assert that the union [IM] of this family is the whole real line.
To prove this, suppose if possible that there is a number y not belonging
to [M]. Noting that each set £2(x) is contained in one of the intervals
(—oo,7) and (7, +o0), we define two sets P and @ by the conditions

xeP if Q(x)C(—oco,7), re@ if Q@)CT(y, +o0).

The pair <(P,@> is then a Dedekind cut of the real line, as easily seen,
and therefore either P contains a greatest element ¢, or else Q contains a
least element [. If the first alternative takes place, we have

w(g+)e2(g)C(—o,7), so that w(g+)<r.

Hence there is a number h>g such that w(h+)<y. It follows that heP
and therefore that hA<g, which contradicts ~2>g¢g. Similarly the second
alternative leads to a contradiction. We thus conclude that [It]=R.

Now the inverse function, x=w"'(v), of the function v=w(x) is defined
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on the set w[R] and maps this set increasingly and continuously onto R,
the continuity being obvious from the inequality [I|<w(l) already stated.
For convenience we extend the definition of the function w™'(v) to the
whole R, determining w !(v) arbitrarily for v outside w[R].

We shall show that the function Yocw™'(v) is fully continuous on the
set w[FE]. For this purpose, suppose if possible that there is a point v, at
which o(vy;Yow™; w[E])>=0. Then v, belongs to the closure of w[E] and
hence to that of w[R\M]. But the complement of w[R\ M] is the union
of the intervals 2(p) for pe M, since [M]=R as established above. Con-
sequently, either vy w[ R\ M], or else there is a point p,= M such that v,
is an end point of the interval Q(p)=[w(p,), o(p,+)]. If the first alter-
native takes place, then the point ¢,=w™*(v,) belongs to R\ M and hence
0(qo;Vv; E)=0. But this contradicts o(v,;Vow™;w[E])*0, since the function
o(x) is increasing and bicontinuous on RN\ M. Hence we must have the
second alternative, and so there exists a point p,eM such that either
vo=w(p,) or else vo=w(p,+). This fact, together with o(py;y;E)=0 and
o(po;V; E,)=0, where we write '

EIZEﬂ(—OO, po) and EZZEm(pO) +OO)7

leads at once to o(v,;yocw™'; w[E])=0, which contradicts the assumption.

The full continuity of the function Yoew™'(v) on w[E], thus established,
implies by Theorem 11 the existence of a function y(v) which is continu-
ous on the closure S of w[E] and which coincides on w[E] with Yow !(v).
We may plainly assume that the function y(v) is continuous on the set
(S and linear on every closed interval contiguous to S. It is then easily
seen that '

V08 =V ()= Voo™ o[ E)=V(y; B) < + 00

We have moreover y[0S1Cy[S]=0vycw cw[E]=0y[E]

By hypothesis the function ¢ is AC on [E], which is a bounded set
since V(yr; E)<+oco. Hence this function is bounded on +[E], and con-
sequently the function ¢(x)=8@°y(x) is bounded on E. On the other hand,
the function 6, which is uniformly, and hence fully, continuous on +[E],
may be assumed continuous on the closure of [E]. It follows that this
function is AC on this closure. Theorem 15 of [1] then allows us to sup-
pose finally that the function # is AC on [Jy[E], and hence on its subset
¢S] also.

The function x(v), which is BV and continuous on [IS, has finite fluc-
tuation E(y;[JS) by Theorem 13 and thus fulfils the condition (T,) on [IS.
Hence the set A(y) of the values assumed by the function x(v) infinitely
often on [IS, must be null. Again, the function 4 is AC on the bounded



Dec. 1987 On Two Theorems of the Nina Bary Type 57

connected set y[[IS] and so fulfils the condition (T,) on this set by Theorem
5. The set B(d) of the values assumed by the function ¢ infinitely often
on the set y[[IS], is therefore null. The absolute continuity of & on y[[JS]
shows further that |§[A(y)]|=0. Now each value assumed infinitely often
on [JS by the function foy(v) clearly belongs to the union B(6)\UG[A(y)].
We thus see that the set of these wvalues is null, i.e. that this function
fulfils the condition (T;) on [JS.

By a remark which was made just after the definition of the condi-
tion (U), the function foy(v) fulfils the condition (U) on [S, and a fortior:
on its subset w[E]. Now the function «(x) is increasing and maps each
set X onto a bounded set or not, according as X is bounded or not. Theo-
rem 12 then shows that the function foyow(x) fulfils the condition (U) on
E. But the function y(v) was so chosen as to coincide with rcw™(v) on
the set w[E]. Hence we have foyow(x)=0oy(x)=¢(x) for x<E, and this
completes the necessity proof.

(ii) Sufficiency. We shall only outline the argument, since it re-
sembles that of part (i).

Suppose that on a set E a function ¢(x) is continuous, bounded, and
subject to the condition (U). Let M be the set of the points zeR at
which o(x;¢;E)=0. By Theorem 10, a point « belongs to M if, and only
if, x is a bilateral accumlation point of E without belonging to E and
without fulfilling ¢g(x+)=¢e(x—). It follows from the same theorem
that M is a countable set.

We can associate with each point peM a number &(p)>0 in such a
manner that 2&(p)< +co. We now define an increasing function w(x) by

o(x)=x+ Z<)$(p) for xteR.
<

This function is everywhere continuous from the left and M is the set of
its points of discontinuity. As we find at once, |I|=<w(I) for every closed
interval I and w(x+)=w(x)+&(x) for x=M. Further, if for xR we
write Q(x)=[w(z), w(x+)], the sets 2(x) are mutually disjoint and their
union is the real line.

The inverse function, x=w"'(v), of the function v=w(x) is defined on
the set w[R] and maps this set increasingly and continuously onto R, the
continuity being immediate from |I|=Zw(I) just mentioned. In the same
way as in part (i), we extend the definition of the function » '(v) to the
whole R. It can be shown that the function ¢ocw™'(v) is fully continuous
on the set w[£]. This implies the existence of a function y(v) which is
continuous on the closure S of w[FE] and which coincides on w[E] with
pow '(v). The function y(v) may be assumed continuous on [JS and linear
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on every closed interval contiguous to S. Then y(v) must be bounded on
(IS, since ¢(x) is bounded on E. We thus have [y[[IS]|<+oco. The function
yew(x), which coincides with ¢(x) on E, fulfils the condition (U) on E.
The function y(v) therefore fulfils the same condition on w[£] in virtue of
Theorem 12. If follows from Theorem 9 that y(v) fulfils the condition (T))
on the set [[S=[w[E].

The above results, together with Theorem 7, shows that the function
x(v) is expressible on [JS in the form y(v)=#6cp(v), where the function p(v)
is continuous on [JS and has finite fluctuation E(p; [IS), and where the func-
tion ¢ is AC on p[[IS]. Then p(v) must be BV on [JS on account of Theo-
rem 13. The function V(x)=pow(x), which is clearly continuous on E, is
thus BV on E. But

p(x)=ycw(x) =0 pow(x) =G\ (x)

for x = FE, and we have {[E]=pcw[E]Cp[[IS]. Hence the function ¢ is AC
on [E]. This completes the proof.

REMARKS. (i) The interval I underlying Theorem (a) of the Intro-
duction is restricted to a closed one. However, a simple argument (inclu-
sive of a change of the independent variable x) shows that the theorem
is true for every underlying interval, it being assumed that the function
o(x) is bounded on this interval. Utilization of this extended Theorem
(a) enables us to avoid the recourse to Theorem 7 in the above proof.

(ii) The condition (U) is generally more restrictive than the condition
(F), when the underlying set is not an interval. This may be seen by the
following example.

Let I=[0,1]. As shown on p. 224 of Saks [6], there exist a function
¢o(x) and a compact set C with [J[C=I, such that ¢(x) is continuous on the
real line, vanishes on C, and has no derivative (finite or infinite) at any
point of C. Then the function (x)=¢(x)+2 can possess no derivative at
any point of C, while plainly [¢[C]|=|C|>0. It follows from Theorem
(6.2) on p. 278 of Saks [6] that (x) does not fulfil the condition (T;) on
the interval I. By Theorem 4, this implies that «(x) fails to fulfil the
condition (F) on I.

This being so, consider any countable set E with I for its closure.
Then every function, and in particular the function +(x), fulfils the con-
dition (F) on E. However, v (x) cannot fulfil the condition (U) on E. In
fact, this function would otherwise be subject on the whole interval I to
the condition (U) in virtue of Theorem 8, and a fortiori to the condition
(F"), contradicting what was stated above.
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§3. Extension of Theorem (b) by means of condition (W).

Given a function ¢(x), a set E, and a countable (perhaps void) family
M of sets, let X be a generic set belonging to M. We denote by |M| the
outer measure of the union [IMM] and we write further

Ue; ;W)=Y lplENX],  dlg; E; M= dlp[ENX]).

It is obvious that |[J(¢;&;I)|<d(p; E;M). When M is in particular the
family of the components of a figure Z, we plainly have

Ule; E; M) =[(¢p; E;Z) and dle;E;M)=d(e;E;2Z),

where the right-hand sides were defined previously.

DEFINITION. A function ¢(x) will be said to fulfil the condition (W)
on a set K, if there corresponds to each ¢>0 a number >0 such that for
every non-overlapping family 9 of closed intervals, the inequality || <é
implies |D(¢;E;SJE)]<5.

When this is the case, the function ¢(x) is uniformly continuous on E.

In the above definition, we may assume the family M to be finite. In
fact, each countable family & of sets is the union of an ascending infinite
sequence &,CR,C---- of finite subfamilies of & The limit of the ascend-
ing sequence <([I(¢;E;&.,); ne N> is the set [(¢;E;®), and accordingly it
follows that '

[O(e; E; @)l=lignll](so;E; ).

Thus, if |[J(e;E;8R,)]<e for every m, we have |[J(¢;E;8®)|<e. Hence the
result.

DEFINITION. We shall say that a function ¢(x) fulfils the unrestricted
condition (S) on a set E, if there corresponds to each ¢>0 a number 6>0
such that for every set XCFE the inequality |X|<é implies |p[X]|<e.

It we restrict here the set XCFE to a measurable one, we obtain the
definition of the condition (S) on . The two conditions are equivalent in
the case where E is itself a measurable set, as shown on p. 11 of [4].

THEOREM 15. Ewery function ¢(x) which fulfils the condition (W) on
a set E, fulfils the unrestricted condition (S) on this set.

The converse of this assertion also holds good, provided that the set K
s an wnterval I and the function ¢(x) is continuous on I.



60 K. ISEKI NSR. 0.U., Vol. 38

PROOF. (i) Suppose that a function ¢(x) fulfils the condition (W) on a
set E. Given any >0, let § be the positive number that appears in the
definition of the condition (W).

Let us show that [p[X]|<e for every set XCFE with outer measure
|X|<d8. Clearly X is coverable by a non-overlapping family of closed
intervals, say M, such that [M|<s. It follows that

sD[X]‘:\IJso[Xf\I]C\IJso[EﬂI]CD(go;E; m),

where [ ranges over the family M. Then |p[X]|<|(p;E; M)| <e, which
establishes the first half of the assertion.

(ii) Suppose that a function ¢(x) is continuous on an interval I and
fulfils the unrestricted condition (S) on this interval. Then there corre-
sponds to each ¢>0 a number >0 such that for every set XTI the ine-
quality |X|<d implies |p[X]|<e.

Consider now any non-overlapping family M of closed intervals. We
shall prove that |[[J(¢p;l;M)|<e whenever [M|<s. Let K be a generic
interval of M. Then INK is a connected set, and hence so is also the set
o[INK] in virtue of the continuity of ¢(x) on I. It follows that ¢[INK]
can differ from the set [Jo[INK] at most by two points. Furthermore,
DelINK]=¢[INK] if INK is compact. Thus we have [Jo[INK]xep{INK]
only when INK is not compact. But it is evident that this last condition
is fulfilled by at most two of the intervals K. Consequently, writing for
short M=[], we see that the difference [J(¢;I; M)\ ¢[INM] is a finite
set, so that |[J(¢;[; M)|=|e[INM]]. If now |M|=|M|<4, then |[INM|<é
and hence [p[INM]|<e. We thus find that, as desired,

I0(e;I; M) <e  whenever |IM|<5.

