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This is a continuation of our recent papers on integration theory. We
shall be concerned, among other things, with showing that the normal
integration considered in [1] is capable of still further generalization.
However, we do not know if the generalization is strict. The new inte-
gration, which we shall call the sparse integration, will be based on
the notion of sparse continuity of functions.

The terminology and the notation of [1] will be used freely. We shall
thus understand by a function, by itself, any mapping of the real line
into itself, unless another meaning is obvious from the context. The sets
considered in this paper will exclusively be linear.

An elementary figure W will be termed sparse, if every component
interval of W is shorter than every open interval contiguous to W. For
instance, each closed interval and the void set are sparse figures.

Plainly, every sparse figure is severed mnormally by every linear set.
Further, ¢f each component of a sparse figure W contains at most one
component of a figure ZC W, then F must itself be sparse.

A function ¢(x) will be called sparsely continuous, or briefly SC, on
a set E, if o(W)—0 as |W|—0, where W is a generic sparse figure
pertaining to E. When this is the case, the function ¢(x) is uniformly
continuous on FE, as easily seen. Clearly, the sparse continuity on E s
hereditary with respect to E.

In the above definition, the total increment ¢ (W) may be replaced by
the total absolute increment ¢*(W). This is immediate from the relation
lop(W)|<*(W) and the following two facts:

(i) Given a function ¢(x), any figure Z is expressible as the union of
two disjoint figures Z, and Z, such that ¢*(Z)=|¢(Z)| and ¢*(Z)=|¢(Z,)|.

(ii) If the union of two disjoint figures is sparse, then so is also each
of the two figures separately.

The following propositions are readily verified : Ewvery fumnction which
18 absolutely continuous, or more generally, normally continwous, on a set
E, is sparsely continuous on K. Again, every linear combination of two
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Sunctions which are sparsely continuous on a set K, is ttself sparsely
continuous on E. Further, every fumction which is sparsely continuous
on a set E and continuous on a set MDE, is sparsely continuous on the
whole set M, provided that M 1is contained in the closure of E.

On the other hand, we do not know whether a function which 1s
sparsely continuous on a measurable set, is mecessarily AD at almost all
points of this set.

THEOREM 1. Given a function ¢(x) which is bounded on a subset M
of a nmonvoid figure Z, demote by J a genmeric component interval of Z.
There then correspond to each number >0 two disjoint sparse figures
UCZ and VCZ pertaining to M and such that

; lo[MNJ]| <e*(U)+o*(V)+e.

PROOF. Let h be a positive number. A closed interval of the form
[qh, (¢+1)h], where ¢ is any integer, will be termed even interval or odd
interval, of length h, according as ¢ is even or odd, respectively.

For each integer n>0 let A, [or B,] be the union, possibly void, of all
the even intervals [or odd intervals] of length 2°" contained in the interior
Z° of the figure Z and let us write C,=A4,YB,. Then A4,, B, and C, are
figures and Z° is the limit of the ascending sequence C,CC,C ----. Hence,
if J is a component of Z, the set o[MNJ°]=¢[(MNJ)NZ°] is the limit
of the ascending sequence <p[MNJNC,]>. It follows that

I@[MmJ]lew[MmJ°]I=}L{rg lo[MNINCL],

where |o[MNJ]| is finite since ¢[M] is a bounded set by hypothesis.
Accordingly, given any number »>0, we can choose 7 so large that

lo[MNT]| <|e[MNINC.]|+7  for every J.

We shall keep » and this » fixed in the sequel.

We now distinguish two cases, according as the set M\ A, is finite or
infinite. We shall deal first with the latter case.

Let K be a generic component of the figure A, such that MK is
an infinite set. Since |p[MNK]|=|p[MNK°]|=d(e[MNK°®)), the interval
K° contains a closed interval, say L, pertaining to M and fulfilling the
inequality |o[MNK]| <|e(L)|+7/N, where N denotes the number of the
components of A,. We associate such an interval L=L, with each K and
we denote by U the union of all the intervals Lg. Since every component
of A, is an even interval of length 27", we find that U is a sparse figure
pertaining to M. Now, the intersection J\U, where J is any component
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of the figure Z, is the union (which may be void) of the intervals Lg
for all the KcJ. It follows that

7 ‘
e IMNTNANIS B 16IMAK] S B oo+ 2o 26" (T AU+,

where the two sums mean zero if there is no KC.J.

In the remaining case in which MNA, is a finite set, we choose U to
be the void figure. Then |p[MNJNA, ] =0<e*(JNU)+7.

