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Introduction. This is a continuation of our recent papers on
integration theory. We shall introduce a new integration which
strictly generalizes that of Denjoy and which will be termed the
normal integration.

In our opinion, the most fundamental notion in the theory of the
Denjoy integration is the absolute continuity (in the wide sense) of
functions. The author has endeavoured for long to obtain a natural
and usable generalization of this notion. It appears to us that the
present paper contains an answer to this problem. The new concept,
termed normal continuity, has something in common with the
incremental continuity of [5] and indeed was developed from the
latter. '

The theory of the normal integration will be built on the basis
of the normal continuity. This integration will occupy the first three
sections of this paper. The following four sections will deal with
further properties of normally continuous functions and with basic
results on functions called normally fluctuant. These latter func-
tions generalize the notion of the functions of bounded variation
(in the wide sense), just as the normal continuity generalizes the
absolute continuity. The final section will be concerned with a few

open propositions on the normal continuity and with related consid-
erations.

§1. Normally continuous functions.

As in our previous papers, a function, by itself, will always signify
a mapping of the real line R into itself, unless another meaning is
obvious from the context. We shall denote by N the set of the
positive integers. A set (&,) will synonymously be called sigma-
closed set.

A linear figure W, void or not, will be said to pertain to a
linear set E, if E contains the boundary of W, namely the set of
the endfpoints of the component intervals of W.
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We shall say that a linear set E severs a figure W normally, if
every open interval contained in W and disjoint with E is shorter
than every open interval contiguous to W. For example, each closed
interval and the void figure are severed normally by any linear set.

Plainly, if a set E severs a figure W novmally, so does also every
set containing E. Further, if each component of a figure W contains
at most one component of a figure ZCW and if W is severed normally
by a set E, then so is also the figure Z.

A figure W will be termed to pertain normally to a set E, if W
pertains to E and if E severs W normally.

Given a function ¢(x) and a figure W, we shall denote by (W)
the total increment of ¢(x) on W ; in other words, ¢(W) stands for
> ¢(K), where K ranges over the components of W and where a
- void sum means zero. Replacing here ¢(K) by |p(K)|, we define

further a quantity ¢*(W) named the fotal absolute increment of ¢(x)
on W. We thus have

(W)= | Z (KIS X | p(K)|= o*(W).

A function ¢(x) will be called normally continuous, or briefly NC,
on a linear set E, if o(W)— 0 as |W|— 0, where W means a generic
figure pertaining normally to E. When this is the case, the function
¢(x) is plainly continuous on E.

In the above definition of normal continuity, the total increment
(W) may be replaced by the total absolute increment ¢*(W). This

is immediate from the relation |o(W)|<¢*(W) and the following two
simple facts.

(1) Given any function ¢(x), each figure Z is expressible as the
union of two disjoint figures Z, and Z, such that

o*(ZD=lp(ZD| and ¢*¥(Z)=|p(Z,)I.

(ii) If the union of two disjoint figures is severed normally by a
set E, then so is also each of the two figures separately.

The following propositions are readily verified: Every function
which is absolutely continuous on a set E, is normally continuous on
this set. The converse of this also holds, provided that the set E is
a closed interval. Again, every linear combination, with constant
coefficients, of two functions which are NC on a set E, is itself NC on
E. Furthermore, qua property of a funciion, the normal continuity
on a sel is heveditary with respect to this set.

On the other hand, we do not know if a function which is NC
on a measurable set, is necessarily AD at almost all points of this set.
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Given a figure W and a set E, we shall write 6(W;E)=sup |H|
by definition, where H denotes a generic open interval contained in
W and disjoint with E, and where the supremum vanishes if there
is no such H. This quantity 6(W;E) is finite, since ¢(W;E)|W|.
We find easily that if a nonconnected figure W is severed novmally by
a set E, then 6(W;E)<min |G|, wherve G represents the open intervals
contiguous to W.

In the following theorem, the set '=E,NE,N++-+ and the func-
tion 2(x) are the same things as in Theorem 6 of [5] and its proof.

THEOREM 1. The function 2(x) is normally continuous on the set
I, without being GBV on any portion of I.

Proor. We shall only outline the proof, since it resembles that
for Theorem 6 of [5]. Let W be any figure pertaining normally to
I'. Tt suffices to show that if neN and 5=<¢(W;I"H<5™ then
[Q(W)|<4n™i.

Noting that W is nonvoid, let us consider a generic component J
of W. Then J must be contained in a component of the figure E,_..
To verify this, suppose if possible that the contrary is true. Then
J contains an open interval, say H, which is contiguous to E,_; and
hence to I' also. But we have |[H|=5"" by definition of the sequence
(E, E, ++++>. This contradicts [H|<e(W ;<5

On the other hand, each component K of E,_; can contain at most
five intervals /. For otherwise K would contain at least five open
intervals contiguous to the figure W which pertains normally to 1.
There would then arise the contradiction 5'=|K|>560(W;[)=5"".

Since the figure E,_, has exactly 3*' components, it follows from
the above that W has at most 5-3"" components. This fact, com-
bined with the appraisal O(2;K)<2»'3™ valid for each K, leads at
once to the relation

IQ(W)VéjZiQC]) [<5:3"12n7' 3" <dn,

which completes the proof.

THEOREM 2. A function ¢(x) which is normally continuous on a
linear set E, necessarily maps every closed null set Q contained in E
onto a null set.

Proor. Since every closed set is expressible as the union of a
sequence of compact sets, we may assume that @ is itself compact.
Moreover, we need only consider the case where @ is noncountably
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infinite. Then @ must contain a perfect set P such that "\ P is a
countable set. It follows that @ may further be assumed perfect.
Thus @ is a nonvoid perfect set which is bounded and null.

Let I be the minimal closed interval containing @. Then the
open set G=I\& 1is the union of all the open intervals H con-
tiguous'to & and we have |G|=|I|. Given any §>0, let us denote
by G(3) the union of all the H with |H[>§, so that |G()|— |I| as
d—>0. We find easily that if we write W() for I\G(3), then W)
is a figure containing @ and pertaining normally to @. Moreover,
W (| —0 as § — 0.

The function ¢(x), which is NC on E, is NC and continuous on @.
Let K be a generic component of the figure W(5). Then K contains
a closed interval L pertaining to @ and such that [o[@ NKJ|<|e(L)|.
We associate with each K such an interval L and we denote by
Z(5) the union of all the associated intervals L. The figure Z(5)
then pertains normally to @ and hence to E also, while we have
IZ(OI=Z|W (). Consequently it follows, in view of the relation

\¢[Q]|=l§<p[QﬂK]lé%lso[QﬂK]lé%’.lgo(LN:go*(Z(ﬁ)),

that |p[@]]— 0 as d — 0. This implies the nullity of ¢[&@], since the
set @ is independent of the number 6. The proof is thus complete.

LEMMA 1. If a closed interval ] pertains to a subset M of the
closure of a linear set E and if a closed interval K pertaining to the
set E 1s contained in an open interval DD J, then

0CK; EX<0(]; M) +IDN\J\.

Proor. Assuming 6(K;E) positive, as we clearly may, consider
any open interval Hc K disjoint with E. Then H is disjoint with
the set M, since M is contained in the closure of E. Thus we have
HnJ|=IHnJ°|<6(J; M), J° denoting the interior of /. Now plainly
|H|=|H N J|+|H\J|, where |[H\J|=|K\J|. It therefore follows that
|H|Z6(];M)+|K\J|, whence we get 0(K;E)<6(J;M)+|K\J|. On
the other hand, it is obvious that the set K\ J and the nonvoid open
set DN(JUK) are disjoint and both contained in D\/J. Hence
KN J|<ID\J|, which completes the proof.

LEMMA 2. Given a nonvoid figure Z pertaining normally to a
subset M of the closure of a linear set E, let the components of Z be
J<oeeoeJ, tn their natural order, wheve J,=[p;,q.] for i=1,+«++ n.
There then corresponds to each n>0 a figure W with exactly n com-
ponents and pertaining normally to E, such that if the components of
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W are K,=[7;,8,], where 1=1,++++,m and K,<++++<K,, we have the
inequalities '

lri—pd<ly and |s;—q|<y for every i.