The function ¢(x) therefore fulfils the condition (W) on I

REMARK. The continuity of the function ¢(x) on the interval I is not
a superfluous hypothesis in the converse part of the theorem. To see this,
we need only consider the case in which ¢(%) is null on I (i.e. maps I
onto a null set) without being continuous on I. It is obvious that such
a function always fulfils the unrestricted condition (S) on I without fulfil-
ling the condition (W) on this interval.

THEOREM 16. Ewvery function ¢(x) which is subject to the condition
(W) on a set E and continuous on the closure Q of E, fulfils the condition
(W) on the whole set Q.
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PROOF. The following argument consists in reducing the assertion to
two inequalities. The deduction of the first one of them, being quite
similar to that of [iim ((¢;S;9){=0 in the proof for Theorem 8, will be
stated concisely.

Given any ¢>0, let 6 be the number which appears in the definition
of the condition (W), and suppose that a non-overlapping finite family W
of closed intervals fulfils |M|<o6. The theorem will be established if we
show that |[J(¢;Q;M)|<Be. We may assume that every interval of M
pertains to Q.

As in the proof of Theorem 8, we introduce the temporary notion of
an admissible interval (with respect to E). A closed interval I will be
called admissible, if I pertains to the closure of the set ENI. Then any
interval J of MM is expressible as the union of at most three closed inter-
vals non-overlapping and each of which is either admissible or contiguous
to the set Q. If we replace each J=IN by these intervals, there results a
new non-overlapping finite family, say 3, of closed intervals. We find at
once that

[M[=[N| and [(p;Q; M =0(e;Q; M) .

Let M, be the family of the admissible intervals belongmg to N, and let
us write 9,=I"N,.. Then obviously

D(e;Q; N =0(¢;Q; N U(e;Q; M) ,
and hence it suffices to prove that
I0(p;@; M) <2 and |[e;Q; )| <e.

Both M, and N, are finite together with MN.
Let us arrange the intervals of the family I, in a distinct sequence

dy, +-++, Iy, assuming m>0 as we may. These intervals are admissible
by definition of M,, and the function ¢(x) is continuous on @ by hypothesis.
We can therefore attach to each n=1,----,m a closed interval K,CI,

pertaining to E and such that d(¢;Q;I,2K,)<m . We then have
Hol@NL]=le[@NK,]Ullp;Q; ,OK,),
|Ue; @; LK) =d(p; Q; I,OK,) <m s

We find moreover that [Jo[Q@NK,]=0¢e[ENK,] and || < |Nj=|M|<o. It
thus follows successively that

e;Q; N =[(p; E; N)U yﬂ(go;Q;In@Kn) ,

[He; Q; )| < H](so;E;%)H?lﬂ(@;Q;ln@Kn)l <2.
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It remains to show that |[J(¢;Q; )| <e. Assuming N, nonvoid as we may,
let us now arrange all the intervals of ¥, in a distinct sequence, say
{H, --++,Hy. These intervals are contiguous to @ by definition of ..
On the other hand, we have |9%]|<d. Consequently for each n=1,.----,k
we can enclose the interval H, in a closed interval L, pertaining to the
set E, in such a way that <L, ----, L,> is a non-overlapping sequence ful-
filling the inequality |IL,|+:---+]|L,/<d. We then find successively the
relations

Hoel@NH]COe[@NL,]={e[ENL,] for each n,
O(p;Q; Ne)= knJDSD[QﬂHn]C \#D@[EﬂLn]=D(§0;E; 2,

where & denotes the family of the intervals L, ----, L,. But we have
|| <4, and it follows finally that

I0(e; @; ) < 10(p; E; Q)| <e,

which completes the proof of the theorem.

DEFINITION. A function ¢(x) will be said to fulfil the condition (R)
on a set E, if there corresponds to each ¢>0 a number 6>0 such that for
every compact set C with |C|<J, the closure of the image ¢[ENC] has
measure <e.

THEOREM 17. Let ¢(x) be a function which s continuous over the
closure Q of a set E. In order that the function fulfil the condition (R)
on E, it 1s necessary and sufficient that ¢(x) fulfil the condition (S) on Q.

PROOF. (i) Necessity. Supposing ¢(x) to fulfil the condition (R) on
E let ¢ and § mean the same numbers as in the above definition. We
shall show that |p[M]|<e for each set MCQ with [M|<d. The set M is
coverable by an infinite sequence of open intervals, say <, I, ---->, such
that ||+ |L|+----<d8. Let C, denote for n= N the closure of the open
set D,=I,J----UIl,. We then have

lolEND,]1=]e[ENC,]|<e for every n,

since the set C=I,U----UI, is compact and has measure |C,|<4.

This being so, consider the set MND,CQ, keeping n fixed for the
moment. Since @ is the closure of E, each point p of MND, is expres-
sible as the limit of an infinite point sequence chosen from the set
E, say {py, Ds ---+>. But p belongs to the open set D,, so that we may
assume this sequence contained in the set FND,. It follows that
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¢o(p)=lim ¢(p;) € p[END,].

Hence ¢[MND,]Co[END,], which together with |@[END,]|<e yields the
inequality |o[MND,]| <e.

The index n, kept fixed hitherto, will now be made to vary. The se-
quence <MND,:neN) is ascending and has M for its limit, since

lim (MND,))=MNlim D,=M"NIL\JL\J----)=M.

The ascending sequence <p[MND,]; neN) must therefore tend to the set
o[M]. On the the other hand, we have |[p[MND,]|<e as already shown.
It thus follows, as desired, that |p[M]|=lim|p[MND,]|<e.

We observe that the continuity of ¢(x) on @ was not used in the
above argument.

(ii) Sufficiency. Supposing ¢(x) continuous on @ and to fulfil the
condition (S) on @, let us show that it fulfils the condition (R) on E.
There corresponds to each ¢>0 a number 6>0 such that for every set
McCQ, the condition [M|<d implies |¢[M]|<e. Now consider any compact
set C with |C]<¢ and write T=QNC. Since TCQ and |T|<|C|<4d, we
have |p[T']|<e. But T is a compact set, and the function ¢(x) is con-
tinuous on Q. The image ¢[7'] is therefore compact. This, together with
the inclusion EC(Q, shows that

P[ENCIColQNCl=o[T]=¢[T].
It follows that |[ENC]|<|¢[T]|<e, which completes the proof.

We are now ready to generalize Theorem (b) of the Introduction to
the following proposition.

THEOREM 18. Let E be a set such that [JE s a closed interval. In
order that a function ¢(x) be AC superposable on E, each of the following
three properties of ¢(x) 1s necessary and sufficient.

(1) The function ¢(x) coincides on E with a function which s con-
tinuwous on [JE and which fulfils the conditions (S) on [E;

(2) the function o(x) fulfils the condition (W) on E;

(8) the function ¢(x) is uniformly continuous on E and fulfils both
the conditions (R) and (U) on this set.

PROOF. Let us write I=[FE for short.

(i) Property (1) is necessary and sufficient. The sufficiency of
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(1) being immediate from Theorem (b), we need only show its necessity.
Let ¢(x) be a function which admits on the set E an AC superposition
¢(x)=0°y(x). Then the function +(x), which is AC on E, is uniformly
continuous on E. Hence we may, without loss of generality, assume ()
continuous on the closure @ of E and linear on every closed interval con-
tiguous to Q. Then +(x) is AC on @ and so, by Theorem 15 of [1], AC
on the whole interval I.

Quite similarly the function &, which is AC on the bounded set [E],
may be supposed AC on the set [Jy[E].

Now +[I] coincides with [JV[Q], since +(x) is linear on every closed
interval contiguous to @. On the other hand, the set [Q] evidently coin-
cides with the closure of [E] and is therefore situated in [Jv[E]. Thus

we have the relation [I|=0v[Q]Cv[E], whence we get [I]=[v[E]
since plainly v [E]Cv[Q]. It follows that the function ¢ is AC on [I].

Then the function fovyr(x) is continuous on I and, by Theorem (b), fulfils
the condition (S) on I. This establishes the necessity of (1).

(ii) Property (1) implies property (2). Let ¢(x) be a function
which has property (1). Without loss of generality we may assume ¢(x)
itself to be continuous on I and subject to the condition (S) on this inter-
val, so that ¢(x) fulfils the unrestricted condition (S) on I. On account of
Theorem 15, the function ¢(x) then fulfils the condition (W) on I, and a
fortiori on the subset E of I. This establishes the implication (1)=(2).

(iii) Property (2) implies property (3). Let ¢(x) be a function
which fulfils the condition (W) on the set E. Then ¢(x) is uniformly con-
tinuous on E. Thus we may assume ¢(x) continuous on the closure @ of
E. It ensues from Theorem 16 that ¢(x) fulfils the condition (W) on the
whole set Q. Then ¢(x) fulfils the condition (S) on @ on account of Theo-
rem 15. This, together with Theorem 17, shows that ¢(x) fulfils the
condition (R) on E.

It remains to verify that ¢(x) fulfils the condition (U) on E. There
corresponds to each ¢>0 a number >0 such that for any non-overlapping
family M of closed intervals, we have |[[(¢; E; M)|<e whenever |M|<4.
Consider an arbitrary non-overlapping infinite sequence of closed inter-
vals, say <K, K, +--->. We are to show that the set

@ HelENK,]= QiynDSD[EmKi] '

is null. For this purpose, we may clearly confine ourselves to the case in
which ENK, is nonvoid for every n. Replacing, if necessary, the interval
K, by the closed interval K,N[a—1,b+1], where we write JE=[a, b], we
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may assume that K,C[a—1,b+1] for every n. Now denote by M, the
family of the intervals K,,;, K4 *-+-. Then

i;{zDQD[Em[(i] =[p; E; M,),

~and we have |M,|=|Kpu|+|Kpi|+----<d for sufficiently large p on ac-
count of |K,|+|K,|+ - --<b—a+2. Choosing such a p we get

limJe[ENK,]

<| Y Dol BN K =106 B M) <e.

Since ¢ is arbitrary, this implies that |limJe[ENK,]|=0.

(iv) Property (3) implies property (1). The function ¢(x), which
is uniformly continuous on E, may be assumed continuous on the closure
Q of E and linear on every closed interval contiguous to Q. It follows
from Theorem 9 that ¢(x) fulfils the condition (T,) on the set JQ, which
coincides with the interval I=[]FE.

Now ¢(x) is subject on E to the condition (R) and hence, by Theorem
17, fulfils the condition (S) on Q. Consequently it only remains to show
that ¢(x) fulfils the condition (S) on the open set D=I\@Q, or equivalently,
that ¢(x) fulfils on D both the conditions (T,) and (N). Indeed, the equiv-
alence is ensured by Theorem 17 of [4]. But ¢(x) is linear on every
component interval of D and hence evidently fulfils the condition (N) on
D. On the other hand, ¢(x) fulfils the condition (T;) on I, as already
verified, and a forttori on D. This completes the proof of the implica-
tion (3)=(1).

THEOREM 19. Supposing that ¢(x) is an arbitrary function and E an
arbitrary set, resume the properties (1), (2), and (3) of Theorem 18 and
consider the 1mplications

1=(@2), @)=1), 1)=(3), B)=1), @2)=3), B)=(2).
Of these the first one is true, but the others are false.

PROOF. Concerning (1)=(2). Part (ii) of the proof ofvthe foregoing
theorem holds good, as it stands, for any function ¢(x) and any set E,
irrespective as to whether the set I=[F is a closed interval or not.

Concerning (2)=(1). Let us specialize E to the set of the integers,
so that [JE is the real line. The function ¢(x)=2x* clearly fulfils the con-
dition (W) on E. Now suppose, if possible, that ¢(x) has the property (1),
or in other words, that there is a continuous function f(x) which equals
x2® for integral values of x and which fulfils the condition (S) on the real
line. There then exists a number >0 such that we have |f[K]|<1 for
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every closed interval K with |K|<4d. Assuming, as we evidently may,
that §=¢ ' for an integer ¢>0, consider any interval A=[n,n+1] where
neN. Then A is the union of the ¢ intervals

A;=[n+©@—1)d, n+10], where i=1, ----, q.

