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A theory of low field resonance is formulated with the use of an expan-
sion formula of the damping theory: That is, the time convolution equation
is applied to this problem. In this treatment, the so-called ‘partial
cumulants” of somewhat complicated structure should be calculated. To get
the explicit forms of the ‘“partial cumulants’, computer calculations are
preferable. The use of a computer makes it possible to treat a lot of terms
and put the same class of terms into a single are. When the computer calcula-
tion is done, then the calculation time is entirely shortened and the higher
order terms are treated quite easily.

In this paper we present the corresponding FORTRAN programs for
these calculations and give an argorism and a method to use them.

§ 1. Introduction

The expansion formulas of the damping theory!) are known as a general
method of the nonequilibrium statistical mechanics. Shibata and Arimitsu®
obtained the two kinds of formulas: One is the time convolution equation
(TCE) and the other is the time convolutionless equation (TCLE). One
should choose one of these equations depending on the nature of the prob-
lem.

In some problems, strength of the coherent motion and the fluctuation
acting on it becomes the same order of magnitude, so that a usual simple
purturbation theory can give an incorrect result. For instance, a problem of
exciton migration?»3 and that of low field resonance® belong to this
category. Even for these problems, we obtained the satisfactory results by
means of the TCE.

Particularly, in the theory of low field resonance, we could take all
orders of perturbations into account and get an exact solution for a certain
model. In the course of the calculations, we treated special form of the
“partial cumulants”. A general forms of the ‘“partial cumulants’ were
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Kawasaki 210.
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already written down with the use of computer®. However, in our present
problem, we must treat quite complicated terms including the ‘‘partial
cumulants”. Therefore, a further computational investigation is required.

In this paper we present a method to calculate the special forms
of “‘partial cumulants” as an application of the method presented in ref. 5,
and give the results up to the 12-th order. Once the expressions up to the
12-th order is known, then the arbitrary order terms can be written down
consistently. Consequently, the “Green function” or the power spectrum is
constructed in the form of an infinite continued fraction.

In the next section, we present the basic formulation of the theory of
the low field resonance and clarify the nature of terms to be calculated.
Then we explain how the problem is treated with use of the computer ex-
plicitly (Sec. 3).

In the last section we give the conclusion.

§ 2. Summary of the basic formulation
2-1. Model Hamiltonian

Our system is described by the Hamiltonian

H =+ A2 , 2.1)
where

Ho=17"hoS: (2.2)
and

H ()= r';m(t) S, (2.3)

In these expressions, 4, represent the static field along z-direction. The
fluctuating field H.(¢) acting on the relevant spin S, is assumed to be a
Gaussian Markoffian process with zero mean:

<H,(>5=0, (2.4)
<H O HMY>,= 0, (B]7 V42 & 177, (2.5)
<HOH,(#) . Hy(£-1)>5 =0, (n>3), (2.6)

where 4, 4 can take x and v and 4,=4,=4, ,
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We rewrite (2.3) as
=1 H;2) S, (2.7)

for the convenience in the following formulation. In (2.7) v takes +, —, and
moreover ¥ = + (-) is understood to represent v = +1 (-1). We have also intro-
duced the notation y =—y.In (2.7) H(#) and H-(¢#) are defined by

By(O) = (B0 +1 B0} . (2.8)

Similarly we have put

Sg=8,+iS,
and

2-2. Formulation

Here we give an outline of the formulation. As for details, we refer the
reader to the reference 4.

Time-evolution of the system is determined by the Liouville-von
Neumann equation of density matrix. First we take an average of the density
matrix with the use of the time-convolution equation (TCE) with the expan-
sion formulae. From the moment equations of spin operators S; and S, , we
can discuss the power spectrum and so on.