Proor. The assertion being trivial in the case in which n=1,
we may suppose that »n=2. Writing A=min |G|, where G represents
the n—1 open intervals contiguous to Z, let us take a number p >0
such that

o<y and 4p<2—-0(Z;M),

where 6(Z;M)<a since M severs Z normally. We then have 4p<a

The set M being contained in the closure of E, we can associate
with each 7=1,..+-,# a closed interval K,=[7;,s;] pertaining to the
set E and such that |r,—p,|<e and |s;—q,|<p. Then the open interval
D,=(p;—p, q;+p) contains both the intervals J, and K, It thus
follows from Lemma 1 that

0K, ED0(] s M)+IDN\J:d=6(J;; M)+2p.

On the other hand, we have K,<--++-<K, since 4p<A. We shall show
that the figure W=K,U.---UK,, whose components are the intervals
K, and which pertains to the set E, is severed normally by E.

Among the intervals K,, --++, K, there evidently exists one, say
K,, such that 6(W;E)=0(K,;E). But 0(K,;E)<6(J.;M)+2p, by
what was already proved. Consequently we must have

OW; E)<0(Jn; M) +20=06(Z;M)+2p<2—2p.

In addition to this, each open interval contiguous to the figure W
has length exceeding 1—2p, as we readily see from the choice of the
intervals K,. The set E thus severs W normally, and the proof is
complete.

THEOREM 3. Ewvery function ¢(x) which is normally continuods on
a set E and continuous on a set MDE contained in the closure of E,
is normally continuous on the whole set M.

Proor. Let W denote a generic figure pertaining normally to E.
The function ¢(x) being NC on E, there corresponds to each >0
a number 6>0 such that |p(W)|<e whenever |W|<é6. Let us keep
e and o0 fixed in what follows. It suffices to show that if a figure
Z with |Z|<6 pertains normally to the set M, then |p(Z)|<2e.

We may clearly assume that the figure Z is nonvoid. Let the
components of Z be J,<le«.+<J, where J,=[p,,q.] for i=1,+-++ n.
Given any 5 >0, there is by Lemma 2 a figure W=W () with #» com-
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ponents and pertaining normally to E, such that if these components
are denoted by K,=[7;,s;], where ¢=1,++++,72 and K,<+++-<K,, then

l7;—pil<<yp and |s;—q<yn for every i

On the other hand, the function ¢(x) is continuous on the set MDOE
by hypothesis. It follows that |W|— |Z| and (W) — ¢(Z) as 5 — 0.
We can therefore choose 5 so small that [W|<é and [p(Z)—e(W)|<e.
Then |p(W)|<e and hence we have |p(Z)[<2. This completes the
proof.

§2. Generalized normally continuous functions.

A function will be called generalized normally continuous, or GNC
for short, on a linear set E, if the function is continuous on E and
if E is expressible as the union of a sequence of sets on each of
which the function is normally continuous. 7This property of a func-
tion is clearly hereditary with respect to the set E.

As readily seen, every function which is GAC on a set, is GNC on
this set and every linear combination of two functions which are GNC
on a set, is itself GNC on this set. Furthermore, Theorem 2 and
Theorem 3 together imply that a function which is GNC on a closed
set S, necessarily maps every closed null set contained in S onto a null
set.

The proof of the following theorem is the same as for Theorem
11 of [1], with the help of Theorem 3.

THEOREM 4. In order that a function which is continuous on a
nonvoid closed set S, be genmervalized normally continuous on this set S,
it is necessary and sufficient that every nonvoid closed subset of S con-
tain a portion on which the function is normally continuous.

THEOREM 5. Every function ¢(x) which is genervalized normally
continuous on a closed interval I and has a nonnegative approximate
derivative, finite or infinite, at almost every point of I, is monotone
nondecreasing on 1I.

THEOREM 6. If two functions arve generalized normally continuous
on a closed interval I and approximately equiderivable almost every-
where on I, then the functions can differ over I only by an additive
constant.

REMARKS. As in [1], any two functions are called approximately
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equiderivable, or briefly AED, at a point of R, if at this point the
functions are AD and have coinciding approximate derivatives. We
need only prove Theorem 5, from which Theorem 6 follows imme-

diately.

Proor oF THEOREM b. It suffices to show that ¢(7)=0. In fact,
once this is established, we must have ¢(J/)=0 for every closed
interval JclI, since the hypothesis of the theorem holds as well if
we replace in it the interval I by J.

Let E be the set of the interior points x of I at which ¢},(x)>0.
We shall treat first the case in which we have [\ E|=0. _

Consider any closed interval K cI such that ¢(K)>0. The family
of all such intervals K clearly covers the set E in the Vitali sense.
Hence, by Vitali’s Covering Theorem, this family contains a dis-
joint countable subfamily, say I, which covers almost all points of
E. If we now replace each interval K= by its interior, we obtain
a disjoint countable family, say %, of open intervals. Writing D for
the union of the family %, we find at once that |[EN\D|=0. This,
together with the assumption |7\ E|=0, implies the nullity of the set
Q=I\D, which is closed since D is open. But the function ¢(x) is
GNC on 7. It follows from Theorem 2 that |o[@]|=0.

This being so, consider any function A(x) which coincides with
o(x) for x@ and which is linear on each interval K=9®. Then
[ALQ]]=0 and further 2A(K)=¢(K)>0 for K&M. Moreover, the func-
tion A(x) is continuous on [ together with ¢(x).

Writing I=[a, b], suppose now, if possible, that

p(@)>®), ie Ha)>a().

We take a number y, fulfilling 2(a)>y,>2(b) and not belonging to
the null set 2[@]. The points x=l at which A(x)=y, plainly form
together a nonvoid compact set, whose rightmost point we denote
by x,. Then x, is interior to an interval K,=M, while we evidently
have 1(x)<y,=i(x,) for the points x>x, of the interval I. But the
function i(x), which is linear on K, must increase strictly on K,.
This contradiction proves the announced inequality ¢(7)=0.

We assumed in the above that |[I\E|=0. We now pass to the
general case. Given any ¢>0, consider the function V¥(x)=¢(x)+ex.
This function, being a linear combination of two functions which
are GNC on I, is itself GNC on I. Further, ¥i,(x)=0¢i,(x)+c=e
almost everywhere on I. We therefore find, by what was already
established, that o(I)+¢|I|=¥()=0. It follows that ¢(/)=0, since
¢ is arbitrary. This completes the proof.
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THEOREM 7. Every function ¢(x) which is both BV and GNC, on
a closed set S, is AC on S. Hence, every function which is both GBV
and GNC, on a closed set, is GAC on this set.

REMARKS ON THE PrOOF. By an interval we mean any connected
infinite set of real numbers. Thus the void set and the singletonic
sets are not counted among the intervals. We call an interval finite
or infinite, according as it is a bounded set or not, respectively.
Closed intervals and open intervals are finite.

Proor. We may assume the set S to be nonvoid. There then
exists one and only one function A(x) such that

(i) we have 2(x)=¢(x) for every xS,

(ii) the function 4(x) is linear on any closed interval (if exist-
ent) contiguous to the set S,

(iii) the function 2(x) is a constant on the closure of any infi-
nite interval (if existent) disjoint with S.

The function 2(x) is GNC on the whole R, since it is continuous
on R, GNC on S, and AC on every interval disjoint with S. This
function is further BV on R, as easily verified, and thus has a finite
derivative 2’(x) at almost every point of B. For definiteness, let us
write 1'(&)=0 for every é=R at which 1(x) is not derivable. The
function 1'(x), thus defined over R, is summable on RB. Let L(x) be
any indefinite Lebesgue integral of A’(x). Then L(x) is AC on R
and equiderivable with 2(x) almost everywhere on R.

On account of Theorem 6, the difference 2(x)—L(x) is a constant
on each closed interval. It follows that 2(x)=L(x)+C on the whole
R, where C is a constant. The function ¢(x), which coincides with
A(x) on S, is therefore AC on S. This completes the proof.