Replacing the figure A, by B, in the above construction of the figure
U, we obtain a sparse figure V pertaining to M and such that

lo[MNINB)ZSe*(JNV)+n  for every J.
The figures U and V are disjoint, since U [or V] is contained in the
interior of the figure A, [or of B,] and since A, does not overlap B,.

If m denotes the number of the components of Z, the results estab-
lished in the above lead together to the following appraisal:

ZelMNIN <X lpMNTNCL]| +my
=S elMNINAl+Z [e[MNTNB,][+my
=Z e INU)+Z " (INV)+3my
=" (U)+o*(V)+3my.
This completes the proof, since we may suppose 7 so small that 3my <e.

THEOREM 2. Ewery function ¢(x) which is sparsely continuous on a
closed interval I, is absolutely continuous on I.

PROOF. By hypothesis, there corresponds to each ¢>0 a number 6>0
such that, for every sparse figure WCI, the inequality |W|<é implies
p*(W)<e. It suffices to show that ¢*(Z)<3e for every figure ZCI with
|Z|<o. We may plainly assume Z nonvoid.

Let J denote a generic component of Z. The function ¢(x), which is
sparsely continuous on I, is continuous and hence bounded, on this interval.
Accordingly Theorem 1, where we specialize the set M to Z itself, ensures
the existence of two sparse figures UCZ and VCZ such that

SlelTl <e*(U)+¢* (V) +e.
But ¢*(U)<e and ¢*(V)<e, on account of |U|<d and |V]|<4d. Thus
o*(2) =2 g =T o7 <3e,
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since ¢(x) is continuous on I and hence |¢(J)|=|p[J]| for every J. This
completes the proof.

THEOREM 3. A function ¢(x) which ts sparsely continuous on a set
E, necessarily maps every closed null set SCE onto a null set.

PROOF. As in the proof for Theorem 2 of [1], we may assume the
null set S to be nonvoid, perfect, and bounded.

By hypothesis, given any ¢>0 there is a number >0 such that for
every sparse figure W pertaining to FE, the inequality |W]|<d implies
o*(W)<e. We can easily enclose S in a figure Z with [Z| <4 and pertain-
ing to S. The function ¢(x), being sparsely continuous on E, is continuous
on E and hence bounded on S. Accordingly, by Theorem 1, there exist in
Z two sparse figures U and V pertaining to S and such that

S eISNT <o (U)+¢* (V)+e,

where J stands for a generic component of Z. Since |U|<é and |V]|<4,
we have ¢*(U)<e and ¢*(V)<e. We thus obtain the following relation,
which completes the proof since e is arbitrary:

LSS lp[SAT] <3e.

A function will be called generalized sparsely continuous, or GSC for
short, on a set FE, if the function is continuous on E and if E is expressible
as the union of a sequence of sets on each of which the function is sparsely
continuous. This property of a function is clearly hereditary with respect
to the set E.

The following propositions are obvious. (i) Every fumnction which s
GAC on a set E, or more generally, GNC on E, i1s GSC on this set. (ii)
FEvery linear combination of two functions which are GSC on a set, is
itself GSC on this set. (iil) A function which 18 GSC on a closed set,
necessarily maps every closed null subset of this set onto a null set.

Of the following four theorems, the first one is provable in a routine
way, while each of the other three may be established in the same way
as for the corresponding theorem of [1].

THEOREM 4. In order that a function which 1s continuous on a
nonvoid closed set S, be generalized sparsely continuous on S, it 18 meces-
sary and sufficient that every monvoid closed subset of S contain a portion
on which the fumnction is sparsely continuous.

THEOREM 5. Ewery function which is generalized sparsely continuous
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on a closed interval I and which possesses a monmegative approximate
derivative, finite or infinite, at almost every point of this interval, 1is
monotone nondecreasing on I.

THEOREM 6. If two functions are generalized sparsely continuous on
a closed interval I and approximately equiderivable almost everywhere on
I, them the functions differ over I only by an additive constant.

THEOREM 7. Ewery function which 1s both BV and GSC, on a closed
set, i1s AC on this set. Thus every function which is both GBV and GSC,
on a closed set, is GAC on this set.

We think it needless to state at great length the descriptive definition
of the sparse integration. The basic properties of the sparse integral are
the same as those of the normal integral, inclusive of the integration by
parts theorem and the second mean value theorem.

The sparse integration clearly includes the normal integration (though
we do not know if they are the same things) and hence generalizes strictly
the Denjoy integration.

THEOREM 8. If a function ¢(x) s sparsely continuous on a set K,
there corresponds to each >0 a number >0 such that, for every finite
disjoint sequence {Q., ----,Qy of compact sets which are contained in E,
the imequality |Qi|+----+|Q.] < implies |@[@)+ - +lo[Q.)] <7.