The general form of the moment equation is given by

. n n—=2 (¢ : .
Spe=ivon (Y TSP AT A 1 f [ dtira ke ol i)

n—1
X<,-1JO By () >0, p,c. By Sy (2.9)
where v represents the set {1, vo, v1, ...} with £o=tand wo = 7'he/4. More-

over we have

Ai=vHvety .ty (2.10)
where 1_; =/, and

;= (Y Q=) (2.11)

We have also a “‘conservation low’’:
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V0+V1+"'+I/n_1:0 . (212)

Owing to the rules (2.10) (2.11) (2.12), we can get an explicit form ot
the expression (2.9). For example, even when a single element of the set
{chaj=0,1, R n-]} is equal to zero, the corresponding term to the set
{u', Vos Vs - - } vanishes. Therefore we may consider restricted combinations
of V', vo, v1,.... From these consideration we calculate the partial
cumulant:

<nI—_1] H@(tf)>3.,z>. c. (2.13)
j=o0

in (2.9). Asthe set { b, s, - . . , Yn—1 } in (2.9) has a various combinations of
+ and -, (2.13) is divided into a lot of moments composed of H, and #, . So
it is a very tedious work to calculate the “partial cumulants™ (2.13).

To remove these difficulties, we should use the computer: we present a
method of calculations for the explicit representation corresponding to the
given y's by the FORTRAN programs. '

§ 3. Calculation of “‘partial cumulants”
3-1. Treatment in the computer

In this section we give a method to calculate the special type of “partial
cumulants”.
The desired ‘““‘partial cumulants’ are shown in (2.13) in the form

n—1
<l H7~(tj)>3 pc ?
=0 L Poc

which satisfy the conservation rule (2.12) and condition £; 0. We will dis-
cuss FORTRAN programs to obtain the explicit expressions of the ‘““partial
cumulants” (2.13) corresponding to the values of {E,-,j =0,1, ..., n,-l}.

These programs are composed of three parts: First we notice that the
“partial cumulants” (2.13) consist of the multiplication of Hy(¢;)s which
are defined as H,(¢;) *iH,(¢;). On the other hand, because the moments of
H,(¢t;ys are defined for u=x, y, we have to decompose the ‘‘partial
cumulants” (2.13) into the terms consisting of H,(¢#;)’s and H,(¢#;)’s; that is,
we must treat 2" terms. Each term is made up of H, or H, corresponding
the time from ¢o (5t) to ¢4,—. So we consider the n “boxes” corresponding
to these time points which should be occupied by H: or H,. The first step
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of these calculations is to give all possible permutations of H,(¢;)’s and
H,(¢;)’s.

A method to obtain these permutations is the same as the one adopted
in ref. 5. When a “box” is occupied by H, (H,) , we assign “0” (“1”°) to the
“box’’. Therefore we have two possible configurations each of which is
associated with a corresponding binary digit. As the term consisting of the
odd numbers of H, or H, has no contribution, so we remove these terms.
We call this program “LFR1”.

Next step is to obtain the diagrams appearing in the calculation of the
“partial cumulants” of the stochastic variables H,(u=x,v)’s which are as-
sumed to be Gaussian Markoffian. Such diagrams were considered in some
details in ref. 3, but here we give a simple explanation of the procedure.
When we calculate the term

<jgoﬂﬂ(tj)>3_'a C. (3.1)

which consists of the same stochastic variable H,(¢;) (¢ = ¢ > Ztaem),
we treat it as follows:

The general form of (3.1) is composed of the linear combination of ir-
reducible diagrams. These diagrams are constructed from the permutation of
the same numbers of “+” and ‘-’ which indicate the sign of #;’s (see, (3.2)
for the general expression). The first member always takes the value of “+”’
and the last one “-”. For example, the second order diagram gives

(+_) ’
and the fourth order diagrams are
(++--)

and
(+_+_) 5

%Y <<

and so on. But from the nature of the ‘“partial cumulants”, ‘“‘reducible’’ dia-
grams are removed from the outset. The simbol ““+”” must be paired with “-”’
located in the right hand side of it. If the pair is developed in the diagram,
we call it “reducible”. In the examples mentioned above, (+-+-) is a ‘“‘reduci-
ble” diagram.

In the computer calculations, we assign +1 to the simbol “+” and -1 to
“~’_ When we repeat summations from the left of the diagram, even if one of
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the intermediate sum becomes zero, we identify the diagram to be ‘“‘reduci-
ble”. The final sum is of course equal to zero because the same numbers of
+1 and -1 are contained. The permutations of +1 and -1 are obtained with
the use of the binary digit. We call this program “LFR2”.