§3. The normal integration.

We are now in a position to state the descriptive definition of
the normal integration. A function f(x) will be termed normally in-
tegrable over a closed interval I, if there is a function ¢(x) which is
GNC on I and which has f(x) for its approximate derivative almost
everywhere on I. Any such function ¢(x) is then called indefinite
normal integral of f(x) on I. By the definite normal integral of f(x)
over I we shall mean the increment ¢(f) of its indefinite integral
¢(x). The number ¢(f), which is uniquely determined by the inte-
grand function f(x) and the interval I on account of Theorem 6,
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will be denoted by (ER)L f(x)dx, or simply by fl f(x)dx when there

is no fear of misunderstanding or confusion.

All the properties, except Theorem 19, of the powerwise integral
that are stated on pp. 16-17 of [1] are shared also by the normal
integral, as readily verified. On the other hand, the function 2(x)
of Theorem 1 shows that the normal integration is strictly wider
than the Denjoy integration. In fact, the function £2(x), which fails
to be GAC on the interval U=[0, 1], is nevertheless GNC on U, since
2(x) is NC on the compact null set I'cU and linear on each closed
interval contiguous to I'. This linearity, together with the nullity
of I, implies further that 2(x) is derivable almost everywhere on
U. Hence any function to which Q2(x) is approximately derivable
almost everywhere on U, must be normally integrable, without being
Denjoy integrable, on U.

THEOREM 8. Given any function M(x) which is BV on a closed
interval I="[a,b] and given any function F(x) continuous on the same
interval I, let G(x) be a function such that

Gx)=M(x)F(x)— j:F(t)dM(t) for xel,

where the integral is a Riemann-Stieltjes one. Then

(1) the function G(x) is continuous on the interval I;

(i) if the function F(x) is normally continuous on a subset E of
I, so is on E the function G(x) likewise;

(ii1)) we have GlL,(x)=M(x)F},(x) at almost every point x<I at
which the function F(x) is approximately derivable.

ReMARK. Parts (i) and @iii) of the theorem are implicitly con-
tained in the Saks treatise (see [7], pp. 244-246). For convenience,
however, we made them come out to the foreground, accompanied
with their formal proofs. It is noteworthy that all the three parts
will be deduced, in the following proof, from a common preliminary
argument (virtually a quotation from p. 245 of [71).

Proor. We may clearly assume M(x) to be monotone nondecreas-
ing on I. Then each interval J=[p,q] contained in I contains a
point 7 such that

f JFBHAMBH=M (- F®,
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as is well-known. It follows successively that
GND=M@[F(@—-F(Pp)I+[M(@)—M(P)IF(p) —J‘JF(t) aM ()

=M(q@)-F(JD)+M(])-LF(p)—-F()],
IGIDISANF(DI+M)-OWF; D,
where A stands for the supremum of |[M(x)| on the interval I.

re (1): This is immediate from the last inequality, since the
function F(x) is continuous on 1.

ve (ii): Given any 6 >0, let F; denote the supremum of O(F;J)
for the closed intervals JcI with |J|<6. Then the above inequality
shows that

IGIDISAIF(DI+F-M() it | J]1<6.

Now suppose that the function F(x) is NC on a set Ecl, and con-
sider an arbitrary figure W pertaining normally to E. We find that

GFWHZA-F*W)H+F,-M(W) if |[W|<.

Given any ¢>0, there is a 6 >0 such that F,<e¢ and that F*(W)<e
whenever |W|<6. Choosing such a 6, we have

G*WV)SA-F*(W)+2A-F;<3Ae if |[W|<o.
Hence the function G(x) is NC on E.
rve (iii): With the same notation as at the beginning, we have
G(D=M(@-F(D+M()-[F(p)—F()]
=Mp)-F(D)+M)-[F(@—F({r)].
Hence, if & and &+% are any two distinct points of I, we can write
G(5+h})l—G(E)

=M( +e(&3h)

FE+n-F&) ME+R)—M(E)

h h ’
where ¢(&;2)—0 as 2— 0. Consequently the function G(x) is AD
to M(x) F},(x) at every interior point of I at which F(x) is AD and
M (x) is derivable. But any function which is BV on I is derivable
almost everywhere on I. This completes the proof.

With the aid of the foregoing theorem, we can now establish for
the normal integral the integration by parts theorem and the second
mean value theorem. Theorem 9 is derived at once, while the proof
of Theorem 10 is the same as in the corresponding theorem of Saks
[7]1, p. 246.
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THEOREM 9. If a function M(x) is BV on a closed interval I=
[a,b] and if a function f(x) is normally integrable on I, then the
Sunction M (x)f(x) is also normally integrable on I, and denoting by
F(x) any indefinite normal integral of f(x) on I, we have

(ET&)LM(x)f(x) dx = [M(x) F(x)lbz —L F(x)dM (x)

= M()dF(,
where the second and third integrals arve Riemann-Stieltjes ones.

TueEOREM 10. If a function M (x) is monotone nondecreasing on a
closed interval I=[a,b] and if a function f(x) is normally integrable
on I, there necessarily exists a point E&I such that

LM@ FOO)dx= M(a)f: FOo dx+ M) [ : F0x) dx,

where each integral is a normal one.

§4. The condition (S) and the condition (S,).

We shall say that a function ¢(x) fulfils the condition (S) on a
linear set E, if to each number ¢>0 there corresponds a ¢ >0 such
that, for every measurable set M cCE, the inequality |M|<é implies
lo[M]|<e. When this is the case, we have |p[X]|<le for every set
XcE with |X|<, provided that the set E is measurable. In fact,
we can enclose X in an open set G such that |G|<6. Then ENG is
a measurable set containing X and having measure <4, so that
lol XIS |p[ENG]|<e.

In the particular case in which E is a closed interval, this con-
dition is no other than the condition (S) of Banach (see Saks [7],
p. 282).

If the epithet “measurable” is replaced by “compact” in the
above, we obtain the definition of a condition which will be called
the weak condition (S) on the set E. Evidently, the condition (8)
on E always implies the weak condition on E. In the important
case in which E is a sigma-closed set, however, the converse of this
implication is also true, as asserted by the following theorem.

THEOREM 11. A function o(x) which fulfils the weak condition (S)
on a sigma-closed set A, necessarily fulfils the condition (S) on A.

Proor. By hypothesis, there corresponds to each ¢>0 a number
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0>0 such that, for every compact set QCA, the inequality |Q|<6
implies |p[@]{<e. Keeping ¢ and ¢ fixed, we shall show below that
lo[M]|<e for each McA with |M|<s. ,

We begin with the case where the set M is sigma-closed. Then'
M is expressible as the limit of an ascending infinite sequence, say
Q. c@Q,c----, of compact sets. It follows that the image o[M] is
the limit of the ascending sequence ¢[@,]Co[@,]C+---, whence we
have (o[ MJ|=lim|p[@Q,]]. But [¢[@,]1]|<e for every neN, since @, is
compact and contained in M. We thus have |p[M]|<e.

We now pass on to the general case where M is any subset of
A with |[M|<s. Let us enclose M in an open set D with |D|<.
Then AND is sigma-closed and contains M. Since |AND|<38, we
find by what was already proved that |p[M]|=|p[AND]|<e This
completes the proof.

THEOREM 12. A function ¢(x) which is normally continuous on a
set E, mecessarily fulfils the weak condition (S) on E. Consequently,
if in addition the set E is sigma-closed, the function fulfils on E the
condition (S) and hence the condition (N).

REMARK. The first half of this theorem includes Theorem 2.
Indeed, if a function fulfils the weak condition (5) on a set FE, then
every compact null set CcE, and hence every closed null set CE, is
mapped by the function onto a null set.

Proor. We shall only outline the proof, since it resembles that
of Theorem 2.

By hypothesis, there corresponds to each ¢>0 a >0 such that,
for every figure W pertaining normally to E, the inequality |[W|<o
implies ¢*(W)<e. Keeping ¢ and & fixed, we shall prove |p[@]|<e
for every compact set QC E with |Q|<.

