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§1. Introduction.

We are concerned in this paper with the potential theory for recurrent
Markov processes introduced by T. Ueno [6]. He studied a pair of measures
¢¥ and pi satisfying

(1.1) pr()=prH(:), px()=piHi(-),

where Hy(x, ) is the hitting measure to the set K. In the case of the
Markov processes with Brownian hitting measures on R? Ueno [6] proved
that pf coincides with the equilibrium measure on K with respect to the
classical Green kernel of the component. Under the assumption of sym-
metry of the Green kernel, Kitamura [5] showed that the measure v}
multiplied xf by the Ueno capacity is the equilibrium measure on KC L.

From these arguments we anticipated that such a fine relation is valid
in broader recurrent Markov processes, namely, a pair of measures pf and
1% satisfying (1.1) is a new probabilistic characterization of the equilibrium
measure. However, it now turns out to fall short of our expectations. In
fact when the underlying Ueno process X is in duality with another Ueno
process X, the corresponding measure 9% for the dual process X is the
equilibrium measure on K with respect to the original Green kernel. Our
aim here is to prove this and the fact that the potential induced by 9§
equals to the hitting probability for K before attaining to L.

On the other hand, Chung [2, p. 139] ensures the existence of dual
processes for the spatially homogeneous Markov processes. In particular,
the spatially homogeneous Markov processes with the temporally homo-
geneity constitute a large and important class which are called additive
processes. Thus our situation treats rather broader Markov processes and
our results are better than before.
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§ 2. Preliminaries.

We refer the reader to [4] and [5] for all terminology and notation
not explicitly defined here. Let R be a separable Hausdorff locally compact
space containing at least two points and satisfying

(R.1) For each point xR, we can take a countable base of neigh-
borhoods of 2 consisting of arcwise connected open sets,

(R.2) R is connected.

We denote by B the topological Borel field of subsets of R. For a set
A€ B and a path function X(¢t) from [0, ) to R, the entry time D, to
the set A is defined by

D,=inf{t=0]| X(t)= A}, if such t exists,
=00, otherwise.

First, we define Ueno processes [6]. We will say that a standard
process X={X(t)} with state space R is an Ueno process provided :

(X.1) Recurrence: P, (X(t)e A for some 0st<)=1 for any xR,
Ae B,

(X.2) For any continuous function f on A, H,f is continuous in A°,
where the operator H, is defined by H,f=E.(f(X(D,)); D,<) and A is
a closed set in R containing an inner point,

(X.8) Maximum principle: For non-negative continuous function f
in A, H,f(x) is either strictly positive or 0 for all points x of any one
component of A°, where A is a closed set in R containing an inner point,

(X.4) For any continuous function f on R, the resolvent U*f is con-
tinuous on R,

(X. 5) ’There is no point of positive holding time.

Now, we introduce the Green measure

Dy,

UL(x,A):ExGO IA(X(t))dt>, reR, AcB

for any closed set L containing an inner point, where I, takes 1 on A4, 0
on A° respectively. Let § be the family of all {K, L}, where K and L
are mutually disjoint closed sets in R and in particular K is compact.
Ueno [6] proves that for each {K, L} there is a unique pair of measures
¢r and pkx with total mass 1 on K and L respectively, satisfying
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()= k() =\ pk(dn) o, ),
me«)=p§fHL<-):SKﬁ;f(dx)HL<x, ).

Making use of these pf, p%, Ueno defines his own Green capacity denoted
by C(K, L), which is the Green capacity of K with respect to L. Set

vi()=C(K, L) pz(-) .

Then we have the following lemma concerning the Ueno capacity.'

LEMMA 2.1. Suppose that {K’, L}, {K,L}e® and K'CK. Then we get
C(K', L)= Svf(dw)Px(DK, <Dy).

(Theorem 2 of [5]).

Moreover we introduce the measure
1) ()= VE@n)Usle, )+ k(@) Utz ).

It is known that this measure is independent of the choice of {K, L}=®
and takes positive value for each Borel set with inner points. Then Ueno
[6] proved that the Green measure U.(x, -) has a density function wu.(x,y)
relative to m, that is,

Ul(e, A)= SAuL(x, yym(dy)

holds for a set A=B.

Next, we say that the Ueno processes X and X are in duality relative
to the measure m provided that for each a>0 there is non-negative
function «#* with the following properties :

(i) the function x—u*(x,y) is a-excessive relative to the resolvent
{U*} for each y= R and a>0,

(ii) the function y—u*(x,y) is a-excessive relative to the resolvent
(U=} for each z=R and a>0,

(1) Uf@)=\u(e, ) f)m(dy) and fO@)=\f(@)u'(e, ym(de) for
a>0 and a bounded function f and z,y< R, where U¢ is the resolvent for
the dual process X.

This definition comes from Blumenthal-Getoor [1]. In this paper we

consider the Ueno processes whose dual processes exist. The next two
lemmas will be useful to proof of the main results later on.