The function f(x) being continuous, it follows that

|

fA)= 3 fA)< 3 IfTAN <a,

where we have f(A)=f(mn+1)—f(n)=3n*+3n-+1. Since » can vary in-
dependently of ¢, we have arrived at a contradiction.

Thus the function ¢(z) does not possess the property (1), and the im-
plication (2)=(1) has been disproved.

Concerning (1)=(3). Plainly the function ¢(x)=sinx fails to fulfil
the condition (U) on the real line. But this function fulfils the condition
(S) on R, since Theorem (6.5) on p. 227 of Saks [6] shows that for every
measurable set X we have

o[ X < SXIQD’(QC)!dx: SX|cosx|dxg1X| .

The implication (1)=(3) is thus false.

Concerning (3)=(1). Resume the function ¢(z)=2* and the set E of
all the integers. It is clear that on this set ¢(x) is uniformly continuous
and subject to both the conditions (R) and (U). Thus ¢(x) possesses the
property (3). On the other hand, this function is devoid of the property
(1), as already seen in the disproof of (2)=(1). The implication (3)=(1)
is therefore false.

Concerning (2)=(8). The function ¢(z)=sinz and the set E=R
together show at once the falseness of this implication.

Concerning (3)=(2). Let m and »n stand generically for an integer
and a positive integer, respectively, and let E be the set of the numbers
m—n"', so that £ is a countable closed set. Consider the function ¢(x)
which is linear on every closed interval contiguous to E and whose value

for x=m—n"" is determined by

om—n")=mlog2+s,,

where s,=0 and s, denotes the nth partial sum of the series

1 1 1 _
1—-§+—3‘~—Z+"" =log2.
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It is obvious that the function ¢(x) is uniquely determined on the real
line,

As readily seen, ¢(x) is uniformly continuous on R. Furthermore,
since E is a countable closed set, every function which is continuous on
E, and in particular the function ¢(x), fulfils the condition (R) on E. On
the other hand, ¢(x) fulfils the condition (T;) on the real line, since each
value assumed infinitely often by ¢(x) is clearly of the form m log2.
This, together with the continuity of ¢(x), implies that ¢(z) fulfils the
condition (U) on R. Thus the function ¢(x) has the property (3).

It remains to ascertain that ¢(x) is devoid of the property (2). For

this purpose, let us consider the interval

Ik, n)=12k—n"", 2k—(n+1)""],

where k and n are positive integers. The image ¢[I(k, n)] of this interval
is the closed interval with the end points

2klog2-+s,.;, and 2klog2+s,.
It follows at once that |¢[I(k,n)]|=n"'! and that
o[I(k,n)]C[2k log 2, 2(k+1)log 2].

We shall keep n fixed from now on. This inclusion then shows that the
intervals ¢[I(k,n)], where k ranges over N, are mutually non-overlapping.
Now let M, be the family of the n intervals I(k,n), where k=1, -+, n.
Noting that Je[ENI(k, n)]=¢[I(k,n)] for every k, we have

Dl E; %)lzl U elBATG, w1 = 5 Il m]=1.

As to the measure |0M,|, on the other hand, we find that

n 1 1\ 1
Wl = 2 mk’””‘”(%"_ n-}-l)ﬁ n+1"
The function ¢(x) thus fails to possess the property (2). Indeed, the index
n is originally arbitrary, although we have kept it fixed.

THEOREM 20. If on a set E a function ¢(x) is the superposition of
two functions of which the tnner function (x) and the outer function 6
Sfulfil the condition (W) on E and on V[ E] respectively, then the function
o(x) ttself fulfils this condition on K.

PROOF. By hypothesis, given any >0 there is a number 7»>0 such
that for every non-overlapping family 3 of closed intervals the inequality
M| <y implies [[J(@;S;N)|<e, where we write S=[E] for brevity. To
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the number 7 there corresponds, by hypothesis, a >0 such that for every
non-overlapping family M of closed intervals the relation |M| <6 implies
[O(y; E; M) <%. It is enough to show that |M|<4s implies |[o; E; M| <e,
where we may suppose MM to be a finite family.

Given M as above, let I be a generic interval of M. Then

U E; M) = \/Dso[EﬂI]= kIJD(0°\V[Eﬁl]) -

If now for an I the set [ENI] consists of at most one point, the set
0(@oy[ENTI]) clearly does so, too. We may therefore assume that y[ENI]
contains at least two points for every I. On the other hand, the function
¥ (x) is uniformly continuous on K, so that every +[ENI] is a bounded
set. It ensues that the set J=[y[ENI] is a closed interval for every I.
M being a finite family, the union of all the intervals J is a figure. We
now specialize the family 9 considered above to the family of the com-
ponent intervals of this figure. Then for each I the interval J is con-
tained in an interval K< and hence

YIENICYy[EINI=SNJCSNK.
Consequently it follows that

Olp: B; M= Y U@ [ENIC YIISNK]E;S; )

and therefore that |[(p;E; M) <|0@G;S; W)].

Since |M|<d by hypothesis and further [N]=U0W[ENI]=[(¢; E; M),
we have |W|=|0(v;FE;M)| <y, which implies that |J@;S;N)|<e. Hence
we obtain finally |[J¢;E; M)|<e, and this completes the proof.

DEFINITION. Let a« be any finite nonnegative number. We shall say
that a function ¢(x) is angular (@) relatively to o set E at a point pe R,
if there exists a number 6>0 such that we have

lo(x)—¢(p)| <alz—p| whenever x=E and |x—p|<4d.
It is worth notice that the point p itself need not belong to E.

When we are interested only in the existence of the above number a
and not in its peculiar value, we shall simply say that ¢(x) is angular at
p relatively to E. Plainly, the reference to the set E is unnecessary in
the particular case in which the point p is interior to E, so that in this
case the function will usually be called angular (a) [or angular] at p.
Finally, if for instance we say that ¢(x) is angular (a) relatively to E,
we shall mean thereby that the function is angular (a) relatively to E at
every point of E. Thus a function which is angular (a) relatively to E
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need not be angular (a) at every point of E.

THEOREM 21. If a function ¢(x) is angular (a) relatively to a set K
Jor a number a=0, we necessarily have |p[E]|<alE|, where the product
0:(+c0) means zero.

The proof may be omitted, since it runs almost the same as for the
following lemma stated on p. 226 of Saks [6]. If for a function f(x) the
mequalities fHx)<2 and S (@)=—24, where 2 is any finite nonnegative
number, hold at every point x of a set M, then |fIM}|<2|M]|.

DEFINITION. A function ¢(x) will be said to fulfil the condition (A)
on a set E, if the outer measure |¢[E(a)]| tends to 0 as a— -+ oo, where
E(a) is the set of the points of E at which the function ¢(x) fails to be
angular (a) relatively to FE.

THEOREM 22. Ewery function ¢(x) which fulfils the condition (W) on
a set K, fulfils the condition (A) on this set.

However, the converse of this assertion is false, even when the func-
tion 1s continuous on E.

PROOF. For each a=0 let E(a) denote the set of the points of E at
which the function ¢(x) fails to be angular (a) relatively to E. It is
obvious that FE(a) descends for increasing «. Hence ¢(x) fulfils the condi-
tion (A) on the set E, if and only if there is no number 7 >0 such that
|l E(a)]]| >7 for every a=0.

Supposing, if possible, that there exists such a number », we shall
derive a contradiction. Since the function ¢(x) fulfils the condition (W)
on FE, there is a number 6>0 such that for every non-overlapping family
M of closed intervals, the inequality

M| <6 implies |[(p;E;M)|<7.

The numbers » and é will be kept fixed during the proof.

Let us consider the set D=¢[E(a,)], where we write a;=20""n. We
shall construct a family & of closed intervals covering D in the Vitali
sense. Let p be any point of the set E(a,), which is nonvoid since |D]|> .
The function ¢(x) being continuous on E and not angular (a,) at p rela-
tively to E, the points & of E such that

ay|é—p|<lp@)—p@|<y

together form a set for which p is an accumulation point. For each &
let us denote by H(p, &) the closed interval with ¢(p) and ¢(&) for its end
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points. Associating with p the family &(p) of all the intervals H(p, &)
and defining & to be the union of &(p) for the points p of E(a,), we see
at once that the family & covers the set D in the Vitali sense.

‘ By Vitali’s Covering Theorem, the family & contains a disjoint sub-
family M which covers D almost entirely and whose union [Jt] therefore
has measure |N|=|D|=|p[FE(ay)]|>7. For each interval K the set E
contains two distinct points p and & such that

alE—p|<|p&)—en)|<n and K=H(p,§).

We now associate with K the closed interval with » and & for its end
points. Since N is a disjoint family and since |K|<n<|N| for every K,
we can extract from M a finite disjoint sequence of closed intervals, say
Ky, ++++, K, such that »<|K,|+----+|K,]<2yp. For each n=1,----,m
let I, be the closed interval associated with K, in the above manner, so
that aoll,| <|K,|. Writing Z=I1,U----UI,, we then have

[ ZIS L+ -+ Ll <27/a=4 .

It therefore follows from the choice of § that the set [J(¢;E;Z), namely
the union of the sets [Jo[ENL], where L is a generic component of the
figure Z, has outer measure <7. Now for each n=1, ----,m the interval
I, pertains to £ and is contained in some L, say L,, and we thus find that

K, ClelENL]CUelENL,]C(¢; E; Z) .

But the intervals Kl, -+, K,, are mutually disjoint. Accordingly

K|+ KRl S| e B Z) | <9,

which contradicts [Ki|+----+|K,|>7. This proves that ¢(x) fulfils the
condition (A) on K.

It remains to show that the condition (A) on E does not always imply
the condition (W) on E, even if the function is continuous on E. Given
a closed interval I and a countable set E whose closure is I, let ¢(x) be
any function which is continuous on I without fulfilling the condition (N)
on I. Such a function evidently fulfils the condition (A) on E. Now, if
¢(x) fulfils the condition (W) on E, then ¢(x) does so too on I by Theorem
16 and must therefore fulfil the condition (S) on I by Theorem 15. It
follows that ¢(x) fulfils the condition (N) on I, contradicting the choice
of ¢(x). Hence the result.

THEOREM 23. Given a function ¢(x) which is continuous on a Borel
set B, let B(a) denote for a=0 the set of the points of B at which the
Junction ¢(x) fails to be angular (a) relatively to B. Then B(a) is a Borel
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set and hence ¢[B(a)] is a measurable set, for every a=0.

PROOF. Keeping « fixed, let us denote for each ne N by B, the set
of the points p of B such that for every x=B we have

lo(x) — )| Salr—p] whenever |z—p|<nl.

We shall prove first that B, is a Borel set. For this purpose, it suffices
to show that every point ¢ of the set B\ B, is exterior to B,. In fact,
once this is established, then B\ B, is contained in an open set GG disjoint
with B,, so that B,, which coincides with B\ G, will turn out to be a
Borel set.

Suppose if possible that a point ¢ of B\ B, is not exterior to B,. We
then can extract from B, an infinite sequence of points, say <qy, @ - >,
which converges to ¢q. But the definition of the sets B, implies that for
every x<B and every 1€ N we have

lo(x) —p(g) | S alx—q.l whenever |z—q;|<n"'.

Now consider any point £ B such that [§—q|<n™'. Since the sequence
{q> converges to ¢, the inequality |g;—q|<n™'—|&é—¢q| holds for large
values of <. Since this inequality implies [§—q;|<n™?, it follows that
lo(€)—(q,)| < a|é—q;| for large 4. Making 71— +oo here and using the
continuity on E of the function ¢(x), we get in the limit the inequality
lp(€)—¢(q)|<alé—q|. Accordingly we have qe B,, which contradicts that
qe B\ B,. We thus find that B, is a Borel set.

By definition of the set B(a), the difference M=B\ B(a) is the set of
the points of B at which ¢(x) is angular («) relatively to B. Hence M is
the limit of the ascending sequence B,CB,C----, which consists exclu-
sively of Borel sets. Thus M is itself a Borel set, and so is also the -set
B(a)=B\_M.

THEOREM 24. Given a nnmber h>0 and a family & of closed inter-
vals, suppose that |T|<h for every disjoint subfamily T of &. Then
necessarily |S|<5h.