We may assume @ nonvoid and perfect. Denoting by H a generic
open interval contiguous to @, and by I the minimal closed interval
containing @, let D, be for every neN the union of all the H with
|H|>n"t and let us write W,=I\D,. Then W, is a figure containing
@ and pertaining normally to €. Moreover, we have |[W,|—|®Q] as
n— +co. Hence there is a peN for which |W,|<é. The function
o(x) being continuous on E, we can associate with each component
K of W, a closed interval LCK pertaining to € and such that
lolQ@N KIJ|<|p(L)|. If Z, denotes the union of all the associated inter-
vals L, the figure Z, clearly pertains normally to E, while we have
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\Z |<|W <. Hence
lw[Q]lﬂ%dQﬂK]Ié%\s&[QﬂK][§§I¢(L)I:¢*(Zp)<s,

which completes the proof.

TuEOREM 13. If a function o(x) is normally continuous on a set
E, there corvesponds to each ¢>0 a number >0 such that, for any
finite disjoint sequence {Q, ++-+,Q,> of compact sets contained in E,
the inequality

@i+ -+ +1Q,[<5  implies  |p[Q ]|+ +]p[@,]|<Te.

Proor. We may assume that the positive integer #, which may
vary quite arbitrarily, is at least 2, since the assertion reduces for
n=1 to the foregoing theorem. Moreover, we may confine ourselves
to the case in which the sets @,,--+-,@, are nonvoid and perfect.
Then so is also their union.

By hypothesis, given any ¢ >0 there is a >0 such that for each
figure W pertaining normally to the set .E, the inequality |W|<é
implies ¢*(W)<le. The theorem will be established if we show that

lp[ @]+ +1p[@,1]<e  whenever |Q+----+|Q,/<0.

Let us write p=min dist (&,,®,), where @, and @, are two arbi-
trary distinct sets among @, :--+,®Q,. We clearly have o>0. Let
further I be the minimal closed interval containing the compact set
Q=Q,U----UQ, which is nonconnected.

We shall keep @ fixed in what follows. Let us denote by H a
generic open interval contiguous to ® and by D, the union of all
the H with |H|>m™', where m is any positive integer so large that
m~'<p. Writing W,=I\D,, we find easily that W,, is a figure con-
taining @ and pertaining normally to . Since |@/<6 by hypothesis
and since obviously |[W,| — || as m — + o, we have |W,]<o for large
values of m. Let us fix such an m.

This being so, consider any component interval of W,, say L.
The intersection €& NL is then contained in one of the sets @, +---,
Q.. To see this, suppose if possible that to the contrary there exist
among these sets at least two each of which intersects L. We write
p* for the minimum of the distance between two distinct nonvoid
sets taken from among the compact sets Q,NL,----,Q,NL. The
interval L plainly contains a closed subinterval J with length p* and
whose end poins belong to @ without belonging to one and the same
of the sets @, --++,Q,. It follows at once that the interior of the
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interval J is disjoint with @. Accordingly J is contiguous to @, and
hence [J|=m™<p. But evidently p=<p* and hence |J|<p*. This con-
tradicts the choice of J.

Let us arrange all the components L of W, in a sequence, say
L,<++++<L, in their natural ordering. What was proved just now
shows at once that the decomposition of the set @ into the nonvoid
intersections L,N@, ++++,L N is a refinement of the decomposition
Q=Q,U----UQ,. We therefore have

oL@+ +|p[ QI S 1o[L N Q]|+ +++++|o[L,N Q]I

Now let L, be any one of the components L, +-++,L,. Since ¢(x) is
continuous on F and hence on L,NQ, there exists in L, a closed
interval 7, pertaining to @ and fulfilling |o[L,NQJ|=|e(l,)|. The
figure Z=I,U----UI, then pertains normally to € and hence to E
also, while we have

|Z|= L+ vee I S|Ly|+ oo e e +|L| =W, <0.
We thus obtain the following relation, which completes the proof.

éllko[Qi] | éélls‘ﬂ’k NQ7| §§I|¢([k)|= GH(Z) <.

Theorem 12 is a special case of the present theorem and their
proofs contain a certain duplication. We could have absorbed the
former proposition into the latter. But we think that the separation
of the two propositions has conduced to the intelligibility.

We shall say that a function ¢(x) fulfils the condition (S,) on a
linear set E, if there corresponds to each 7 >0 a number 6>0 such
that, for every finite disjoint sequence <{E, --++, E,> of measurable
subsets of E, the inequality

\Eq|++e-+|E;/<6 implies [p[E |+ +]p[E.]|<n.

We can easily prove that the condition (S,), which evidently in-
volves the condition (S), is stronger than the latter. For this
purpose, let I be a closed interval. On account of a theorem on
p. 288 of Saks [7], every function which is AC superposable on 7,
fulfils the condition (S) on I. But it is known that, in general, a
function which is AC superposable on 7 is not AC on I (see [7],
p. 286). On the other hand, we see at once that every function
which is continuous on I and fulfils the condition (S,) on 7, must
be AC on I. Hence the result.

THEOREM 14. Every function o(x) which is normally continuous
on a sigma-closed set A, fulfils the condition (S,) on this set.
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Proor. Given any >0, write e=»/2 and choose a number >0
conforming to the assertion of Theorem 13. We shall show that this
6 has the property stated in the definition of the condition (S,).

Consider a measurable set McA and take in M a sigma-closed
set C such that |M\C|=0 (see Saks [7], p. 69). Since by Theorem
12 the function ¢(x) fulfils on the set A the condition (N) of Luzin,
we find that

lpLM J|=p[CIU LM \CII=|p[CI|+|p[M \CI|=|o[C]

and therefore that o[ M]|=|p[C]]. But we can express the set C as
the limit of an ascending infinite sequence of compact sets. Con-
sequently it ensues that |o[M]| is the supremum of |p[@]], where @
is a generic compact set M.

This being so, suppose now that <E,,++-+, E,> is a finite disjoint
sequence of measurable subsets of A. We attach to each i=1,+++,n
a compact set Q,C E,; such that |p[E;J[<|e[@J|+7n . On account of
Q|+« +1Q,/<5, we then find that

Z Io[E 1< éll¢EQ¢]1+e<2e=7],

which completes the proof.

§5. Fluctuation of a normally continuous function.

Given a function ¢(x) and a linear set E, let y be any real num-
ber. The number (possibly +c0) of the points xcE at which ¢(x)
equals y, will be denoted by N(y;¢; E) and termed multiplicity of
y with respect to ¢(x) and E. Qua function of y, this multiplicity
will be called multiplicity function associated with ¢(x) and E.

By a partition of a linear set E, we shall mean as usual any
nonvoid disjoint class consisting of subsets of £ and having E for
its union. A partion will be called Borel, if all its constituents are
Borel sets. To simplify the wording, by a partition, by itself, we
shall always understand a countable (i.e. at most enumerable) one
henceforward. This agreement will not be repeated.

Given a function ¢(x) and a set E, let & be any partition of E.
For each yeR we shall denote by 0(y;¢;&) the number (possibly
+o0) of the distinct sets Xe® such that y=¢o[X]. In symbols:

0(y ;95 &) ZXZE@CU sl X D),

where c(»;¢[X]) means, as in Saks [7], the characteristic function
of the set ¢[X]. It is obvious that 0(y;¢;8)<N(y;¢; E). Further,
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writing d(&) for the characteristic number of the class &, i.e. the
supremum (possibly +o0) of the diameter d(X), where X&8&, we
find at once that, for each yeR,

0(y;¢;86) >N(y;0;E) as d@& —0.

THEOREM 15. Given any function ¢(x) which is continuous on a
linear Bovel set M, let © be a generic Borel partition of M. Then
both ©(y;¢0;8) and N(y;p; M) are nonnegative measurable functions
of vy and we have

2ot Xt — fi:N(y;so;M)dy as d(&)—0.