The last procedure is to give the weights of the diagrams with the use of
the above results. First we determine the explicit form of (2.13); that is, the
combination of H+ and H_ should be found. In our treatment we make an
input of the value of v;’s. For example, in the fourth order, we make an
input the simbols “++--"" and ‘“‘+-+-"", etc. Then we check the order and
conservation rule (2.12). If we make a mistake in the first input, we must
refrain. Next each of the diagrams obtained in the program “LFR2” should
be read. Corresponding to the diagram, each of the purmutations of x and y
obtained in “LFR1” is separated into two groups which are “x’’-group and
“y”-group. We make a pair of “+” and *“*~” in the diagram only inside of the
group, because H, and H, are independent stochastic variables. In these
treatments, when the numbers of ““+” and ‘‘~” corresponding to each group
are not equal, the term has no contribution to the diagram. Moreover, a term
of H,(t;) has a factor of * i corresponding to H.(z;). Finally we get the
number of combinations of ‘““+” and “-”, and the factor coming from
H,(¢;)’s. We can thus obtain all the weight of the considering diagram by
multiplying these values by (1/2)" (n the order of diagram). For other dia-
grams, we repeat the same procedure. We call this program “LFR11”.

Hence, each of the diagrams is written down as follows:

(weight) x Gfm)” o ot Tl (3.2)

Simbols “+” and “-” in the diagram represent the sign of the corresponding
times in the exponent. For example, in the second order, we have

(= (B gy gmthiee
7
and in the fourth order:

(rre) = (B 4, grethotiin
r .
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3-2. Programs list

LFR1

WCoODNO U WN -

200

201

N O

20

188

30

99

DIMENSION IA(12)

WRITE(2,200)
FORMAT (' ORDER(2-12)=8")
READ(1,201) ID

FORMAT (12)

JF=2%x1D

I1C=0

REWIND S
WRITE(S) JF,ID

DO 38 J=1,JF

DO 10 I=1,1ID
IA(I)=0
CONTINUE

Ja=J-1

DO 15 I=1,1ID
L=ID+1-1
IR(L)Y=J0-JB8/2%2
JB8=JB/2

IF(JB.LT.1) GO TO 2
CONTINUE

I1T=0

D0 28 I=1,1ID

IT=IT+IA(I)

CONTINUE

JT1=1T/2%2

IF(JT.NE.IT) GO TO 38

IC=IC+1

WRITE(S) (IA(I),I=1,ID)
WRITE(2,188) IC, (IA(I),I=1,ID)
FORMAT(I5,2X,1211)

CONTINUE
ENDFILE 5

REWIND S
WRITE(S5) IC,ID

STOP
END

19



20

LFR2

WOONDUL&WN -

200

201

N O

28

25

27

I. SATO

DIMENSIGN IAC(12),A(12)

WRITE (2, 280)
FORMAT (' ORDER(2-12)=a")
READ.1,281) ID

FORMAT (I2)

JF=2%xID

JB=JF/2+1

IC=8

REWIND 9
WRITE(9) JF,ID

DO 38 J=JB, JF

DO 18 I=1,ID
IR(I) =0
R(I)=" "
CONTINUE

Ja=J-1

B0 15 I=1,1ID
L=ID+1-1
IA(L)=JP-JB/2%2
JB=J8/2

IF(JB.LT.1) GO TO 2
CONT "NUE

DO 28 I=1,ID
IFC(IACI).EQ.Q) IA(I)=-1
CONTINUE

IF(IAR(C1).NE. 1) GO TO 38
IF(IACID).NE.-1) GO TO 3@

IT=8

DO 25 I=1,1ID
IT=IT+IAR(I)
IF(I.EQ.ID) 50 TO 25
IF(IT.EQ.B) GO T0 30
CONTINUE

IF(IT.NE.B) GO TO 38
IC=IC+1

DO 27 I=1,1D
IF(IR(TI}.EQ.1) A(I)="+'
IF(IA(T).EQ.-1) A(I)="-"
CONTINUE

WRITE(9) (IR(I),I=1,1I0)

WRITE(2,108) IC, (R(I},I=1,1D)

NSR. O0.U,, Vol. 38
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S@ 108 FORMAT (IS, 2X, 12A1)

S1 C
S2 30 CONTINUE
53 ENDFILE 9
54 C
S5 REWIND 8
56 WRITE(8) IC,ID
57 C
58 88 STOP
59 END
LFR11

Cxxxx CALCULATION OF CORELATION .OF MIXED TERM(X,Y) *xxx
C

DIMENSTIUN TH(12),IB8012),IN(12),LC(2),MC(2)
X »A(12),B(12)

COMPLEX CI,CFA

CI=CMPLX(B.,1.)