PROOF. We may assume the sets @, ----,Q, nonvoid and perfect,
without loss of generality. By hypothesis, given any ¢>0 there is a >0
such that for every sparse figure W pertaining to E, the inequality |W|<d
implies ¢*(W)<e. The numbers ¢ and ¢ will be kept fixed in the sequel.

Let Z denote a generic figure pertaining to the set Q=Q,\J.----UQ,
and containing Q. If n=2, then by the same argument as in the proof
for Theorem 13 of [1], we can choose Z in such manner that |Z|<d and
that, for each component J of Z, the intersection @\J is contained in one
of the sets @, ----,Q, But such choice of Z is clearly possible for n=1
also. We shall keep fixed the figure Z thus chosen.

Let us arrange the components J of Z in a sequence J,<:-:- <Jp,.
Then the partition of @ into the sets QNJy, -+ ,Q@NJ, must be a refine-
ment of the partition Q=@,\V----UQ,. We therefore have

lpl@I+-- - +lol@ull Slel@NIl+ - - +lpl@N TRl

By Theorem 1, on the other hand, there are in Z two sparse figures U and
V pertaining to @ and such that
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lo@NJ ]|+ - - +e[@NTn]l <e*(U)+¢* (V) +e.

But |U|<|Z| <6 and similarly for V, so that o*(U)+¢*(V)<2:. We thus
find finally that |o[@Q]|+----+]|¢[Q.]] <3¢, which completes the proof since
we may take e=y/3 in the above.

THEOREM 9. A function ¢(x) which ts sparsely continuous on a
stgma-closed set A, necessarily fulfils the conditton (S,) on this set. More-
over, the function has finite fluctuation on every bounded Borel set BC A.

PROOF. Theorem 8 implies in particular that every function which is
sparsely continuous on a set F, fulfils the weak condition (S) on E. This,
combined with Theorem 11 of [1], shows that the function ¢(x) fulfils the
condition (N) on A. Then the condition (S,) part of the assertion may be
deduced in the same way as for Theorem 14 of [1]. Finally, the finite-
ness of the fluctuation Z(¢;B) follows from Theorem 18 of [1].

From now on, if a theorem is stated without a proof, let it be tacitly
understood that the proof is the same as that of the corresponding result
in the paper [1].

THEOREM 10. Given a function ¢(x) which is sparsely continuous on
a bounded sigma-closed set A and approximately derivable at almost all
points of A, let us write, for definiteness, ¢,,(§)=0 for every point é= R
at which the function ¢(x) is not approximately derivable.

Then the function ¢,,(x) is summable over A. Further, the fluctuation
B(p; M) 1s expressed for every Borel set MCA by the formula

a<so;M)=SM|go;p(:c>r da .

THEOREM 11. Suppose that a function ¢(x) is sparsely continuous on
every portion of a sigma-closed set A and approximately derivable at
almost all points of A. In order that ¢(x) be steplike on A, 1t is meces-
sary and sufficient that ¢(x) be approximately derivable to zero at almost
all points of A.

THEOREM 12. Any function ¢(x) which 1is sparsely continuous on
every portion of a sigma-closed set A and approximately derivable at
almost all points of A, 1s ACS decomposable on A and fulfils the con-
clusions (i) to (iii) of the assertion stated at the beginning of §6 of [1].

A function ¢ (x) will be termed sparsely fluctuant, or SF for short,
or again to fluctuate sparsely, on a set E, if sup|e(W)| <+4co, where W
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stands for a generic sparse figure pertaining to E. Plainly, this property
of ¢(x) is hereditary with respect to E.

When this is the case, we have also sup ¢*(W)<+co, as found easily
by means of the two propositions (i) and (ii) on p. 91. Moreover, such o
function ¢(x) is necessarily bounded on E. We have further the follow-
ing obvious propositions: (i) A function which s BV, or more generally,
normally fluctuant, on a set E, is always sparsely Auctuant on E. (ii)
Every linear combination of two functions which Auctuate sparsely on a
set, itself does so on this set. (iii) A fumnction which fuctuates sparsely
on a set K, necessarily does so on each set MDOE contained in the closure
of E, provided that the function s continuous on M.

THEOREM 13. FEwvery function which 1s sparsely continuous on a
bounded set is sparsely fluctuant on this set.

THEOREM 14. [If a function ¢(x) Auctuates sparsely on a set E, this
set contains at most a countable infinity of points at each of which the
Sunction is discontinuwous on K. More precisely, if {xy, -+--,%. 1S any
Sinate distinct sequence of such points and 1f W denotes a gemeric sparse
figure pertaining to E, we have the relation

og(p;x) 4+ +og(p;x,) Ssup p* (W) < +oco.