REMARK. This integral will be written E(p; M) and called fluctu-
ation of the function ¢(x) on the set M. We have 0=E(p; M )<+ co.

Proor. Since a continuous image of a Borel set is always a
measurable set (cf. Kuratowski [6], p. 249), the characteristic func-
tion c(y;¢[X]) is measurable for each X&@. Hence so must also
be the function ©(y;¢;®), which is the sum of c(¥;¢[X]) for all the
sets Xe@.

This being so, let us consider any infinite sequence of Borel par-
titions of M, say <(&,,&,, ++--+>, such that limd(&,)=0. (By the way,
the existence of such a sequence is plain.) Then we have

B(y;¢,8,) >Ny, M) as #n—> +oo,

whence the measurability of the function N(y;¢; M) follows at once.
Further, by Fatou’s Lemma and the relation 0(y;¢;S)=<N(y;0; M),
we deduce that

+ I =
B(so;M>§1mf_ @(y;so;@n>dyglimf_ 0(y;¢;8)dy<E(p; M),
which asserts no other than ‘that
4+
f_ 0(y;¢0;8)dy > EB(p;M) as n— +oo.

Replacing here the partition &, by a generic Borel partition & of the
set M, we find easily that -

[Teiei@dy > M) as d@) —o.
This, together with the folldwing relation, completes the proof.

+ oo ©
| Teigs@dy= 3 [ etyiplXDdy= 3 o[ X
— ‘X€@ —o Xee
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The above theorem may be regarded as a generalization of the
well-known Banach Theorem (6.4) on p. 280 of Saks [7]. In point
of fact, in the particular case in which M is a closed interval I, we
find easily, as in [7], that

ilfsoff‘f’]l——)W(so;I) as n— +oo,

where W(¢ ; I) stands for the absolute variation of ¢(x) over I and
where the class &,={I{",++--, I’} means, for each €N, any parti-
tion of I into » intervals of the same length #~'I|. On the other
hand, each set ¢[I{®] being sigma-closed, the function O(y; ¢ ;&,)
is Borel measurable for each » and hence so must also be its limit
Ny ;5 D.

THEOREM 16. If a function ¢(x) is continuous on a Borel set M
and if © is any Borel partition of M, we have the additivity relation

E(p; M) = > E(p; X).
Xe6

Proor. The result follows at once if we integrate over R both
sides of the following equality and use Lebesgue’s theorem on term
by term integration:

N(y; so;M):ngN(y;so;X).

LEMMA 3. If a function ¢(x) is continuous on a bounded measur-
able set E and fulfils the condition (N) on E, then the set E contains,
Jor any €0, a measurable subset M, such that |o[ E]\ o[ M]|<e, and
on which the function ¢(x) assumes each of its values at most once.

This proposition generalizes slightly part (i) of the Lemma on
'p. 283 of Saks [7] and may be established in the same way as there.

A function will be said to fulfil the condition (T,) on a set E, if
almost every one of its values is assumed at most a finite number
of times on E. In the special case where the set E is a closed in-
terval, this condition comes to the same thing as the Banach con-
dition (T,) on p. 277 of [7]. '

With the help of Theorem 15 and of the above lemma, we can
now deduce the following extension of the Banach Theorem (7.4)
on p. 284 of [7], the proof being the same as in that book.

THEOREM 17. In order that a function which is continuous on a
bounded Borel set, fulfil the condition (S) on this set, it is necessary
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and sufficient that the function fulfil on this set both the conditions
(N) and (T)).

The boundedness of the set is essential for the validity of this
theorem, as shown by a simple example. In fact, consider the func-
tion ¢(x) which is equal, for each xR, to the distance of the point
x from the set of all even numbers. Since obviously |p[ X]|<|X]| for
every set XcCR, the function ¢(x) fulfils the condition (S) on R.
But this function clearly fails to fulfil the condition (T,) on R.

A result similar to the above theorem is valid for the condition
(5,) as well. Indeed, we have the following

THEOREM 18. In order that a function o(x) which is continuous
on a bounded Borel set B, fulfil the condition (S,) on B, il is necessary

and sufficient that, on this set, the function fulfil the condition (N)
and have finite fluctuation.

Proor. (i) Necessity. Since the condition (S,) plainly implies
the condition (N), we need only show that E(p; B)<+ co.

On account of the condition (S,) we can choose a number §>0
such that, for each finite disjoint sequence <E,, +-++, E,> of measur-
able subsets of B, the inequality |E,|+++-++|E,<6 always implies
|pLEJ|4 -+l E Q<1

Now consider any Borel set McB with |[M|<é. If & denotes
generically a finite Borel partition of M, Theorem 15 asserts that

XielglsDEXJ\ — B(p; M) as d(®)—0,

where the sum at the head is always <1 on account of the above
choice of 6. Hence we have E(p; M)=<1 in the limit.

The finiteness of the fluctuation E(¢p;B) is immediate from the
above result. To verify this, let 9 be a finite Borel partition of B
such that d(9)<(s, where § is the same number as above. If XX,
then | X|=d(X)=d(M)<3, whence E(p;X)=<1. Combining this with
Theorem 16, we find that E@;B):XEZWE(SD;X><+OO'

(ii) Sufficiency. Let E(¢;B)<+co and assume that ¢(x) fulfils
the condition (N) on B. M will denote generically a Borel subset
of B, throughout the sequel. The sets M together form an additive
class, i.e. the Borel class in B, and Theorem 16 shows that the fluc-
tuation E(p; M) is a completely additive function of M.

This set function is absolutely continuous. In fact, if M is null
and if € denotes a generic Borel partition of M, the sum > |p[X]|,
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where X <@, tends to E(¢; M) as d(€)—0, on account of Theorem
15. But |¢[X]| vanishes for every X, since XcM and |[M|=0. We
therefore have E(p;M)=0.

It follows from a well-known theorem (see Saks [7], p. 31) that
to each ¢ >0 there corresponds a number 6 >0 such that for every M
the inequality |M|<6 implies E(p; M) <. »

This being so, let <&, ---+, E,> be any finite disjoint sequence of
measurable subsets of B. It suffices to show that the inequality

|[Ey+eeee+|E, <6 implies [p[E [+ +|p[E J<e.

For each ¢=1,.--+,7# there exists in E, a Borel set M, such that
I ENM =0 (see Saks [7], p. 69). Then |[p[ENM,]|=0 and hence
lo[E Jl=|p[M,]]. But the definition of E(p;M) implies the relation
lpLM]|=<E(p; M) for every M, while the union M,=M,U.---UM,
clearly has measure |M <8, so that E(p;M,)<e. It follows that

Sl = 3 elM IS 3800 M) =8(g; M) <e,

which completes the proof.

We end this section with the following proposition which is
immediate from Theorem 14 and Therem 18.

THEOREM 19. A function which is normally continuous on a sigma-

closed set, necessarily has finite fluctuation on each bounded Borel set
contained in this set.

§6. ACS decomposition of a normally continuous function.

A function which maps a linear set £ onto a null set, will be
termed steplike on E. We shall say that a function ¢(x) is ACS
decomposable on a set E, if the function is expressible on R in the
from ¢(x)=v%(x)+3(x), where ¥(x) is an absolutely continuous func-
tion steplike on the set R\ FE and y(x) is a function steplike on E.
(In accordance with Saks [7], p. 59, we understand by an absolutely
continuous function any function which is AC on every closed in-
terval.) When this is the case, the above expression of ¢(x) will
be called ACS decomposition of ¢(x) with respect to the set E. The
two functions ¥(x) and y(x) will respectively be named absolutely
continuous (or AC) part and steplike part of ¢(x) in this decomposi-
tion.

We do not know whether the following assertion is true: If a
Sunction ¢(x) is normally continuous on a sigma-closed set A and ACS
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decomposable on A, then (1) the AC part of p(x) is uniquely determined
on R to within an additive constant, and hence so is also the steplike
part; (ii) the absolute variation W(Yr;I) of the AC part ¥(x) on a
closed interval I coincides for every I with the fluctuation Z(p;ANI);
and (ii1) the function o(x) is approximately equiderivable with (x)
at almost all points of the set A.