WRITE(2, 330)
338 FORMAT (' ORDER=8")

—
WOCONDUTELE NN -
O

11 READ(1,331) ID

12 331 FORMAT (I2)

13 WRITE(2,350)

14 358 FORMAT (" INPUT THE LOGICAL UNIT OF OUTPUTI®")
15 : RERGD (1,351} IOP

16 351 FORMAT(I1)

17 WRITE(IOP,368) ID

18 368 FORMAT(1H ,"*x CORELATION ** ORDER=',I2)
18 C

28 1 WRITE(2,108)

21 108 FORMAT (" INFUT THE KIND OF CORELATION(+OR-)I')
22 READ(1,181) (A(I),I=1,12)

23 101 FORMAT (12R1)

24 b0 68 I=1,12

25 IF(R(I}.NE." ") GO TO 3

26 62 CONTINUE

27 GO TO 99

28 C

29 3 WRITE(IOP,378) (A(I),I=1,12)

3B 378 FORMART (//1d ,5X,"'<',12R1,">pc"/)

31 C

32 DO 18 I=1,12

33 IF(R(I).EQ@." ") GO TO 2

34 18 CONTINUE
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35
36
37
38
38
49
41
42
43
44
45
46
47
48
43
SP
51

52
53
54
55
56
57
58
59
68
61

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
78
80
81
82
83
84
85

()

20

Lo

38

33
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ICO0=I-1
IF(ICO.NE.ID} GO TO 1

IC=0

DO 28 I=1,1ID
IF(R(TJ.EQ."+") IN(I)=+1
IF(A(I).EQ."=") INC(I)=-1
IC=IC+IN(I)

CONTINUE

IF(IC.NE.B) GO TO 1

KEWIND S

RERD(5) JF,I1D@

IF(IDP.NE.ID) GO TO 99

WRITE(2,480) JF

FORMRT(1H ,* CORELATION TERMS=',I5)

REWIND 8

READ(9) LF,ID@

IF(IDB.NE.ID) GG Tu 4994

WRITE(2,481) LF

FORMAT(1H ,' DIAGRAMS= ', I5/)

DG 58 L=1,LF
READ(S) (IB(I),I=1,1ID0)

REWIND 5

READ(5) NDA, NDB

IFF=2

DO 48 J=1,JF

READ(5) (IA(I),I=1,1D)

IC=8

DO 38 I=1,1ID
IC=IC+IR(I)*IB(T)
CONTINUE

JC=IC/2%2
IFCJC.NE.IC) GO TG 4@

B0 33 I=1,2

LC(I)=0

MC(I)=1

CONTINUE

D0 35 I=1,1ID

N=ID+1-1I

NN=TR(NJ}+1

IF(IB(N).EQ@.1) MC(NN}=MC(NN)*LC(NN)
LCINN)=LC(NN)-IB(N)

CONTINUE
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86 CFR=CMPLX(1.,8.)

87 DO 37 I=1,1D

88 IF(IRCIJ.NE.1) GO TO 37
89 CFA=CFR*CI*IN(I)

9@ 37 CONTINUE

91 CFR=CFR*MC(1)%xMC(2)

92 C

93 IFA=REARL (CFRA)

94 IFF=IFF+IFR

85 49 CONTINUE

86 C

87 DO 45 I=1,1D

88 IF(IB(I}.EQ.1) B(I)="+"
g9 IF(IB(I).EQ.-1) B(I)="-"
180 45 CONTINUE

1801 C

102 IFF=IFF/2%x(ID/2)

103 WRITE(IOP,588) IFF,(B(I),I=1,12)
184 5098 FORMAT(1H ,I7,"(',12R1,")",)
185 C

186 58 CONTINUE

187 GO T0 1

188 C

109 93 STOP

110 END

3-3. Examples

We present here the results with the use of the programs given in the
previous subsection. We consider two cases: One is the case corresponding
to v'=+in (2.9), and the other is the case of v =0.