THEOREM 15. A function which s sparsely fluctuant on a set E,
necessarily maps every Borel set MCE onto a measurable set.

By means of this theorem and Theorem 28 of [1], we can define the
fluctuation E(p;M) for every function ¢(z) and every Borel set M on
which ¢(x) fluctuates sparsely. This fluctuation may be infinite.

THEOREM 16. A function which fluctuates sparsely on a sigma-closed
set A, mecessarily has finite fluctuation on every Borel set MCA.

PROOF. Writing p(A)=sup ¢*(W)< -+, where W denotes a generic
sparse figure pertaining to A, we shall show that Z(p;A4)=<2p(4). We can
utilize the greater part of the ideas of the proof for Theorem 30 of [1].
We may suppose A bounded.

Taking an open interval DDA, consider any nonvoid finite set SCD
and let the components of the open set D\S be D,<----<D, in their
natural ordering. It suffices to prove the inequality

lo[FAD|+ -+ +|e[FND,]| £2p(A)
for each closed set F’ contained in the set AN\S.
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This being so, we enclose the set FN\D; in a closed interval J,CD;
for +=1,:----,n and we write Z=J,\J----UJ,, so that FCZ. By Theo-
rem 1, there then correspond to each ¢>0 two sparse figures U and V
pertaining to F' and such that

lo[FNL]+ -+ lo[FNL) <o*(U)+o* (V) +e,

where we must have both ¢*(U)=p(A) and ¢*(V)=p(A) by definition of
the quantity p(A4). Consequently it follows that

iz=:1 lelFND:]l = ?31 lo[FFNJd)| <2p(A)+e.
This completes the proof, since ¢ is arbitrary.

THEOREM 17. Any function which 1s sparsely continuous on every
countable subset of a set K, 1s of mecessity sparsely continuous on the
whole set E.

A function will be called semisparsely continuous, or SSC for short,
on a set E, if it is sparsely continuous on every closed null set contained
in E. Such a function is necessarily continuous on FE, the proof being the
same as in Theorem 31 of [1].

The following assertions are obvious. (i) The semisparse continuity
of a function on a set i1s hereditary with respect to this set. (ii) Ewvery
linear combination of two functions which are SSC on a set E, is itself
SSC on E. (iil) A function which 18 SSC on o set E, nmecessarily maps
every closed null set contained in E onto a null set.

As Theorem 17 clearly implies, a function which is sparsely continuous
on every null subset of a set E, is necessarily sparsely continuous on the
whole set E. In contrast with this fact, we do not know if the following
statement is true (though its converse is evidently true).

ASSERTION (a). FEwery function which is semisparsely continuous on
a closed set, 1s sparsely continuous on this set.

We shall say that a function is generalized semisparsely continuous,
or GSSC for short, on a set E, if the function is continuous on E and if
E is expressible as the union of a sequence of closed sets on each of which
the function is semisparsely continuous. When this is the case, the set E
is sigma-closed of itself.

The following propositions are obvious. (i) Ewery function which 1s
generalized sparsely continuous on a sigma-closed set, 1s GSSC on this
set. (ii) The GSSC property of a function on a sigma-closed set E 1is
hereditary with respect to E. (iii) FEwery linear combination of two
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Junctions which are GSSC on a set E, is itself GSSC on E. (iv) A
Junction which is GSSC on a set E, mecessarily maps every closed null
set contained in E onto a null set.

We do not know if the following statement is true. At least, however,
it is an evident consequence of Assertion (a).

ASSERTION (b). Ewery function which 1is generalized semisparsely
continuous on a closed interval I and approximately derivable almost
everywhere on I, 1s generalized sparsely continuous on I.

THEOREM 18. FEwery function which s generalized semisparsely
continuous on a closed interval I and has a monnegative approximate
derivative, finite or infinite, at almost every point of I, is monotone
nondecreasing on I.

THEOREM 19. If two functions are generalized semisparsely continuous
on a closed interval I and approximately equiderivable almost everywhere
on I, then the funtions differ over I only by an additive constamnt.

THEOREM 20. Ewvery function which is both BV and GSSC, on «
closed set, is AC on this set. Hence, every function which is both GBV
and GSSC, on a closed set, is GAC on this set.

Using the above results, we can easily introduce an integration named
semisparse. The definition and the basic properties of this integration are
the same, mutatis mutandis, with those of the sparse integration. Among
others, we have the integration by parts theorem and the second mean
value theorem.

Of the sparse and the semisparse integration, the latter one plainly
includes the former. As readily seen, on the other hand, the latter is
strictly wider than the former, if and only if Assertion (b) is false.
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