As we shall see later on, every function ¢(x) which is normally
continuous on a sigma-closed set A and approximately derivable at
almost all points of A, is ACS decomposable on A and the three con-
clusions of the above proposition are true.

In connection with the notion of ACS decomposition, there are
still further a few open problems. Among others, we do not know
if every fumction normally continuous on a sigma-closed set, is ACS
decomposable on this set. Neither can we decide yet whether the sum
of two functions each of which is normally continuous and steplike on
a sigma-closed set A, is necessarily also steplike on A.

LEMMA 4. Given a nonvoid metric space M, let B denote the class
of all the Borel sets in M.

(1) If ¢(X) is a nonnegative additive set function on the class
B, then given any set X8 and any number ¢ >0 there exist in the
space M a closed set S and an open set D such that SCXCD and
O(D)—0(S)<e.

(ii1) If &(X) and ¥(X) are nonnegative additive set functions on
the class B and if O(G)=¥(G) for every open set G in M, we have
O(X)H)=U(X) for every X&.

(i) If o(X) and ¥W(X) are nonnegative additive set functions on
the Borel class in a closed interval I and if O(K)=¥(K) for every
closed interval K1, then the two functions coincide identically.

REMARK. Part (i) of the lemma is included in a theorem in
small print on p. 72 of Saks [7]. He observes that this theorem
may be established in the same way as for the foregoing Theorem
- (6.10). It does not appear to us, however, that the proof goes well
in the way indicated by him.

Proor. 7e (1): Denoting by U the class of all the sets X8
with the property stated in (i), we shall show that A=%3. For this
purpose, it suffices to show that ¥ is an additive class and contains
all the closed sets.

Each closed set in a metric space is expressible as the limit of a
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descending infinite sequence of open sets. From this fact we find at
once that every closed set in M belongs to the class 2.

In the next place, let XU and consider the sets S and D which
appear in (1). Writing S°=M\S and so on, we have D°‘cX‘cS",
where D° is closed and S° is open. Again, the evident relations
O(DH=0(M)—0(D) and O(S)=0(M)—@(S) in conjunction imply
that @(S)—0(D)=0(D)—0(S5)<e. It follows that X° .

Suppose finally that X is the union of an infinite sequence, say
(X, X,,++++>, of sets of the class A. We shall verify that Xe¥.
Given an ¢>0, we can choose for each #=N a closed set S, and an
open set D, such that

S,.cX,cD, and @(D,)—0(S,)<2 .
Writing $S=S,US,++-- and D=D,UD,---+, we find successively that

D\S= ul (DN\S)C ul (D\SW,

o(D)—-0(S)= @(D\S)éé1 O(D,\S» <§12“”s =e.

On the other hand, the set S is the limit of the set 7,=S,U-.---US,
as n— +oo, and thus we can take » so large that @(T,)>®(S)—e.

Then we have

O(D)—0(T,)<P(D)—0(S) +e<2e.
This completes the proof of part (i), since T, is closed, D is open,
and 7,cXcD.

ve (i1): Let X be a Borel set in M. By part (i), there exists
for each ¢>0 an open set DD X such that o(D)—0(X)<e as well as
U(D)-¥(X)<e. Since @(D)=¥(D) by hypothesis, it follows that

(XD)-V(XD)=0(D)-¥(XD=¥(D)—¥(X)<e

and similarly that ¥(X)—0(X)<e. We thus obtain [@(X)—¥(X)|<e,
whence we get @(X)=¥(X) since ¢ is arbitrary.

rve (iil): If we regard the interval I as a metric space M, each
set G open in M is expressible in the form G=INV, where V is an
open set in R. Then G is expressible as the limit of an ascending

infinite sequence of figures W,cW,cC-..... Since oW, )=¥(W,) for
every #, it follows that

O(G)=lm oW )=lim¥(W,)=¥(G).

This, together with part (ii), shows that @(X)=¥(X) for every
Borel set Xcl.
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THEOREM 20. Given a function ¢(x) which is normally continuous
on a bounded sigma-closed set A and approximately derivable at almost
all points of A, let us write, for definiteness, ¢,,(§)=0 for every point
EER at which the function ¢(x) is not approximately dervivable.

Then the function ¢l,(x) is summable over A. Further, the fluctua-
tion E(p; M) is expressed for every Bovel set MCA by the formula

B M= Igho(®)ldx.

Proor. Consider any compact set QA on which the function
o(x) is AC. In the first place, we shall prove the summability of
ohp(x) on the set @ and the validity of the above formula for every
Borel set McQ.

For this purpose, we may obviously assume € to contain at least
two points. We denote by H a generic open interval (if existent)
contiguous to @, and by A(x) the linear modification of ¢(x) with
respect to @, i.e. the function which coincides with ¢(x) unless x
belongs to an H and which is linear on the closure of any H. Then
the function 2(x) is AC on the minimal closed interval I containing
@ (see [1], Theorem 4) and hence derivable almost everywhere on
I. Writing for definiteness 2'(§)=0 for each é=R at which A(x) is
not derivable, we find that the function 2’(x) is summable on I and
coincides with ¢;,(x) at almost all points of @ (cf. Saks [7], p. 220).
The function ¢},(x) is thus summable over @.

This being so, denote by E a generic Borel subset of I and write

O(E)= f | dx.

Then @(E) is an additive set function. But so is also the function
E(1;E) by Theorem 16 and Theorem 19. Now, by what was said
just after the proof of Theorem 15, we have E(1;K)=W(Q;K) for
every closed interval Kcl. On the other hand, W(;K)=0(K) by
absolute continuity of i2(x) on I. Hence the two functions E(1;E)
and @(E) coincide when E is especially a closed interval. It thus
follows from Lemma 4 that E(A;E)=0(E) for every E. This shows
that if M is a Borel subset of @, then

Blps M) =EQ; M) = 0D =] W®ldr=[ |ola(oldx.

By hypothesis, there is in A a Borel null set N such that the
function ¢(x) is AD at all points of ANN. Taking note of the con-
tinuity of ¢(x) on A, we find by a well-known theorem (see Saks
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[71, p. 239) that ¢(x) is GAC on the set ANN." On the other hand,
the set A is, by hypothesis, the union of a sequence of compact sets.
If R is any one of these sets, the function ¢(x) is GAC on R\ V.
It follows, in view of the continuity of ¢(x) on R, that R\ N is
covered by a sequence of compact sets contained in R and on each
of which ¢(x) is AC.

From what was proved already we draw two conclusions: In the
first place, the function ¢;,(x) is measurable on the set A. Secondly,
the set AN has a Borel partition, say &, such that the closure of
each set X&® is contained in A and that the function ¢(x) is AC
on this closure.

We now combine the above considerations. Suppose that M is
a Borel subset of A. Using Theorem 16 and noting that E(o; M NN)
vanishes since o[ M N N] is null on account of Theorem 12, we obtain
the required expression of E(p;M) as follows:

E(p; M) =E(p; M NN+ S E(p; MNX)=3 | |gl,(0)ldx
Xee Xeed MNX

=] Jen@ldr=] lel,(ldx.

Finally, specializing the set M to A in this relation, we find by
Theorem 19 that the function ¢;,(x) is certainly summable on the
set A. This completes the proof.

The following theorem is closely connected with Theorem 5 of
[1] as restricted to parts (iii) and (iv).

THEOREM 21. Suppose that a function o(x) is normally (in par-
ticular, absolutely) continuous on every portion of a sigma-closed set
A and approximately derivable at almost all points of A. In order
that ¢(x) be steplike on A, it is mecessary and sufficient that o(x) be
AD to zero at almost all points of A.

Proor. Supposing A nonvoid as we may, let us denote by P a
generic portion of A, so that P is a bounded sigma-closed set. Since
plainly |o[A]| is the supremum of the numbers |[¢[P]l, we have the
relation |p[A]|=0 if and only if |p[Pl|=0 for every P. But the two
conditions |¢[P]|=0 and E(¢;P)=0 are equivalent for every P. On
the other hand, we find by Theorem 20 that

E(p; P)=] lphs(0)] d.