(i) The case of v'=+

% CORELATION xx [ORDER= 2
<+- >pc

1(+-}
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xx CORELRTION xx ORDER= 4

<+-4-~ >pc
1(++-=-)

<+4-- >pe
2 (+4==)

** CORELATION *x (QRDER= 6

<+—4~4- >pc
1(++~4-=)
2(+++=-=~)

<+-—++-- >pec
2(++~4-=)

2(+++---)

<Ht——t- >pe

2(4++=+-=}

2(++4---)
<Hdb—d—— >pc
4 (+4-4-=)
2(+++-—=)

*x CORELATION xx QORDER= 8

<t—t+—4—4- >pec <Hd——4—+- >pc
1(++=+~+—--) 2(++=-+~4+-=)
2(++~+4+---) B(++~-++~--=)
2(+44+=-~=+—-=]) 2(+++-—-+-=)

L(++4~4—-—=) B{++4-+-~--)



July 1987

A method of Calculations of the Higher Order Partial Cumulants

d{+444---~)
D L R
2(+4-4-+--)
2(++—+4+--=)
A(++4--4--)
N e p—— |
4 (++4+--==]
<t—tt——+-
2(++-4-+--)
2(4+~++=-==)
2(+++-~-+--)
2(+++~-+---)
6l++++~---]
<t-t+—t-—
4{++=-+-+~--)
2(+4-++---)
b (++4-—+~-)
2(+++-+---)

Bl++++——=-=)

>pc

>pec

>pec

4 (++++----)
<t++—~tt--

4 (++~4~4+~=)
4[++—++---j
A (vt —-—t-=)
(+++—-+~~-=]
4 {+4++4~=—=)
<+t—t——4—
A{+4~t—d~-=)
A(++~44+~~=~)
2044+ +~~4~=)
2{+++=4===)
Bl+++4———=)
<+t-t—t——
Bled~d=t~=)
4 (++-4+--=)
q(+44+--4~-)
2(+++-4-==)

B ++++—m==)

>pe

>pc

>pe

25

From these results we can write down the explicit form of (2.9) for

v'=+:

(S4>, =1 @y (S,

t — -
w42t e T (s,

¢t t t . _ _ e
+ i4AJ_4f dtlfol dtz Ozdta[e l@o(t1 tz)e 7_1,(t+t1 ty ts) <S+>ts
0
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+ eiwo( t—ty) e—rJ_,(t+ ttty) (S . ]

... (3.3)

Equation (3.3) can be solved immediately by the method of Laplace-
transform. As the higher order term of (3.3) is systematic, so we can write
down the exact result in the form of intinite continued fraction (see ref. 4,

for more details).

(ii) The case of v'=0

*¥ CORELATION *x ORDER= 2

<+- >pe
1(+-)

<-4+ >pc
1(+-)

** CORELATION *x ORDER= &

<H—dt- >pe
1 (+4--)

<+--+ >pec
l(++f—]

<=4++- >pc
1(++--)

<—4-+ >pe
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xx CORELATION xx ORDER= 6
<+—+—4- >pec
1(++4-+-=)
2(++4---)
<+-+-—+ >pc
1 (++-+--)
2(+++--=)
<t=—=—tt- >pe
1 (+4=-4-=)
2(+++—--=)
<t=—=t=+t >pc
1(+4-4--)
2({+++---)

S Spe
1(++-+--)
2(+++—-—-)

<—++-—+ >pe
1({++-4--)
2(+++-~~)

<—+—++- >pc

1 (++=-4+=-=)

2(+++~--)
<—-+-+-+ >pc
1l++—+-=)

2(++4--=)



28

*% CORELATION x*x

S R

1(++=4-+--)

2(++-4+--=)

2(++4~—4=-=)

d(+44-+~--=)

L {++4+-=-==)

<+—4—4-——+

1(++-+-+-=)

2(++-++---)

2(++4—-—+—-~)

4 (++4+=-4~-=)

B (++++==-~=)

<t—t—=—=t4-

1({+4-4-4-=)

204++—++-~=)

2{+++=-=-+-=])

bl++4—+-==)

4(++44---=)

<+—F-—=—d—+

1(++=4-+-=)