REMARK. To prevent any ambiguity, let us mention once more that
for each family M of linear sets we denote by || the outer measure of
the union [M] of M. In particular, if M is void, then so is [M] and we
have |M|=0.

PROOF. Given a subfamily M of &, let ¥ denote generically a dis-
joint subfamily of . Then the collection of all the families ¥ is induc-
tively ordered by family inclusion. Hence, by Zorn’s Lemma, this collec-
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tion contains a maximal family, say f(JN), namely a maximal disjoint sub-
family of M. We shall keep fixed this mapping f. The family f(R) is
evidently countable and for each interval K of 9t there exists in f(MN) an
interval which intersects K.

Let £ be a disjoint subfamily of a family BCS and suppose that for
each interval Ve there exists in £ an interval L intersecting V and
fulfilling |V|<2|L|. We shall show that |B|<5h. For this purpose, we
attach to each interval J=[a, b] of & the interval

J*=[a—2\J|, b+2]|J|]=[3a—2b, 3b—2a].

Then |J*|=5|J| and consequently the union U of all the intervals J* has
measure |U|<5|8|<5kh. In fact, the disjointness of ¥ implies |&|<Z by
hypothesis. On the other hand, if V and L have the same meanings as
above, then plainly VCL*C U. This implies [B]C U, and it follows that
|B| <5h, as desired.

This being so, let &, be for each n= N the family of all the intervals
I=& such that 2 "h<[I|<2'"""h. Then, since by hypothesis every interval
of & has length <k, we have 8=&,U&,U----. We shall associate with
each n a disjoint subfamily £, of &, by induction. Let Z,=f(&, in the
first place and suppose that the first » families &, ----, ¥, have already
been constructed. Writing T,=[Z,U----UZ,], let R, be the family of
all the intervals of &,,, each of which is disjoint with the set 7,. We
then define Z,,.,=f (Rn.1).

Since for each » the set [R,..] contains [Z,,,] and is disjoint with T,
it follows that the sequence <([Z,],[Z,), - - -+ is disjoint. Consequently, if
we write for short

B,=6,U----US, and L,=Z,U----UZ,,

then &, is a disjoint subfamily of LB,. We shall show, by induction, that
for each Ve, there exists in &, an interval L intersecting V and fulfil-
ling |V]|<2|L|. Let us denote this assertion by P,. Then P, is obvious,
since ¥,=f(&,) by definition and since we have 2'h<|I|<h for every
I=&,. Let us proceed to verify P,,, assuming P, true. For this pur-
pose, consider any interval V of 8B,,; (we need only deal with the case
where 8,., is nonvoid). Then V belongs either to B, or to &,.;, and we
may confine ourselves to the second alternative since P, is true. We now
distinguish two cases, according as V belongs to R,., or to &,, \R,,:.. In
the first case, the family f(R,.,)=%,,; must contain an interval L which
intersects V. But both L and V belong to &,.,, so that

V<2 "h=2-2"""1<2|L]| .
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In the second case, on the other hand, the interval V intersects the set
T,., and hence there exists in ¥, an interval L which intersects V. Since
Ved,,, and LeB,, we have |V|<2 "h<|L|, whence |V|<2|L|. The as-
sertion P, is thus inductively established for every n.

This result, together with what we have already proved, leads to the
inequality |%,|<5h. On the other hand, the ascending infinite sequence
[BIC[B,]J---+ has the set [S] for its limit, since &=S,US&S,U----. It
thus follows that |&|=1im |B,|<5h, which completes the proof.

NOTATION. For each function ¢(x) and each family & of linear sets,
we shall denote by ¢[R®] the image of the union [®] under the mapping
o(x). '

THEOREM 25. Given a function ¢(x) and a non-overlapping family M
of closed intervals I, suppose that this function is uniformly continuous
on [M), linear on every I, and further subject to the condition |p[I]|<h
for every I, where h 1s a positive constant. If there corresponds to each
e>0 a number >0 such that for every subfamily W of M the inequality
IN| <o implies |p[N]| <e, then the function ¢(x) necessarily fulfils the un-
restricted condition (S) on [M]. '

PROOF. For each A>0 let M(2) be the family of the intervals I
fulfilling 21| <|¢[I]|, so that for every I=M(1) the image ¢[I] is a closed
interval and we have |I|<27'h. The image ¢[M(4)] is plainly a sigma-
compact set.

By hypothesis, there is a number >0 such that for every subfamily
N of M the inequality |M|<p implies |p[N]|<h. Let us show first that
o[NM(2)] has finite measure for every 2>2p7'h. For this purpose, suppose
if possible that there exists a number a>2p7'h for which |p[M(a)]|= + oo.
If @ denotes the family of the intervals ¢[I], where I€M(a), we have
|&|=+0c0. Hence, by Theorem 24, the family & contains a disjoint sub-
family T such that |T|>h. Then ¥ clearly contains a finite subfamily &,
fulfilling |F,|>h. We may assume that, among all the finite subfamilies
of this kind, ¥, has the smallest cardinality, say m. Now let ¢[[], ----,
o[l.] be the m intervals that constitute ¥, where I, ----, I, are m dis-
tinct intervals of M(a). Then I,, ----, I, are mutually non-overlapping by
hypothesis. Since al|l|<|¢[l]|<h for every I=M(a), and since the index
m was chosen minimal, we find that

h<|Zol=lplL]|+ - - - +lolLul| <2h

and that a(|L|+----+ L) <lelldl+--- +lo[l)]<2h. Therefore, if we
write M={I, -+, I}, we have |N|=|L|+ - -+|I,|<p, which implies that
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lp[N]|<h. But o[N]=[Z,], so that |¢[N]|=|Z,|>h. This contradiction
proves that |p[M(2)]] <+ co for 2>207'h, as announced above.

This being so, let us now consider the intersection D of all the sets
e[M(2)], where 2>0. Since ¢[M(2)] descends together with M(2) for in-
creasing 1 and is a Borel set of finite measure when 1>2p7'h, we find at
once that D is also a Borel set of finite measure and that [p[I(2)]] con-
verges to |D| as A—-+oco. Let us proceed to show that D is a null set.
For this purpose, suppose the contrary true, if possible, and consider any
point p of D. Then for each 2>0 the family W(2) contains an interval
I(p) such that pse[l(p)]. On the other hand, every interval I=IM(A) has
length <17'h, while the function ¢(x) is uniformly continuous on [I] by
hypothesis. Moreover, M(2) descends for increasing 2, as already stated.
Hence, for each 1>0, the family (1) of all the intervals ¢[I], where
I=M(2), covers the set D in the Vitali sense. Accordingly, by Vitali’s
Covering Theorem, the family (1) contains for each ¢>0 a disjoint sub-
family, say &(2), which covers D almost entirely and which consists ex-
clusively of intervals of lengths less than . We notice that 1 and ¢ can
vary independently.

Now let 0<e<|D} and write §=2J"'¢, where J is the number associated
with ¢ in the theorem. Noting that |&(8)|=|D|>e¢, we take from the non-
void family &(B) a finite disjoint sequence of intervals, say <K, ----, K,
such that e<|Kj|+----+|K,<2. Since G(B)CF(B), there corresponds to
each n=1,----,¢ an interval J,=M(B) such that K,=¢[J,]. Then B|J,]|
is less than |K,| and hence we have

ol e Wl <BTH K4+ - - - + | Kal) <287%e=4 .

But the sequence <K, ----, K,> is disjoint, and consequently the sequence
{Jy -+, Jp is distinct. It thus follows from the choice of the number ¢
that |Ki|+----+|K,|=|K,\J---- UK, <e. This contradicts the choice of
(K,, ++--, K, and establishes the nullity of D.

There thus exists for each »>0 a A2>0 such that |p[M(A)]|<y. Keep-
ing » and 2 fixed, let us write for brevity

M=[M], A=[MA)], and B=M\A.

Now, by hypothesis, the family I is non-overlapping and the function
o(x) is linear on every interval of M. Hence |p[E]|<A|E| for every set
EcC U, where U denotes the union of all the intervals I such that
lo[I]|<2lI|. This fact, combined with BC U and |p[A]|<7, shows that
for every set XC M with finite | X| we have

lp[ XN =le[XNA] +|e[XNB]| <p+2|X].
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It follows that |p[X]|<27p whenever XCM and [X|<27'p. The function
o(x) therefore fulfils the unrestricted condition (S) on M.

THEOREM 26. FEwvery function ¢(x) which is AC superposable (in
particular, absolutely continuous) on a set E, fulfils the condition (W) on
this set.

PROOF. On account of Theorem 20, we may confine ourselves to the
case in which the function ¢(x) is AC on E.

As readily seen, there exists for each ¢>0 a number >0 such that
for every non-overlapping family 9 of closed intervals, the inequality
|M| <& implies d(p;E;M)<e. This, together with the obvious relation
IO(p; E; M| <d(p; E; M), shows that the function ¢(x) fulfils the condition
(W) on E.

THEOREM 27 (second main theorem). Let ¢(x) be a function and E
a set. In order that ¢(x) be AC superposable on E, it is necessary and
sufficient that the function fulfil the condition (W) on this set.

PROOF. In view of the foregoing theorem, we may restrict ourselves
to the sufficiency part of the assertion.

Suppose that the function ¢(x) fulfils the condition (W) on E. Then
¢(z) is uniformly continuous on E. We may therefore assume ¢(x) con-
tinuous on the closure @ of E and linear on every closed interval con-
tiguous to Q. Such a function must of itself be continuous on the whole
set [JQ. Since ¢(x) then fulfils the condition (W) on @ by Theorem 16,
there corresponds to each ¢>0 a number p>0 such that |¢(I)|<e for any
closed interval I with length |I|<p and pertaining to Q.

Now let C be a generic closed interval contiguous to @ and such that
p[C]I|<1. Then |p[K]|<e for every closed interval KCC with length
|K|<pe, where p is the same number as above. In fact, this is obvious
if |C|<p, since ¢(x) is linear on C; while in the opposite case the same
linearity shows that

plR)= 15 ol <2 1=,
Accordingly, denoting by M the union of all the intervals C, we obtain at
once the appraisal |p(I)|<3e for every closed interval I with |I|<pe and
pertaining to M, provided however that ¢<1. Hence ¢(x) is uniformly
continuous on M. It thus follows from Theorem 25 that the function
¢(x) fulfils the unrestricted condition (S) on M. On the other hand, this

function fulfils the same condition on @ also, in virtue of Theorem 15.
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Hence ¢(x) fulfils the unrestricted condition (S) on the union R=Q\UJM.

The set R is contained in the closed connected set [J@ and the differ-
ence [JQ\ R is the union of all the open intervals G that are contiguous
to @ and subject to the condition |p[G]|=1. We thus see that R is a
closed set and that the intervals G are no other than the open intervals
contiguous to K. Moreover, the function ¢(x) is continuous on R, since
it is so on the set [JQDR.

The condition (W) being fulfilled on @ by ¢(x), there exists a number
0,>0 such that |Je[@NI]j<1 for each closed interval I with |I|<d,. But
the compact set RNI is connected for such I. Indeed, if this is false,
there exists an open interval H which is contiguous to RNI and hence to
R. Then H must coincide with one of the intervals G considered just
now, so that H is contiguous to @ and fulfils |p[H]|=1. We then have
obviously ¢[H]C[e[@NI], whence we find |p[H]|=<|e[@NI]|<1. This
contradiction proves the connectedness of RNI. The number 4§, will be
kept fixed in the sequel.

As already shown, the function ¢(x) fulfils the unrestricted condition
(S) on the set R. Accordingly there is for each ¢>0 a positive number
0<d, such that for every non-overlapping family M of closed intervals J,
the inequality [IM|<o implies |p[RNM]|<e, where RNMWM denotes the
family of all the sets RNJ. Let us show that [J(¢;R; M)=¢p[RNIM] for
such family I with |M|<s. Every interval J=IM has length [J| << 3o,
and this, combined with what we have already proved, requires that the
compact set RNJ is connected. Then its continuous image ¢[RNJ] must
also be a compact connected set, so that [Jo[RNJ]=¢[RNJ]. We thus
have [J(¢; RB;M)=¢[RNM]. It follows that |[[(¢;R;M)|<e. Consequently
the function ¢(x) fulfils the condition (W) on the set E. Then Theorem
22 shows that ¢(x) fulfils the condition (A) on R.