LEMMA 2.2. Suppose that standard processes X and X are in duality
relative to the measure m. Then for each a=0 and a Borel set A
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Piu(x, y)=uPix, ), v, yeR,
where for a Borel set A |
Pif(@)=E (e "4 f(X(T4); Ta<o0),
T,=inf{t>0| X(t)yes A}, if such t exists,
=00, otherwise
(Theorem 1.16 in Chapter VI of Blumenthal-Getoor [1]).
LEMMA 2.3. Let X and X be a pair of standard processes in duality

relative to m. Then for each a=0 and o Borel set A there exists «
Sunction ui(x,y) such that '

(i) zf<x>=8ufz<x, ) m(dy)
(i) wu*(x,y)=uilr,y)+Piu*(x,y).

Set fﬁi(y):Sf(oc)uﬁi(oc, y)ym(dx). Then x— ui(x,y) 1is a-excessive relative

to the resolvent {US} for each'y, and y— ui(x,y) 18 a-excessive relative to
the resolvent {ﬁj;‘} Sfor each x, where for a Borel set A

Ui =B e ar)

(Tfiéorem 2.5 of Getoor [3]).

§ 3. Equilibrium measures of Ueno processes.
In this section we prove two theorems. In order to prove them the

following lemma is essential.

LEMMA 3.1. Let {K,L}e&. For x,yc=K we have

SK’“L(“; Y) :%LSK<9C; Y) .
Here we denote_ o

Sel®, -)=Hy Hy(z, ->:SRHL<x, dy)Hxly, -) .
PROOF. Chbose a>0. Let G be an open neighborhood of K such that
GNL=¢. Set c
' Si(w, -)=P¢Pa(, -):SPz(x, dy)Pa(y, -) .

First of all we show that Sgug(x,y)=usS%(x,y) for z,y=K. By Lemma
2.3 we get S ' '

B1).. . S¢ulx,y)=PFPiui(x,y)
- =PiPgu(x,y)— Pz PEPiu*(x,y)
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for z,ye K. S , ‘
Consider the first term of the right side in (3.1). It follows from
Lemma 2.3 that

(3.2) P3 Pauc(s, y) = Spm, d2)(u*(z, y) — ud(z, ).
Now for zeL and ACG

Us(z, A) :EZ<ST

0

Ge-wIA(_Xm)dt): \ use, yymdy)

The middle term of the above iden’gity vanishes and so U¥(z, y) equals zero
for almost every y<=G relative to the measure m. Moreover ué(z, ¥)=0 is
true for all y=G because G is open and u&(z,y) is a-coexcessive with
respect to y. Therefore by applying Lemma 2.2 to (3.2),

Ps Pgut(x, y)= SP%(%, d2)u(z, )
= Su(oc 2)Ps(dz,y) .

Besides u&(x, z) is equal to zero for x=K and 2z L since U¥(x, A)=0 for
ACR and ug(x,z) is a-coexcessive with respect to z. Consequently by the
another aide of Lemma 2.2 and Lemma 2.3 it follows that

(3.3) P$ Pau(a, y):S(u“(x, 2)—us(z, 2)Pi(dz, y)
=S 2u(z, 2)P3(dz, )
- Su“(m, w)Ps(dw, 2)P3(dz, 1)

:u“S’g(x, Y)
for 2,y K.

We turn now to the second part of the right hand in .(3.1). Applying
Lemma 2.2, we get for z,yc K

(3.4) P PgPsu(x, y)=PiPsu Pi(z,y)
=Piu*PgPi(x,y)
=PsuSex, y) .

Therefore we substitute (3.3) and (3.4) for (3.1) to get

Saug(z, y)=u"Sax, y)—PiuSa(z, y)
=\(u*(z, 2)— Psu*(x, 2))S&(dz, v)
=ug 8%z, y)

for z,y=K as desired.
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For typographical convenience, we write D, for the entry time to the
set G, and suppress the letter G in our notations of D,, S& P% and HZ
We can find a decreasing sequence of open neighborhoods {G,} containing
K such that D, T Dg almost surely P, and D, 1 Dy almost surely P,. See
Lemma (10.10) of Blumenthal-Getoor [1]. Then making use of the quasi-left
continuity of paths we obtain

lim S%(x, A)

N —~r00

I

{Ps(z, dy)(1im Picy, 4))

I

SHg(x, dy)(lim H(y, A)>

n—oo

Il

\Hrs(o, dy) Hily, 4)
for xe K and A= B, where
Hif(w)=FE (e *?4f(X(D,); Dy4<0).
Thus by setting S¢=H{H% this yields
(3.5) lim Sz, A)=S&(x, 4).

n—oo
By the same argument as (3.5)

lim S3(4, ) =S%(4,y)

n-o

is true for y=K. Therefore we have limSZuf(x,y)=S%ui(x,y) and

- —>00

lim w2 S2(z, y) =uiS%(x,y). And so

(3.6) Sgui(z, y)=ui S, y), v,y kK.
Consequently the desired conclusion follows by letting « | 0 in the equation
(3.6).