2(++=44+--=)

2(+4++~—4--)

b (+++~+~-==)

4 (++++—-===)

I. SATO
ORDER= 8
>pc
>pec
>pec
>pec

NSR. 0.U,, Vol. 38

Kt——+4—-+-

1{t+t+—+~=4==)

2(+4~+4~--~)

2(+++==+-=)

Q{++4-4--=)

b (+++4=-m-=-=)

<t——++——+

1(++-+-+--)

2(++—++-~~)

2(++4~~4-=)

A {+4+~4~-~~)
b (++44---=)
R

1 (++-4-+-=)

2(++=-+4=-=-)

2(+++~~+~-=)

(+++-+—-~=)

L(++4++~~~~)

<+=—~+=+-+

1(++=+=4-=)

2{++-++-~--)

20+44~-~-+-=)

d(+44-¢~~=~)

d(+4+4=-~==)

>rc

>pe

>pc

>P°
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<~++—t=—t=
1(+4=-4=-4-=)
20++-++~---)
2(4+4--4~=)
B (++4-t-==)
A(++++=-—=~)
<—+t-d——4
1(++=4=4~=)
2(+4+-+4=-—~=)
2(+44--4~-}
(+4+-+—==)
B (+++4+—-~-~~)
<—tt——t+-
1(++-+-+-—]
2(++=++-—=}
2(++4+~——+--)
b (+++—+~~=)
b (+44+~~=-=)
<—++-—+—+
1(++-4-+-=)
2(++=+4===}
2(+++~—~+-=)
d{++4-4~-=)

(4444 -===)

>pe

>pe

>Pc

>pec

<—4=d4+=+-

Tie+-4-+--}

2{++=4+-==)

2044+ ~--+~=)

b(++4=t~~~)

B (+444~----)

<—4=4+~-~+

1 (+4-4+-#~-=)

20+4-44-=-=)

2(++4--4~-=)

b(+++-+-~--)
b (+++4+=--==)
R

1(+4-4=+-=)
2{+4+-++~--])
2(++4==+~=)
4[+++-+———]
A (+4++4+~—-~-=)
<—t—dmt~t

1 (+4~4-+~=]}
2(++~+4=~=)
2(+++==4~~)
§(+44—+—-~=])

A(++++-~~=)

>pc

>pc

>pc

>pc

29
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From these results we can write down the explicit form of (2.9) for
v'=0:

. 4 s - - —
Gor=ital[ a0 sy,
+eiwo(t—t‘) e—Tl(t—t‘) <Sz>t]]

t t t s _ _ — —t—
ot AfJo d?flfol dtzjozdta[e ettt ST ) (g

iw(t—ti—tte,) —To (tte—¢,~¢,)
+eo 1zae.L 123<Sz>t3
+e—iw0(—t+ ttt,—ty) e—rJ_( t+e—t,—ty) (55,
3

—iw(~t+t,~t+t,) —T1(t+e~t—¢
e TR TR (g

+. ... (3.4)

Similarly, eq. (3.4) can be solved immediately by the method of Laplace-
transform. Final result is expressed in the form of infinite continued fraction
(see ref. 4).

§ 4. Conclusion

In this work we present a method to obtain the explicit representation
of the special form of the ‘“‘partial cumulants® (2.13) in the theory of low
field resonance.

In this theory we consider moment equations (2.9) which have some-
what complicated forms. But they can be solved by the method of Laplace-
transform and can be expressed in the form of the infinite continued frac-
tion. To obtain the general form of infinite continued fraction, it is neces-
sary to get the explicit representation of the “partial cumulants™ up to the
12-th order. However, we have to treat a lot of terms in the higher order. For
example, in the eighth order, we must consider 128 terms for a set of {;j},
and calculate the weights of 5 diagrams. If we try to solve without the aid of
the computer, it is a hopeless task to complete the calculations. Thus, it will
be impossible to calculate the higher order terms than the eighth order.

In the previous work we have developed the method to write down the
explicit form of *“partial cumulants” and “ordered cumulants”®). Applying
the method to the present problem, we could discuss the exact treatment of
the theory of low field resonance® . Thus the usefulness of the systematic
use of the computer has been shown explicitly for this kind of problems.
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