For each ne N let R, be the set of the points of R at which the
function ¢(x) fails to be angular (n) relatively to R. Then R,DR,D----,
and |o[R,]| tends to zero as n—+4oco. The set D=¢[R,]Ne[R,JN---- is
therefore null. Furthermore, since R is a closed set and ¢(x) is con-
tinuous on R, we find by Theorem 23 that every ¢[R.] is a measurable
set and accordingly that so is also the set D,=¢[R,_;]\¢[R,] for every
n, where we put R,=R and where the set ¢[R,]=¢[R] is clearly sigma-

compact. The sequence <D, D,, ----> is disjoint and has ¢[R]\D for its
union.

Let us now consider the sets P=R,NR,N---- and P,=R, \ R,
where ne N, so that ¢[P] is a null set and <P, P, P, ----> is a disjoint
sequence with union K. For each point & of R\ P there thus exists an
ne N such that xeP,. Then z<R,_;, and hence, unless ¢(x) =D, there is
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an integer k=n such that ¢(x)eD,. This last fact will be used later on.

This being so, we proceed to construct a function f(y) by means of
the sets D,, as follows. Let y be any real number. We write fly)=n""
by definition, if there is an ne N for which ye D,, while we simply set
S(y)=1 if not so. Noting that the function f(y) is positive, measurable,
and bounded, we choose an indefinite integral w(y) of this function. The
function w(y) is both increasing and absolutely continuous, on the real line,
and therefore maps the real line biuniquely onto an interval, say £. Let
y=0(t) be the inverse mapping of the function ¢t=w(y), so that the domain
of 0(t) is £ and its range is the real line. Clearly 6(¢) is increasing and
continuous on £.

We shall show further that #(t) is absolutely continuous on £2. The
proof amounts to associating with each ¢>0 a number 6>0 such that for
any non-overlapping family & of closed intervals, the inequality |w[&]|<éd
implies |&|<2e. For this purpose, recalling that |[¢[R,]|—0 as n— oo,
let us choose an integer ¢>0 such that [¢[R,]|<e. If y belongs to
e[RRI\ ¢p[R,], there is a positive integer r=gq such that y=D, and hence
that f(y)=7r"'=q¢"*. On the other hand, f(y)=1=¢™' for y not belonging
to ¢[R]. We thus have f(y)=q™ unless y=¢[R,]. We now designate by
V' the complementary set of ¢[R,] and by K a generic interval of the
family &€. Writing further S=[&] for short, so that o[S]=w[S], we find
at once that

WST=2 K] =3\ Fwdy

=3\ rwa=\ rwayzeisnvl,
K SNV

KNV

whence |SNV|=<q|w[S]|. Consequently, if we put d=¢ ', the condition
lw[S]|=|w[S]| <6 necessarily implies that

S|=S|=ISNVI+ISNe[RJl=qlo[S]I+]p[R,] <2¢.

This exhibits that the mapping 6(¢t) is AC on £.

We shall proceed to verify that the composite function +(x)=wop(x)
is AC on the set R.

Since the function w(y) is an indefinite integral of f(y), there is a
null set 7' such that we have o' (y)=f(y) unless y=T. We may assume

that 7 contains the set D=¢[RN¢[R,]N---- which is null as already
mentioned. Let L be the set of the points x of R such that ¢(x)=T.
Then ¢[L] is a null set and, since the set P=R,NRE,N\---- is mapped by

o(x) into D, we have PCL. Let us now consider any point & of R\ L.
Since & belongs to the set R\ P=P,UP,U:---, there is an index n such
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that é=P,. Further, ¢(&) does not belong to the set 7' and hence neither
to D. It thus follows from what has already been stated that there is
an integer k=n for which ¢(§)eD,. Moreover, the function w(y), which
is derivable at the point n=¢(&) to the derivative o'(p)=fop)=k " '=<n},
is evidently angular (2n7') at ». On the other hand, as é€P,=R, .\ R,,
the function ¢(x) is angular (n) at & relatively to R. Accordingly, the
function y(x)=wop(x) must be angular (2) at & relatively to E.

This being so, given any non-overlapping family 9t of closed intervals
pertaining to R, write N=[%] and let I be a generic interval of . The
nullity of the set ¢[L], together with the absolute continuity of w(y) on
the real line, shows +[L] to be null (see the theorem at the top of p. 225
of Saks [6]). On the other hand, the number §,>0 already taken has the
property that, for every closed interval J with |J]|<d, the compact set
RNJ is connected. Thus every I, and hence the union N=[] itself,
is contained in R, on condition that |[N|<d, Let us assume this condition
fulfilled henceforth. Noting that (%) is continuous on R and making use
of Theorem 21, we find that

D= WU =W INL+ [y [INLI =2[INL|=2(1]

for every IeM. In point of fact, the function (x), which is angular (2)
relatively to R at all points of R\ L, is a fortiori angular (2) relatively
to IN L. It follows that, given any >0, we have

Sl =23 I1=2|N|<e if [N|<min (2 e, dy) .
I I

This establishes the absolute continuity of the function +-(x) on E.

Consider again the inverse mapping y=46(t) of the function t=w(y).
Remembering that 6(¢) is AC on the set £ as already proved, we express
¢(x) in the form ¢(x)=~0cwop(x)=0y(x) and we find that ¢(x) is AC
superposable on the set K. Then ¢(xz) is a fortior:i so on the subset E of
R, and this completes the proof.

The rest of this section will be concerned with a few supplementary
propositions on the condition (A).

THEOREM 28. Ewvery function o(x) which fulfils the condition (A) on
a set K, fulfils the unrestricted condition (S) on this set.

However, the converse of this assertion 1is false, even when the func-
tion 1s continuous on K.

PROOF. By hypothesis, there exists for any ¢>0 a number a>0 such
that [p[E(a)]|<e, where E(a) is the set of the points of E at which ¢(x)
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is not angular (a) relatively to E. If we write for short M=FE\ E(a),
the function ¢(x) is angular (a) relatively to every subset of M. Then
Theorem 21 shows that

o[ XNM]Sa| XNM| £ a|X| for every XCFE.

On the other hand, there holds |p[X\M]|Z¢[E(a)]|<e for such X, since
E(a) contains X\ M. We therefore find that

o[ XN < o[ XNMT|+ e[ X\ M]| <2¢

for every XcCFE with |X|<a ' This establishes the first half of the
theorem.

We shall go on to disprove the converse by a counter-example. Let
there be contained in a compact set @ a compact nonnull set C which dif-
fers from @ at most by a countable set. Suppose that a nonnegative
function (x) is continuous on @, vanishes identically on C, and further,
at every point of a set L C which contains almost all points of C, fails
to be angular (1) relatively to @. As a concrete example of such a func-
tion, we may quote the function F'(x) constructed on p. 224 of Saks [6].

Let us show that the function ~/4-(x) cannot be angular relatively to
@ at any point of the set L. To see this, suppose if possible that there
are to the contrary a point p<L and a number >0 such that vVy(z) is
angular (a) relatively to @ at p. By hypothesis we can extract from @
an infinite sequence of points, say <z, %, ---->, converging to the point p
and such that

|, —p| <|¥r(x:)—4(p)|  for neN.

Without loss of generality we may assume that

| V(,) — V(o) Salz,—p|  for every n.

But we must have (p)=0, since y(x) vanishes on C and hence on L. It
follows at once that, for every =,

|20 — | <A(.) < a?|lx,—p|®, whence [x,—p|>a?.

But this evidently contradicts the choice of the sequence <x, x5, - ---D.
Consider now the function w(x)=2x+ +/y(x). Since v (z) is angular
relatively to @ at no point of L, the same is true of w(x) also. On the
other hand, we have w[L]=L because w(x)=x for x=C, while |L|=|C| on
account of |C\ L|=0. Thus |o[L]|=|C|>0, and this shows that the func-
tion w(x) cannot fulfil the condition (A) on Q. Nevertheless, w(z) certainly
fulfils the unrestricted condition (S) the set on @, since w(x)=x for x=C
and since w[Q\ C] is a countable set together with Q\ C. This establishes



80 : K. ISEKI NSR. O0.U., Vol. 38

the second half of the theorem.

REMARK. As an addendum to Theorem 22 let us observe that a func-
tion ¢(z) which is continuous on an interval I (finite or infinite) and which
fulfils the condition (A) on this interval, necessarily fulfils the condition
(W) on I. Indeed, the function ¢(x) then fulfils the unrestricted condition
(S) on I by the above theorem, and the result follows at once from the
second half of Theorem 15.

THEOREM 29. Swuppose that a function ¢(x) is expressible on a set K
m the form ¢(x)=~00v(x), where the functions (x) and 6 fulfil the con-
dition (A) on E and on V[E], respectively. Then the function ¢(x) itself
fulfils this condition on E.

PROOF. Given any number «=0 let S be the set of the points of E
at which the function ¢(x) fails to be angular («?) relatively to E. Writ-
ing M=+[E] for short, let further T [or U] be the set of the points of
E [or of M1 at which the function +(x) [or #] fails to be angular («)
relatively to E [or to M].

In virtue of Theorem 28 there corresponds to each ¢>0 two numbers
»>0 and 6>0 such that for any pair of sets Y M and XCFE the condi-
tions |Y|<n and |X|<§ respectively imply |#[Y]|<e and [y[X][<%. But
there is a number a,>0 such that both |T|<é and |U|<» hold whenever
a>a, For any such a we have

WIT <, le[Tl=10v[T]<e, [0[U][<e.

This being so, let us show that [S\7]cU. Suppose, if possible,
that this is false. Then S\ T contains a point p such that (p) does not
belong to U. It follows that the functions +(x) and 6(f) are respectively
angular (a) relatively to E at x=p and relatively to M at t=+(p). We
thus find that

lo(x) —@(p)| =100y (x) — oy (p)| £ a |y (x) — P (p) | < &Pl — P

for every point x = FE sufficiently near p. But this contradicts that peS.
Hence the inclusion [S\T]cU.
From this relation we deduce at once that

@[S]1= 09 [S]C Gy [S\T U [T] o[ UV [ T],

whence [p[S][<2¢ for a>a, on account of |#[U]|<e and |¢[T]|<e. This
shows that the function ¢(x) fulfils the condition (A) on E. The theorem
is thus established.
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THEOREM 30. FEwery function ¢(x) which fulfils the condition (A) on
a closed set Q@ and which 1s linear on each closed interval contiguous to
Q, 1s derivable at all points of the set [1Q, except perhaps at those of a
set MCQ with null image @[M].

PROOF. We may clearly assume that the set [JQ is an interval, say 1.
Let S be the set of all the points of @ that are interior to I and at each
of which the function ¢(x) is angular relatively to Q. Then the set
e[Q@\.S] is null, since ¢(x) fulfils the condition (A) on Q. Furthermore,
as easily seen, this function is angular (relatively to the real line) at every
point of S. Consequently, by Theorem (4.2) on p. 270 of Saks [6], the
function ¢(x) is derivable at all points of a set 7CS such that ¢[S\ T]
is null. If we write M=Q\ T, then M= S)U(S\T) and it follows
that |@[M]|=0. On the other hand, we have

INM=IN\QU@\M)=UI\QUT,

where IN\Q is the union of all the open intervals contiguous to . We
infer that ¢(x) is derivable at all points of the set I\ .

THEOREM 31. Ewery function ¢(x) which is continuous on o compact
set C and derivable at all points of C, except perhaps at those of a set

McC with null image o[M], fulfils on C the condition (W) and hence the
condition (A) also.

PROOF. Without loss of generality we may suppose that the set [JC
is a closed interval, say I, and further that every point of the set C\ M
is a Dbilateral point of accumulation for C.

Let A(x) be the linear modification of the function ¢(x) with respect
to the set C. In other words, the function A(x) is linear on every closed
interval contiguous to C and we have A(x)=¢(x) unless « belongs to the
set IN\C. Then, by Lemma 18 of [3], the function A(x) is derivable to
¢’(x) at every point of C\ M. On the other, hand, A(x) is derivable at all
points of INC, since this set is open and since A(x) is linear on every
component of this set. Hence A(x) is derivable at all points of I\ M.