Now we add the following two assumptions.

(A.1) If a bounded function f on L° vanishes outside a compact
subset of L¢, then ff/’L(y)ZSf(x)uL(oc, y)m(dx) is a continuous function of
y on L°.

(A.2) If {f,, A= 4} is a uniformly bounded class of bounded functions
on K, {Hxf,, A= A} is equicontinuous on each fixed compact subset of K¢,

where K is a closed set (xR) with an inner point. The assumptions
(A.1) and (A.2) go back to Blumenthal-Getoor [1, p. 265] and to Ueno [6],

respectively.

LEMMA 3.2. Assume that (A.2) holds. For any measure p on K and
v on L with total mass 1, u(Sg)", v(S.)"*, n=1,2,----, converge to the
unique limit p¥ and pk respectively, with respect to the morm of total
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variation, and exponentially fast (Proposition 2.2 of Ueno [6]).

We are now ready to prove the main theorems on equilibrium prob-
lems of Ueno processes.

THEOREM 3.1. Suppose that (A.1) and (A.2) hold. Then for {K, L}=$
u oF=1 on K.
PROOF. Under the assumption (A.1) a finite measure concentrated on
K may be chosen so that
(3.7) upp=Hg  1=P.(Dg<Dyp) on L°
is true, where
Hy (2, A)=P(X(Dx)e A, Dx<D,), AeB.

This is proved by the similar way as page 271 of [1]. Then it follows
from Lemma 3.1 that

ur S p(@) =Sxur p(@)=Sklx, K)
for x= K. Since recurrence of our process yields Si(z, K)=1, we get
uLSKyZI on K.
Hence by induction on #

(3.8) wi(Sg)"p=1 on K.

Combining Lemma 3.2 with (3.8) we obtain

11 & \a

=uLpr (%)

for x= K. That is,
(K pf=1 on K.

In order to complete the proof of Theorem 3.1 it remains to show that

A

p(K)=C(K,L)=C(K, L). Choose a compact set K’ such that KCK’® and
K'nL=¢g, where K’° denotes the interior of the set K’. Then it follows
from Lemma 2.1 and (3.7)

(3.9) C(K,L)= Suf (d%)Po(Dx < Dy)
=Suf'(dx)um(w)

= <Sy{f’(dac)uL(m,y)>,u(d?/)-
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We will prove that Sv}f’(dm)uL(oc, y)=1 for ye K. In fact for any set 4
contained in K’

m(A) =\ (@) Uz, 4)
=\ ((r @, v )y

by the definition (2.1) of the measure m. Therefore Svf'(dw)uL(w, y)=1 for
almost every y<= K’ relative to the measure m. Also since Sv,’f'(dw)uL(ac, Y)
is coexcessive with respect to y, we have Suf'(dm)uL(x,y)zl for y in K'°

and in particular Sv,’f’(dm)m(m, y)=1 for y in K as desired. Thus it follows
from (3.9) that C(K,L)=p(K). On the other hand it can be shown

A

similarly as on page 285 of [1] that p(K)=4(K). Also a(K)=C(K,L) is
true by duality. Consequently we have

p(K)=C(K,L)=p(K)=C(K, L).
Theorem 3.1 tells us that 9% is the equilibrium measure for the

kernel wu.(z, ).
Finally, under the same conditions as the previous theorem we prove

that the potential of ¥ is the hitting probability of K before reaching L.
Since Kakutani this beautiful theorem is fundamental in the probabilistic

potential theory.

THEOREM 3.2. Suppose the assumption (A.1l) and (A.2). Then for
K, L}y
X =P.(Dg<D;) on L°.

PROOF. Choose x= L°. Let {G,} be a decreasing sequence of open sets
containing K such that D, 1 Dg almost surely P,. As before, we suppress
the letter G in the notation of D, and H,,. Then for a set ACG,, we

have
Unte, A)=E.( | "LX(t)dt)

D
=E(\ "L(X@)dt; Do<D,)
+E<S: , s Dy> Dn>+Ex<S

=B Bro (| “TUX @)t ; D.>D,)

Dy
” DL>Dn>
Dy,

=E,(U(X(Dy), A); D> D)

— SHn,L(w, dy) Ur(y, A)
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by the strong Markov property. Thus
{ st wymiay) = (o ate, deduste, ) Jm(ay)
for ACG,, namely we have for y
ur(z, y):SHn,L(:c, dz)uz(z, y) a.e. (m) on G,.
Since SHn,L(oc, dz)ur(z, y) is coexcessive with respect to y, we get for all
YEGa
(3.10) w9 =\ Hyal, d2)uslz, v)
Particularly (3.10) is true for all y in K. Letting n 1 oo in (3.10), we have
(3.11) us(z, )=\ Hyale, deualz, )
for y= K. Consequently it follows by combining (3.11) with Theorem 3.1
0 SE (@) =\ H 2(o, d)us S5 (2)
=\ Heslo, a1
=P,(Dx<Dy),

which completes the proof of the theorem.
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