Consequently, the fluctuation E(¢; P) vanishes for every P, or equiv-
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alently, we have |p[A]/=0, if and only if the function ¢(x) is AD to
zero at almost all points of A. This completes the proof.

REMARK. Let E be a measurable set and suppose that a function
o(x) is AC on every portion of E. Then the function is steplike on
E, when and only when it is AD to zero at almost all points of E.
This proposition is easily ascribable to the above theorem, as follows.
The function ¢(x) is GAC on E and hence AD at almost all points
of E (see Saks [7], p. 223). Moreover, the set E contains a sigma-
closed set A such that |[ENA|=0 (see [7], p. 69). We then have
lo[ENA]l=0, since ¢(x) fulfils the condition (N) on E (see [7], p.
225, above). Consequently [p[E]|=|p[All. We may thus assume that
the set E is itself sigma-closed.

THEOREM 22. Any function o(x) which is normally continuous on
every portion of a sigma-closed set A and approximately derivable at
almost all points of A, is ACS decomposable on A and fulfils the con-
clusions (i) to (iii) of the assertion stated at the beginning of this

section.

Proor. As in Theorem 20, we shall write ¢.,(§)=0 for every
point £ R at which the function ¢(x) is not approximately derivable.
Let v(x) be an indefinite integral of the function ¢},(x)c(x;A) which
is summable (on every closed interval) by Theorem 20. We shall
begin by proving that ¥(x) is the AC part of ¢(x) in some ACS de-
composition with respect to A.

Clearly the function ¥(x) is AC. Furthermore, ¥(x) is AD to
ohp(x) c(x;A) almost everywhere on R, and hence AD to ¢},(x) [or to
zero] at almost every point of A [or of R\ A]. It follows from the
above Remark that ¥(x) is steplike on R\ A. It remains to verify
that the function y(x)=¢(x)—"¥(x) is steplike on A. The function
(%), which is AC, is NC on each finite interval. Thus the function
v(x) is NC on every portion of A. Further, y(x) is AD to zero at
every point at which ¢(x) and v (x) are AED (approximately equi-
derivable), and hence at almost every point of A. It thus follows
from the preceding theorem that |3[A]|=0, as required.

This being premised, we shall now proceed to ascertain the
validity of the statements (i) to ({ii). In what follows, ¥(x) and
y(x) will mean the same functions as above.

re (1): Suppose that a function ¢(x) other than ¥(x) is also an
AC part of the function ¢(x) with respect to A. Then the function
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r(x)=¢p(x)—a(x) is NC on every portion of A and steplike on A.
Furthermore, since both ¢(x) and ¢(x) are AD at almost all points
of A, so is also the function z(x). It follows from the foregoing
theorem that z(x) is AD to zero at almost all points of A. This
implies that ¢(x) is AED with ¢(x), and hence with ¥(x), at almost
all points of A. On the other hand, the above Remark shows that
the AC function ¢(x), which is steplike on RN\ A, must be AD to
0 at almost all points of RN\ A. But this last property is possessed
by ¥(x) also, as already seen. We thus find that the AC functions
o(x) and ¥(x) are AED almost everywhere on R and therefore that
their difference o¢(x)—z(x) is a constant over the real line.

rve (ii): On account of part (i), it suffices to ascertain that
Wr; I)=8(p; ANI) for the function ¥(x) and every closed interval
I. But this is immediate from the definition of ¥(x). Indeed, using
Theorem 20 we have

W D= lpb(@lcte; Ddx=]  Iol(0ldx=Ep; AND.

ve (iil): This was incidentally established already.

§7. Normally fluctuant functions.

A function ¢(x) will be termed wnormally fluctuant, or NF for
short, or again to fluctuate normally, on a linear set E, if sup|o(W)]
is finite, where W stands for a generic figure pertaining normally
to E. We see at once that this property of o(x) is herveditary with
respect to the set E.

When this is the case, we have also sup ¢*(W )<+ oo, as we find
easily by means of the two propositions (i) and (ii) on p. 2. More-
over, such a function ¢o(x) is necessarily bounded on E. To see this,
assuming E infinite as we may, we need only specialize, in the above
definition, the figure W to a closed interval pertaining to the set E.
Again, every function which is BV on a set E, is NF on E. Finally,
every linear combination, with constant coefficients, of two functions
which fluctuate normally on a set, itself does so on this set.

The proof of the following theorem is virtually the same as for
Theorem 3, with the help of Lemma 2.

THEOREM 23. A function which fluctuates normally on a set E,
necessarily does so on every set MDOE contained in the closure of E,
provided that the function is continuous on M.
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THEOREM 24. Any function o(x) which is normally continuous on
a bounded set E, is normally fluctuant on this set.

Proor. By hypothesis we can choose a number 6>0 such that,
for every figure W pertaining normally to £, the inequality [W|<6
implies |p(W)|<1. Then the function ¢(x) is bounded on the inter-
section JNE, whenever J is a closed interval of length <6. The set
E being bounded, it follows that ¢(x) is bounded on E.

This being so, take a closed interval I whose interior contains
E, and express I as the union of a finite number of non-overlapping
closed intervals [,,-+-+,f, each of which has length <6. Now let
W be a figure pertaining normally to E, and let W, denote for each
=1, ++-+, % the union (possibly void) of all the component intervals
of W that are contained in the interior of the interval /,. Then the
figure W, plainly pertains normally to E and has measure <, so
that (W ,)|<<1. On the other hand, if we write Z=W,U----UW,,
the set W\ Z is a figure with at most # components. Hence we
get |[p(WNZ)|=nL, where L denotes the oscillation O(p;E) which is
finite. Noting the relation o(W)=¢o(W )+ +o(W,)+o(W\Z) and
using the above results, we conclude that

leWDI=[@(W DI+« + oW DI+ 1o(WND|<n+nL,

which completes the proof.

The following theorem is well-known (see Saks [7], p. 227). In
order that a function F(x) which ts continuous and BV on a compact
set @, be AC on Q, it is necessary and sufficient that F(x) fulfil the
condition (N) on this set. In view of this theorem, it is natural to
ask as to the validity of the assertion: In order that a function o(x)
which is continuous and NF on a compact set @, be NC on @, it is
necessary and sufficient that ¢(x) fulfil the condition (N) on this set.
The necessity of the condition (N) is obvious by Theorem 12. The
sufficiency will, however, be disproved afterward by Theorem 25 that
constitutes a concrete counter example.

Let us resume the compact set '=E,NE,N++-+ of Theorem 1,
where E, means the unit interval [0,1] and E,.=F,3) for each
integer m=0. With each point & of I" we now associate a sequence
o(&)=<w,(&),w,(&),++++> In the same way as in proving Theorem 6
of [5]. For the sake of completeness, let us repeat concisely the
definition of ¢(¢). For each integer m=0, the figure E, contains a
component, say K,, to which & belongs. Let w,..(§) be 1 or 0,
according as K, is or is not the middle one among the three com-
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ponents of the figure K, (3), respectively.
Making use of the binary sequence ¢(&), we proceed to define on
the set I' a function 4(&) by writing

A& = ﬁﬁ‘"wn(f) for &<

We then extend the definition of this function to the whole R, in
such a manner that the extended function, still denoted by 4(x),
becomes linear on each closed interval contiguous to I" and vanishes
outside the interval [0, 1].

It is easy to prove the following proposition.

LEMMA 5. The function A(x) is continuous. More precisely, if K
ts a generic component of the figure E., where m=0, then we have
OU;KNT)y=3"/2. Further, A(x) maps the set I' onto a null set.

THEOREM 25. The function A(x) fluctuates normally on the set I'
and fulfils the condition (N) on the real line, without being normally
continuous on I.