We now quote the following theorem from p. 289 of Saks [6]. In
order that a function F(x) which s continuous on a closed interval I be
AC superposable on this interval, it 1s necessary and suffictent that the
set of the points of I at which F(x) is not derivable, be mapped by F(x)
onto a null set. We combine this proposition with Theorem (b) of the
Introduction. It thus follows that the function A(x), which is plainly con-
tinuous on the closed interval I=[]C, fulfils the unrestricted condition (8)
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on this interval. The second half of Theorem 15 then requires that A(x)
fulfil the condition (W) on I, and all the more on C. By Theorem 22,
this implies that A(xz), and hence ¢(x) also, fulfils the condition (A) on C.

REMARKS. (i) In the present theorem, the compactness of the set C
cannot be replaced by its closedness. To see this, consider the function
o(x)=sinzx?®, so that ¢'(x)=2zxcosxa®. Writing for short d=4"' and
L,=[v2n—0, ~v2n+0], where ne N, we have

0 () >6+2n—3 cosnd> vV for z<=1,,
and so ¢(x) is angular (+~/n) at no point of I,. On the other hand,
lo[I,]|=2sinz6 =+/2 since ¢[I,]=[—sinzd, sinzxd].

Consequently the function ¢(x), although everywhere derivable, fails to
fulfil the condition (A) on the real line.

(ii) It is evident that every function which fulfils the condition (W)
on a set is continuous on this set. In the hypothesis of Theorem 31, how-
ever, the continuity of ¢(x) on C is not redundant. As a couter-example,
we may propound the function ¢(x) vanishing for x=0 and defined for
x%0 by ¢(x)=coszxz™". This function, although everywhere derivable on
the real line except at x=0, fails to fulfil the condition (W) on the in-
terval C=[—1,1], since ¢(x) is discontinuous at x=0 on C. Moreover, it

is easy to show that ¢(x) cannot fulfil the condition (A) on C, either.

THEOREM 32. Ewery function ¢(x) which is continuous on a compact

set C and subject to the condition (A) ont his set, fulfils the condition (W)
on C.

PROOF. Let 2(x) be the linear modification of ¢(x) with respect to C,
so that A(x) fulfils the condition (A) on C. Then, by Theorem 30, the
function A(x) is derivable at all points of C, except perhaps at those of a
set McC with null image ¢[M]. It follows from Theorem 31 that A(x),
and hence ¢(x) also, fulfils the condition (W) on C.

REMARKS. Let us show that, in the above theorem, the compactness
of the set C cannot be replaced by its closedness and that the continuity
of ¢(x) on C is not superfluous.

(i) Let @ be the closed set {logn;n<=N}. This set being countable,
any function, and in particular the function ¢(x)=e”, fulfils the condition
(A) on Q. But this function is not uniformly continuous on @ ; indeed, its
increment on the interval [logmn,log (n+1)] is 1 for every n, although the
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length of this interval tends to 0 as n—+co. Hence ¢(@) fails to fulfil
the condition (W) on Q.

(ii) Let C be the countable compact set consisting of 0 and of the
numbers n~!, where nN. Then every function which is continuous on C
and discontinuous at =0 on this set, fulfils the condition (A) on C, with-
out fulfilling the condition (W) on this set. In brief, the condition (A) on
a compact set does not always imply the continuity of the relevant func-

tion on the same set.

§4. Continuation of the first section.

DEFINITION. A function ¢(x) will be said to fulfil the condition (H)
on a set FE, if for each fixed open set D we have inf|p[(END)\C]| =0,
where C is a generic compact set contained in END.

As we find easily, if a function ¢(x) is continuous on a set E and
fulfils the condition (H) on this set, then |p[E]| is finite.

THEOREM 33. Ewvery function ¢(x) which fulfils the condition (H) on
a set E, fulfils the condition (G) on this set.

PROOF. In conformity to the definition of the condition (G), we shall
show that for each compact set @ and each ¢>0 there exists an open set
UDQ with the property |p[EN(UNQ)]|<e. The set D=R\Q is open and
therefore, by hypothesis, the set END cotains a compact set C such
that |[(END)\C]|<e. Then the open set U=R\C contains @ and

(ENDINC= (ENQNU=EN(U\Q),

which completés the proof.

THEOREM 34. Ewery function ¢(x) which is continuous on an analytic
set A and subject to the condition (T,) on this set, fulfils the condition
(H) on A, provided that |p[A]l is finite.

PROOF. We shall first treat the case in which the open set D of the
above definition is the real line.

Writing f(y) =P(y;¢; A), where the notation is the same as in §1, we
have 0=<f(y)<1 for each y= R and the function f(y) is measurable on the
real line. Moreover, f(y) is positive almot everywhere, since the function
o(x) fulfils the condition (T, on A.

This being so, let F(y) be an indefinite Lebesgue integral of the func-
tion f(y). Then F(y) is an increasing function which is absolutely con-
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tinuous on the whole real line. We shall show that the set F[Q] is non-
null for every compact nonnull set Q. For this purpose, we may clearly
assume that @ is not an interval. Then the difference 4=I\ @ is a non-
void open set, where we write I=[]Q. If P denotes a generic component
interval of 4, the image F'[P] is evidently an open interval for each P,
and F[4] is the union of all the intervals F[P], which are mutually dis-
joint. It follows that

FLAY=3IFPY= 3\ fwdy=\ fwady.
On the other hand, we have F[Q]=F[I\4]=F[I]\F[4]. Thus

QU= FUY ~ | FL4) = | fw)dy—| fwdy=\ fdv.

But this last integral is positive, since @ is nonnull and since f(y)>0 for
almost every y. Hence |F[Q]] >0, as desired.

Consider now the composite function y(x)=Fop(x), where z<= R, and
let o be the infimum of E(y; AN/"), where [" is an arbitrary compact set
contained in A. This fluctuation makes sense, since y(x) is continuous on
A and since the set AN is evidently analytic. The number p is finite,
for we have B(y; ANI) = |p[ANT ]| < |@[A]l by Theorem 6.

By definition of p, there exists in A4 an ascending infinite sequence of
compact sets, say C,CC,C----, such that

E(r; ANG,) tends to p as n—+oco .

Writing S=C,uUC,U---- and S,=S \.C, for each n, we shall show that
the intersection L=¢[S;]N¢[S;]MN---+ is null. For this purpose, we may
assume I nonvoid. Taking any point » of L, let W be the set of the
points xS at which ¢(x)=7. If W is a finite set, there exists an index
k such that C, contains W. Then the set S,=S\C, is disjoint with W,
so that its image ¢[S,], and a fortiori the set L, cannot contain the point
7. It follows that W is an infinite set and therefore that

N(p;¢;A)=zN(p;¢;S)=+oc0 .

But the function ¢(x) fulfils the condition (T;) on A. We thus conclude
that |L|=0, as announced above.
Since S;DS,D----, we have ¢[S,]D¢[S,]D----, where each set ¢[S,]

is measurable since it is a continuous image of a Borel set. We have
further

L=1im ¢[S,] .and oS < lp[A)| <+ oo

It follows that liml|e[S,]|=|lim ¢[S,]|=|L|=0. On the other hand, from
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the relation ANScCANC,=ANS)US, we deduce at once that
E(r; ANS)Z E(W; ANGL) = E(¢r; ANS) +E(;Sh) .
Making n— +co here and using the facts

HmE(W; ANC,)=p and limE(y;S,)<liml|¢[S,]/=0,

we find that Z(y; ANS)=p.

From this last relation we shall now derive the nullity of the set
o[ ANS]. Suppose if possible that [p[ANS]|>0. On account of Theorem
2 the set AN\.S, which is an analytic set contained in A, contains a com-
pact set C, such that [p[C,]|>0. Then ¢[C,] is a compact nonnull set, and
hence, by what has already been proved, we have |[{[C)]l=]|Fo¢[C,]|>0.
Accordingly there exists an index ¢>0 such that |[¢[S,]|<|v[C,]|. This,
together with |v[C)]|<E(¢y;C) and Theorem 6, gives E(v;S,) < E(r;Cy).
Writing C*=C,UC,, we thus find that

E(y; ANCH)=

[Ra]

(v; ANS) +E(W; S)—E(Y; C) —E(v; Co)
E(y; ANS)+E(W; Sy —E(; Co) <p .
This contradicts the definition of the number p, since C* is a compact set

contained in A.
The set p[ANS] being null as proved just now, we have

lp[ANG, ] =1p[ANSTUe[SN Gl = o[ S]]

for every n. This, together with lim|¢[S,]|=0 already proved, leads at
once to lim|p[ANC,]|=0. Therefore inf|[p[ANC]}/=0, where C denotes a
generic compact set contained in A. This establishes the assertion in the
case in which D is the real line, where D is the set which appears in the
definition of the condition (H).

The general case is reduced at once to this particular case, and the
proof is complete.

THEOREM 35. Let ¢(x) be a function which 1s continuous on an an-
alytic set A. In order that this function fulfil the condition (H) on A,
it 1s mecessary ond sufficient that the function fulfil on A the condition
(F) and the condition |p[A]l <+ co.

PROOF. The sufficiency part of the assertion is direct from Theorem
4 and the foregoing theorem. Hence we may confine ourselves to the ne-
cessity part in what follows.

Suppose that the function ¢(x) fulfils the condition (H) on A. We
shall show that for every non-overlapping infinite sequence <[, I,, ---:> of
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closed intervals, the sequence <{p[ANI,]; n=N) has a null set as its upper
limit. For this purpose, consider the open set D=I7\Ul;\J----, where IS
means for each n the interior of the interval I,. By hypothesis, there
corresponds to each ¢>0 a compact set C contained in AND and such that
lp[(AND)N\C]|<e. Then there is an index k such that C is covered by
the k intervals I7, ----,I7. Writing R,=I,..JI,.,\U----, we have

finﬁ e[ANL,] Cn\>jk¢[AﬂIn] = (p{: V) (AmIn)} =p[ANR,].

n>k
We thus come to appraise the measure [p[ANR,]|. Now the set
Dk:ISHUI/?MU et :D\(]lou et UI/S)

differs from R, at most by a countable set. On the other hand, we must
have D,c DN C. It thus follows that

lelANR]=plAND, ]I S |p[ANDN O] =lp[(AND)\C]| <e,

which implies that lim ¢[ANT,] is null.

As already observed, on the other hand, every function which is con-
tinuous on a set E and subject on this set to the condition (H), maps E
onto a set of finite outer measure. This completes the proof.

EXAMPLE. In the above theorem, the hypothesis that A is an analytic
set, cannot be replaced by its measurability. Let us confirm this fact by
an example in what follows.

We shall begin with the following well-known construction (stated
at short) of a nonmeasurable subset of the interval I=(0,1). A subset of
I will temporarily be called admissible, if two distinct points of this set
always have an irrational difference. By Zorn’s Lemma, there exists in I
a maximal admissible subset, say W. Let now the rational numbers »
with |r]<1 be arranged, without repetitions, in an infinite sequence
ry, T, ++++>. Supposing S to be any measurable subset of W, we denote
for each ne N by S, the set of the numbers x-+7, where x ranges over
S. Then plainly the sequence <S,, S, ---:> is disjoint and its union U=
S, US,\U---- is bounded. On the other hand, each S, is a measurable set
and we have |S,|=|S]. It follows that |S|=0, for otherwise the follow-
ing relation would contradict the boundedness of U:

U= S|+ 1Se] 4+ - - - =[S[+[S[+- - - -.

We shall now show that the set W is nonmeasurable. For this pur-
pose, suppose the contrary true, if possible, and specialize the set S to W.
Then |W|=|S|=0, whence |U|=0. But this contradicts the relation UcC],
which we verify as follows. Since W is a maximal admissible subset of



Deec. 1987 On Two Theorems of the Nina Bary Type 87

I, there is for each xz<=Il a point we W=S such that x—w is rational.
Noting that |x—w|<1, we have x=w+r,S, for some n. Hence ICU.

Thus W is a nonmeasurable subset of I=(0,1) and contains no meas-
urable set of positive measure.

Let <ay, as ----> be a generic infinite sequence such that a, equals 0
or 2 for each ne N and further that we have a,%a,;; for an infinity of
values of n. We make correspond to the sequence o=<a; as ----> the
ternary decimal ¢” with a, for its nth digit, so that

or=(0.:05" + )35 = 2 37 "a,.

It is obvious that this correspondence is biunique. Clearly 0<¢” <1.

Let us now write L for the set of all the decimals ¢”. Then L is a
subset of the Cantor ternary set and hence we have |L|=0.

As well as the sequence o=<a,, a, ---+> we consider another sequence
<by, by, -+ -+, where b,=27'a, for each ﬁ, and we denote by o¢® the binary
decimal with b, for its nth digit:

P =(0.bby -+ )y = 2 27",

I
MM
"

3

L
S
S

The set M of all the decimals ¢® is plainly contained in the interval
(0, 1). On the other hand, every irrational point of this interval belongs
to M. Thus M is a Borel set of measure 1.

This being so, let ¢(x) be the function which equals ¢® for each point
x=0" of the set L and which vanishes for all the x outside L. As we
find easily, the function ¢(x) is both continuous and increasing, on the
set L.

We now resume the nonmeasurable set Wc(0,1) constructed above.
The set M introduced just now differs from the interval (0, 1) only by a
countable set, and so the set Wy=WNM is nonmeasurable. Let L, be the
set of the points x of L such that ¢(x)= W, We then have ¢[L,]=W, on
account of ¢[L]=M. Further, L, is a null set and the function ¢(x) is
both continuous and increasing, on this set. Thus ¢(x) is subject on L, to
the condition (F) and the condition |¢[L,]| <+ co.

We shall show that the function ¢(x) fails to fulfil the condition (H)
on L, For this purpose, consider any compact set C L, Then the set
¢[C] is compact and contained in W, so that we must have [p[C]|=0. It
follows that |p[L,\Cll=|p[L]|=|W,|>0. This leads to the inequality
inf|p[L,\C]| >0, whence the result.

Thus Theorem 35 will cease to hold if the set A is merely assumed
measurable. By the way, the same is true of Theorem 2 also.
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DEFINITION. By an admissible measure we shall understand any finite
nonnegative set-function u(M) which is

(1) defined for the analytic sets M in the real line,

(2) completely additive on the class of these sets, and

(3) monotone nondecreasing for ascending M.

" DEFINITIONS. A function ¢(x) will be called measure-controllable on
a set E, if there is an admissible measure g such that for every analytic
set MCE the relation p(M)=0 implies |¢[M]|=0. When this is the case,
we shall say that the function ¢(x) is controlled on E by the measure p.

For instance, if Tan"'z means for x< R the principal value of tan'z,
then the set-function g(M)=|Tan™*[M]|, where M is any analytic set, is
clearly an admissible measure. We find easily that every function which
fulfils the condition (N) on a set E, is controlled on £ by this measure.

DEFINITIONS. A function ¢(x) will be termed analytically [or Borel]
partitionable (T;) on a set E, if this set is expressible as the union of
a nonvoid, disjoint, countable family of analytic [or Borel] sets on each of
which the function ¢(x) fulfils the condition (T,). When this is the case,
the above expression of E will be called analytic [or Borel] partition (T,
of the set E with respect to the function ¢(zx).

THEOREM 36. Ewvery function ¢(x) which is continuous on an analytic
set A and measure-controllable over this set, is analytically partitionable
(T) on A. More precisely, there i1s in the set A a Borel set B for which
the set o[ANB] is null and on which ¢(x) is Borel partitionable (T)).

PROOF. Let p be an admissible measure by which the function ¢(x)
is controlled on the set A. Let us write p=inf (AN L), where L is a
generic Borel set contained in A and on which ¢(x) is Borel partitionable
(Ty). From the family M of all such sets L, we can evidently choose
an infinite sequence of sets, say (B, By, ---->, such that lim p#(AN\B,)=p.
If we write B=B,\UB,\U----, then the set B itself belongs to the class M
and further B,CB for every n. It thus follows that p(ANB)=p.

We shall verify that ¢[ANB] is null. For this purpose, suppose if
possible that the contrary is true. The set AN\ B being analytic and the
function ¢(x) being continuous on A, Theorem 2 ensures the existence
of a compact set CC AN B such that |¢[C][>0. In virtue of Theorem 3,
the set C contains a Borel set B, which fulfils the relation ¢[B,]=¢[C] and
on which ¢(x) is biunique. Then ¢(x) is obviously Borel partitionable (T,)
on the Borel set M=BUB, But the set B, is disjoint with B. Hence
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L(ANM) = p(ANB)— p(By)=p— u(By) ,

where we have u(By)>0 as |¢[B]|=|¢[C]{>0. This evidently contradicts
the definition of the number p, and the proof is complete.

THEOREM 37. Let a function ¢(x) be continuous over an analytic set
A, subject to the condition (G) on A, and further such that |p[A]] <+ oo,
If we write by definition

V(@) =lp[AN(—oo, x)]l  for zeR,

then (x) vs a bounded, continuous, nondecreasing function and for every
set X we have the relation

WX = [ANX] = |plANX]].

If in particular the set A is bounded, then |v[A]l=|p[A]l.
Further, the set-function |[X]| coincides with *(X) which denotes
the outer Carathéodory measure determined by the function (x) in the

usual way.

PROOF. It is convenient to express +vr(x)=|p[A(x)]|, where we write
A(x)=AN(—o0,x). The function {(x) is evidently nondecreasing and we
have 0=+ (x)<|p[A]|l. The set ¢[A(x)] is measurable, since it is analytic
together with the set A(x). It thus follows that

U(q) —v(p)=le[A@ ]l —le[AP)] = le[A(@) ]\ e[A(p)]]
whenever p<q. But it is obvious that
plA(@INelAP)]IC p[ANI],  where I=[p,q].

Hence ¥(I)<|p[ANI]| for every closed interval I.

We shall show that the function +(x) is continuous. Let & be any
point of R. Since the function ¢(x) fulfils the condition (G) on A, there
corresponds to each ¢>0 a figure Z for which £ is an interior point and
which fulfils |p[ANZ]|<e. The point & is interior to a component inter-
val, say P, of the figure Z and we clearly have |p[ANP]|<e. Hence, if
we write K(h)=[&—h,&+h] for h>0 and if we take h so small as to en-

sure K(h)C P, then
VE+R) —YE—R) S le[ANKR)]I S lp[ANP]| <e,

which implies the continuity of +(x) at x=§&.

Let us prove in the next place that |[¢[N]I=|¢[N]| for every subset
N of A. The set ¢[N] is clearly the limit of the ascending infinite
sequence <p[NNI,]; ne N), where I,=[—mn,n]; and the same holds good of
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the set W[N] as well. It follows that
!<p[N]l=li7{nl<p[Nf\In]| and l‘l’[NM:H};nl\l’[NmIn]l-

Therefore we need only consider the case where N is bounded. We may
further assume that N is nonvoid.

We have |[¢[N]|<-+co since NCA, and there corresponds to each ¢>0
an open set DDop[N] such that |D|<|p[N]|+e The function ¢(x) being
continuous on A, we can enclose each point £ N in an open interval U(§)
with length |U(&)|<1 and such that o[ANU(&)]cD. The union, say U, of
all the intervals U(f) is a bounded open set containing N and we have
olANUlcD. If we write H=[p, q], where (p, ¢) is a generic component
interval of the set U, it is obvious that

MN]C«HU]C%W[H], lw[N]l§§!w[H]l=>;wlf(H).

Let us denote by V4 the measurable set p[A(¢)]\¢[A(p)]l. Then the
family of all the sets V, is evidently countable and disjoint. Accordingly

v [NV]] é%W(H)=§lgo[z4(q)]\so[/l(p)]l2%‘1 Vil

=le[ANU]l,

= | lANH] = |y [ AN "]

:\U Vu
"

the last equality being clear from the fact that the set o[ANH®], where
H° denotes the interior of the interval H, differs from ¢[ANH] at most
by two points. We thus obtain the appraisal

[WIN]I=le[ANUN =D <|p[N]l+Fe.

Since ¢ is arbitrary, this gives |[W[N]I<|o[N]|, Q.E.D.

Let us now consider the outer Carathéodory measure +*(X) defined
for every set X in the manner described on p. 64 of Saks [6]. We then
have *(X)=|v[X]| identically for every X, on account of a theorem on
p. 100 of [6]. Moreover, for any set E measurable (¥,), there is a sigma-
compact set LCFE such that |W[EN\L]|=0 (see p. 69 of [6]). On the other
hand, every analytic set is measurable (£,), as stated in small print on
p. 48 of [6].

We shall proceed to establish that the function +-(x) is null on the set
S=R\ A4, or in other words, that [S] is a null set. As S is measurable
(8,) together with A, there exists in S a sigma-compact set L such that
[w[SN\L]|=0. It thus suffices to verify that +(x) is null on every com-
pact set QCS. Taking such set @ and assuming @ nonvoid as we may,
we express @ as the limit of a descending infinite sequence of figures, say
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2y D7, D+, Since the function (x) is continuous and nondecreasing, we
find at once that

where (Z,) denotes the total increment of +(x) on the figure Z,. But
W(Z) < |o[ANZ,]], so that |v[Ql<|p[ANZ,]l. Indeed, if we put J=[7,s],
where J ranges over the component intervals of Z,, then the measurable
sets W,=¢p[A(s)]\¢[A(r)] are mutually disjoint and we have

<

HZ) =S =S\ W= W,

YeLANT] = lelANZ.]),

whence the result follows. Now the function ¢(x) fulfils the condition
(G) on A, and hence given any ¢>0 there exists an open set 7' containing
Q and such that |p[AN(T\Q)]|<e. But this inequality means the same
as |p[ANT]|<e, since ANQ is void on account of QCS=R\A. On the
other hand, the relation QC 7 and the choice of the sequence Z,DZ;D----
together show that Z,C 7T for large n. Hence

VRN = lplANZ | = lp[ANT] <e

for large n. Since ¢ is arbitrary, we obtain |[v[Q]/=0. This proves that
[V [S]]=0, as desired.

We have already seen that [[N]|<|p[N]| for every set NCA. This
inequality can now be improved to the following relation, where X is an
arbitrary set:

W[ X]l=v[ANX] = |elANX]] .

In point of fact, if we write N=ANX and if S means the set R\ A as
above, we have successively

XCNUS, XISy IN]JUR[S], [v[X)=[¢IN]+Iv[S].

But |¢[S1|=0, |[VIN]Z[v[X]l, and W[N] =<|o[N]|. Hence the result.
Suppose finally that the set A is bounded. We have to show that
then |y[A]l=|¢[A]|. Choosing a k=N such that AC[—Fk, k], we have

Pv(2)=0 for x<—k and +(x)=|p[A]l for z>Fk.

But +(x) is a nondecreasing continuous function, and thus [V[R]|=|p[A]l.
This, combined with [Y[X]|=[V[ANX]|<[p[ANX]| established just now,
leads to the following relation which implies |¢[A]l=|¢[A4] :

lplAll=v[R]l=[yv[Al=lp[A]l.

REMARK. The boundedness of the set A is'essential for the wvalidity
of [y[A]l=]|p[A]l, as seen at once by considering the function ¢(x)=sinz
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and the set A=R on which ¢(x) clearly fulfils the condition (G).

THEOREM 38. Ewvery function ¢(x) which is continuous on an analytic
set A and subject to the condition (G) on this set, is measure-controllable
on A.

More precisely, there exists an admissible measure p by which the
Junction ¢(x) is controlled over A and which satisfies the inequality
u(M)<|e[ANM]| for every analytic set M.

PROOF. The function tant fulfils the condition (N) on the interval
|t| <27'z, while we have |F[X]|<|p[X]| for the function F(x)=Tan '¢(x)
and for each set X. Hence it suffices to establish the assertion for F(x)
in place of ¢(x).

Since the function ¢(x) is continuous on A, so is also F(x) on A.
Moreover, ¢(x) fulfils the condition (G) on A, and the same property is
inherited by the function F(x) on account of |[F[X] =|e[X]] mentioned
above. Again, F'(x) is bounded since |F'(x)| <2 'x.

We now apply the preceding theorem to the function F(x) and any
bounded analytic set FC A. Thus there exists for each E an admissible
measure p(M;FE) such that p(M;E)<|F[ENM[| for any analytic set M
and further that p(E;E)=|F[F]|.

An elementary figure will be called rational, if its boundary points
are rational numbers. As readily seen, the family of all the rational
figures is countable. Hence this family can be arranged in a distinct in-
finite sequence, say <{Z, Z,, ---+>. We then write by definition

(M) =p(M;ANZ,) and  p(M)= 327" (M),

. where M is a generic analytic set and ne N. The convergence of this
series is evident from the appraisal |u,(M)|Z|F[ANZ,]|<=x. We find at
once that the set-function p(M), thus defined, is an admissible measure.
Moreover, we have u,(M)<|FIMNANZ,]<|F[ANM]|, so that

(M) £ 227" FIANM]| = FIANM]]

Let us proceed to show that the function F(x) is controlled on A by
the measure g, or in other words, that for each analytic set SCA the
relation p(S)=0 implies |F[S]|=0. On account of Theorem 2, there cor-
responds to such a set S and any number ¢>0 a compact set CCS such
that |F[C]|>|F[S]|—e. We then can enclose C in the interior of a figure
Z such that |F[AN(Z\C)}|<e. We do not lose generality by assuming
that Z is a rational figure, so that Z=Z, for some k= N. It follows that
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|FIS]l —e<|F[ClIZ|F[ANZ]|=u(ANZ; ANZ)

SuZ; ANZ)=p(C; ANZ)+ p(ZNC; ANZ) .

But we have on one hand the relation

p8)zp(CO)=22 " u(C;ANZ) =27 n(C; ANZ),

while on the other hand the above inequality w(M;E)<|F[ENM]| shows
that u(Z\C;ANZ)<|F[AN(Z\C)]|<e. We therefore obtain the estima-
tion |F[S]| <2*u(S)+2¢. Consequently, if #(S)=0, we have |F[S]| <2¢ for
every ¢>0, so that |F[S]|=0. This completes the proof.

THEOREM 39. FEwvery function ¢(x) which is continuous on an analytic
set A and subject to the condition (T, on this set, 1s measure-controllable
on A.

PROOF. It is enough to show that the function F(x)=Tan '¢(x) is
measure-controllable on the set A. This function is continuous on A and
we have |F[A]|<zx. Moreover, F(x) fulfils the condition (T,) on A4, since
¢(x) does so by hypothesis and since the function Tan~'y fulfils the condi-
tion (N) on the real line. It follows that F(x) fulfils the condition (F) on
A. Theorem 1 then shows that this function fulfils the condition (G) on
A. We can thus apply the foregoing theorem to F(x) and A, and we
conclude that F(x) is measure-controllable on A. This completes the proof.

THEOREM 40. Ewery function ¢(x) which is continuous on an analytic
set A and analytically partitionable (T,) on this set, is measure-controllable
on A.

PROOF. By hypothesis the set A is expressible as the union of a dis-
joint infinite sequence (A, A4, ----> of analytic sets on each of which the
function ¢(x) fulfils the condition (T,). It follows from the foregoing
theorem that there exists for each n= NN an admissible measure g,(X) by
which ¢(z) is controlled on the set 4,. We can associate with each n a
number a,>0 such that a,- g, (R)<2"", since u,(R) is finite for each n.
Writing now by definition

#(M):af1'ﬂ1(M)+@z‘/«lz(M)JT """ s

where M is any analytic set, we find immediately that p(4/) is an admis-
sible measure.

If w(M)=0 for an analytic set M A, then for each » we have suc-
cessively the relations:
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tn(M)=0, p(A.NM)=0, |p[A,NM]=0.

Consequently the set ¢[M], which is the union of the sets o[A,NM], is
null. The function ¢(x) is thus controlled on A by the measure .

DEFINITION. A function ¢(x) will be said to fulfil the countability
conditton on a set K, if this set contains no disjoint noncountable family
of compact sets on each of which the function is nonnull (namely, each of
which is mapped by the function onto a nonnull set).

THEOREM 41. FEvery function ¢(x) which is continuous on an analytic
set A and measure-controllable on this set, fulfils the countability condi-
tion on A.

PROOF. Let u¢ be an admissible measure by which the function ¢(z)
is controlled on the set A. Suppose given any nonvoid disjoint family I
of compact sets CC A on each of which ¢(x) is nonnull. Then x(C)>0 for
every Ce M, since p(C)=0 would imply [¢[C]|=0.

We shall show that the family 9 is necessarily countable. For this
purpose, let M, denote for each ne N the family of the sets C=M such

that p¢(C)>n"'. It is evident that M=WW,UPL,U----. If now I, is in-
finite for an =, then for each k=N we can extract from M, a disjoint
sequence <Cy, ----,C,> of sets, and the following relation will contradict

the finiteness of p([IM]):
En7<p(Ch+-- - +p(Cl=pn(CrU--- - UCH= p([(M]) .

The family M, is therefore finite for every n. It ensues that the family
M must be countable. The function ¢(x) thus fulfils the countability con-
dition on A.

THEOREM 42. Ewvery function ¢(x) which is continuous on an analytic
set A and which fulfils the countability condition on this set, is analyti-
cally partitionable (Ty) on A.

More precisely, the set A contains a set M with null image ¢[M] and
such that the set ANM 1is expressible as the union of a disjoint countable
Jamily of compact sets on each of which the function ¢(x) is biunique
and nonnull.

PROOF. By an admissible family let us temporarily understand any
disjoint family of compact sets contained in A and on each of which the
function ¢(x) is both biunique and nonnull. For instance, the void family
is admissible. Every admissible family must be countable, since ¢(x)
fulfils the countability condition on A.
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Let I be the collection of all the admissible families. It is obvious
that I’ is partially ordered by family inclusion and that every linearly
ordered subcollection of I' is bounded from above. Accordingly, by Zorn’s
Lemma, the collection /" has at least one maximal element, say &.

Since & is a countable family of compact sets, its union [&] is a Borel
set, and hence the set M=AN[S] is analytic. It remains to prove that
lp[M]|=0. For this purpose suppose, if possible, that this is false. Then
Theorem 2 and Theorem 3 together show that the set M contains a com-
pact set C on which ¢(x) is both biunique and nonnull. But C is plainly
disjoint with [&]. The existence of such a set C contradicts that the
family & is maximal in the collection I'. We therefore have |p[M]|=0,
which completes the proof.

THEOREM 43. For every function ¢(x) which s continuous over an
analytic set A, the following three properties are mutually equivalent.

(1) The function 1s measure-controllable on A ;

(2) the function fulfils the countability condition on A ;

(8) the function s analytically partitionable (T, on A.

This follows immediately from Theorems 41, 42, and 40. By the way,
Theorems 41 and 42 together yield a more particular result than Theo-
rem 36.

THEOREM 44. FEwvery function ¢(x) which ts continuous on a bounded
analytic set A and subject to the condition (G) on this set, fulfils the con-
dition (T)) on A.

PROOF. Let I be a closed interval which contains the set A. This
interval will be kept fixed during the proof.

By Theorems 38, 41, and 42 there exist in 4 a set M and a disjoint
infinite sequence <C,, C,, ----> of compact sets, in such a manner that

'(p[M][‘—‘O ’ ANM=C,UC\J - - s

and that the function ¢(x) is biunique on C, for every .

Since ¢(x) fulfils the condition (G) on A, given any ¢>0 there corre-
sponds to each n an open set D, containing the set C, and such that
lo[AN(D,\C,)]1|<2 ™. Writing S=D,;\UD,U---+ and Q=I\.S, we find
that @ is a compact set. Hence there is an open set DDOQ such that
le[AN(DN\Q)]|<e. Then the sequence <D, D, D,, ---->, which consists of
open sets, covers the interval I. Consequently I is already covered by a
partial sequence <D, D,, ----, D,> of this sequence.

This being so, let us write for simplicity
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B=AND and B;=AND,; fori=1,----,n.
Then A=BUB,U----UB,, since ACICDUD\J----UD,. But

B=(ANQ)U[AN(D\Q)], where ANQ=A\SC M.
Accordingly |o[Bl|<|e[M]|+|o[AN(DNQ)]|<e. On the other hand
B,=AND,=C,\U[AN(DN\C,)] for i1=1, -+, m.
Hence, writing S,=C,\U----UC,, we find successively that
ANS, CBUBNCY)U -+ - - U(Ba\Cr)
C BU[ANDNCYIU - - - - U[AN(D NG,

PLANS]I = 0BII+ 3 Ie[ANDNCI <ot X277 <2

Consider now the set Y of all the values of the function ¢(x) each of
which is assumed by ¢(x) an infinity of times on A. If a number y be-
longs to the set Y\ o[A\S,], then ¢(z) must take the value y infinitely
often on the set S,=C,uU----UC, But this is impossible, since ¢(x) is
biunique on each of the sets C, ----,C,. Consequently we have the inclu-
sion YC@[ANS,], whence |Y|=|p[ANS,]| <2 Since ¢ is arbitrary, this
implies the nullity of Y. The theorem is thus established.

REMARK. In the abve theorem, the boundedness of the set A is not
a superfluous hypothesis. This may be seen by considering the function
sin 2, which is, on the real line, subject to the condition (G), but not to
the condition (T)).

EXAMPLES. (i) A function will temporarily be called piecewise linear
on a closed interval, if this interval is expressible as the union of a finite
number of non-overlapping closed intervals on each of which the function
is linear.

Let us construct a function which is both continuous and Borel parti-
tionable (T)), on a closed interval, without fulfilling the condition (T, on
this interval. '

For this purpose, let P be a bounded, perfect, nowhere dense set of
positive measure. As shown on p. 224 of Saks [6], we can construct a
function ¢(x) which vanishes for x =P, is piecewise linear on each closed
interval contiguous to P, is continuous on the closed interval /=[P, and
has no derivative (finite or infinite) at any point of P. Together with
o(x), the function (x)=¢(x)+x is continuous on I and has no derivative
at any point of P. But the image +[P], which coincides with P, has
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positive measure. It follows from Theorem (6.2) on p. 278 of Saks [6]
that the function +r(x) cannot fulfil the condition (T,) on I. On the other
hand, +(x) is biunique on P and piecewise linear on every closed interval
contiguous to P. Hence +-(x) is Borel partitionable (T:) on I.

(ii) Let us show by an example that there is a function ¢(¢) which
is continuous on the unit interval I=[0,1] without being analytically
partitionable (T, on this interval.

Let S be the unit square, namely the set of the points <z, ¥>, where
xzeI and y<1I, and let f(t) be a Peano curve defined on I and which maps
I continuously onto S. Writing f(¢) =<x(?), y(t)>, consider any function ¢(¢)
which coincides with «x(¢f) for t=Il. The function ¢(t) is plainly contin-
uous on I. On the other hand, there exists for each £=I a noncountable
infinity of points t=I such that ¢(t)=£&. Hence ¢(f) does not fulfil the
condition (T,;) of Banach on I (see p. 277 of Saks [6]). It is obvious, how-
ever, that a function which is analytically partitionable (T, on a set,
necessarily fulfils the condition (T,) on this set. Accordingly the function
o(x) cannot be analytically partitionable (T, on I

We shall end this paper with a theorem which supplements the de-
finition of an admissible measure and which clarifies the nature of such a
measure.

THEOREM 45. Given any admissible measure p, there always exists a
nondecreasing function r(x) such that p(M)=+*(M) for every analytic set
M, where * denotes as hitherto the outer Carathéodory measure deter-
mined by the function (x).

PROOF. The measure g, which is completely additive on the class of
the analytic sets, is a fortiori so on the Borel class. Therefore, by Theo-
rem (6.10) on p. 71 of Saks [6], there is a nondecreasing function (x)
such that p(B)=+*(B) for every bounded Borel set B, and hence for every
Borel set B.

We shall prove that p(M)=+*(M) for every analytic set M. Since M
is measurable (2,), Theorem (6.6) on p. 69 of Saks [6] shows that there
exists in M a Borel set B for which we have *(M\B)=0. Since the
set M \\B is also measurable (8,), the same theorem ensures the existence
of a Borel set LDM\B such that *(L)=0. This, together with the
relation

0= u(M\B) < p(L)=+v*(L),
requires that p(M\B)=0. It follows that
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w(M) = p(B) + p(M \B) = p(B)
=4*(B)=v*(B) +* (M \B)=y*(M) ,

which completes the proof.
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