Proor. The construction of the sequence <E, E,, -+++> shows at
once that the figure E,, where m=0, pertains normally to I'. Again,
if K is a generic component of E, we have OU; KNI)=3"/2
by the above lemma. Hence there corresponds to each K a closed
subinterval I pertaining to I' and such that |A(1)|>3"""%. The union
of all these intervals I is a figure, say A,, which plainly pertains
normally to I But we have A4*(A,)=>4I)|>3"-3"'=3"!, since
the figure E, has exactly 3" components K. On the other hand,
clearly |A,|=Z|E,|=(3/5)", whence |A,|—0 as m— +o. Accordingly
the function 4(x) cannot be normally continuous on the set I'.

We shall go on to show that A(x) fluctuates normally on I". Let
W be a nonvoid figure pertaining normally to I and let us consider
the quantity ¢(W;I"), where the function 8 means the same as on
p. 2. As readily seen, 8(W;I") coincides with sup|H|, where H is a
generic open interval contiguous to the compact set WNI'. Since
|H|<5™* for every H, we have 0<6(W ;I")<5'. Hence there is an
integer m =0 such that 5™ *Ze(W;I"H<65™.

From now on, the argument goes on as in the proof of Theorem
1. If J denotes a generic component of W, each J is contained in a
component of the figure E,. On the other hand, each component K
of E, can contain at most five intervals J, while E,, has exactly 3"
components. Hence W has at most 5-3™ components. This, combined
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with O(4; KNI)=3"/2, gives
A*<W>=§I/1<]>l§5-3’”-3—’"-2—1<3,

which proves that A(x) is NF on I

Finally, the function A(x) fulfils the condition (N) on R, since
|ALI']|=0 by Lemma 5 and since 4(x) is linear on every interval dis-
joint with I. This completes the proof.

THEOREM 26. If a function o(x) fluctuates novmally on a set E,
this set contains at most a countable infinity of points at each of which
the function is discontinuous on E. More precisely, if <{xi, c+++, %, 1S
any finite distinct sequence of such points, we have the relation

z 05(p; %) < sup g*(W )< + oo,

wherve W stands for a genevic figure pertaining normally to the set E
and where 0;(¢;x;) denotes the oscillation of the function ¢(x) on E
at the point x, (see Saks [7], p. 42).

Proor. Writing p=sup ¢*(W) for short, we shall prove first the
second half of the assertion. As stated already, a function normally
fluctuant on E is necessarily bounded on E, so that the oscillation
0z(p;x,) is finite for each x;, On the other hand, each x; is plainly
- an accumulation point of E. Hence, given any ¢>0, we can choose
a disjoint sequence of # closed intervals, (X,---+, K,> say, such that
the figure Z=K,U...- UK, pertains normally to E and that

0x(0;x,) <lp(KD|+n e for i=1, e+, n.
These inequalities imply the following relation:

ZéOE(ﬁo;xi)<i§[S0(K¢>‘+s :¢*(Z>+6§p+s.

Since ¢ is arbitrary, it follows that 0,(¢p;x)+++++0;(0;%.)=p.

To deduce the first half of the theorem, let & be a generic point
of E at which ¢(x) is discontinuous on E and let T be the set of all
the points & Since we have 0;(¢;&)>0 for each & the set 7T is
expressible in the form T'=T,UT,U---., where T, denotes for each
k=N the set of all the & such that 0,(¢;&)>k"1. Then T, is a finite
set, since it can contain at most kp points by what we proved above.
Hence the set T is at most countable, and the proof is complete.

THEOREM 27. A function ¢(x) which fluctuates normally on a set
E, necessarily maps every Bovel set MCE onto a measurable set.
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Proor. Let 7 mean the same set as in the above proof. Since
T is at most countable, the difference M\T is a Borel set. The
function ¢(x) is continuous on the set E\ 7, which contains M\ T.
On the other hand, a continuous image of a Borel set is always a
measurable set (see Kuratowski [6], p. 249). In consequence, the
image o[ M\ T] is measurable. Further, the set o[M NT] is at most
countable and hence measurable. We therefore conclude that the set
o[M1=p[M\T]Up[M NT] is measurable.

THEOREM 28. Given a function o(x) and a set E, suppose that
o(x) maps each Borel set MCE onto a measurable set. Keeping fixed
such a set M, let & be a gemeric Borel partition of M. Then both
0(y;¢0:8) and N(y;¢p;, M) are nonnegative measurable functions of y
and we have the rvelation

2 lelX]— fi:N(y so;MDdy  as d(©)—0.

The proof is almost the same as for Theorem 15 and may be
omitted. As before, the above integral will be written E(p;M) and
called fluctuation of ¢(x) on the set M. If in particular the function
¢(x) fluctuates normally on E, the hypothesis of the theorem is
fulfilled on account of Theorem 27.

THEOREM 29. Under the hypothesis of the foregoing theorem, we
have the relation
Blp; M)= 3 B(p; X).

Xe

This theorem is easily proved (see the proof of Theorem 16).
In view of Theorem 24, the following assertion may be regarded
as a generalization of Theorem 19.

TueoreM 30. A function ¢(x) which fluctuates normally on a
sigma-closed set A, necessarily has finite fluctuation on every Borel set
M contained in A.

Proor. The fluctuation E(p; M) exists for every Borel set M c A
in virtue of Theorem 27 and Thorem 28. On the other hand, the
relation O(y;0; M)=0O(y;¢;A) shows that B(p; M)<E(p;A). Hence
we need only prove that E(p;A) <+ co.

Given any set EcCA, denote by W a generic figure pertaining
normally to E, and by p(E) the supremum of the numbers ¢*(W).
Since every W pertains normally to the set A, we find immediately
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that p(E) = p(A) <+ oo,

The theorem will be established if we show that E(¢;A)=<p(A).
For this purpose, it suffices to consider the case where A is bounded.
In point of fact, if we write A,=AN[—%, k] for each k=N, the set
A, is sigma-closed together with the set A and the function ¢(x)
fluctuates normally on A,. Moreover, A is the limit of the ascending
sequence A,cA,cC---- and hence is partitioned into the Borel sets
A, ANA, ANA,, «++-. It therefore follows from Theorem 27 and
Theorem 29 that

B(p; A)=E(p; A +§1 E(p; Aipi\AD = }eg{.} Elp; Aw.
Consequently, if 8(p;A)=<p(A,) for every k, we have E(p;A)<p(A)
in view of p(A4,)=p(4A). We may thus suppose A bounded in the
rest of the proof.

Let D be any open interval containing A. Given an integer n=2,
we take in D the »—1 points that divide D into » parts of the same
length #»7D|. Writing S for the set of these points, let the com-
ponents of the open set D\S be D,;<+..-<D, in their natural order-
ing. Then the set A\S is partitioned into the » Borel sets D,NA,
«ess,. D,NA each of which has diameter <#»~!|D|. Since S is a finite
set, it ensues that the set A is itself partitioned into the sets D,NA
plus a finite number (possibly zero) of singletonic sets. We then
see by Theorem 27 and Theorem 28 that |[D;NA]|+ <+« +|p[D,NA]|
tends to E(p;A) as n— +oo. It thus suffices to verify that this sum
is <p(A) for each n=2. We shall keep » fixed in what follows.

The set AN\S, which is evidently sigma-closed, is the limit of an
ascending infinite sequence of compact sets, say Q,CQ,C----. For
short, let us write Q¥=D,NQ, for k=N and i=1,.--+, 2. We find
easily that each @ is a compact set and that D, NA is, for each 7,
the limit of the sequence QPc@Q¥Pc---.. Then ¢[D,NA] is the limit
of the sequence ¢[@PICo[@P]c----, and we obtain successively the
relations

lim [p[Q]|=¢[D:iNAY,  lim 33 |p[Q]|= 3 |¢[D:N Al

Thus the proof is reduced to showing for fixed % the inequality
(L@ I+ oo« + QP ]|= p(AD.

To deduce this, we may plainly assume that the set @, is non-
countably infinite. Then €, contains a nonvoid perfect set P such
that @,\ P is countable. Since Q®=D,NQ, by definition, we have
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[ﬁDEQ;(ai)]IélSDEDinP]I‘i'ISDEQk\P]I:|90[D7;QP]|
for i=1,.---,#. Hence it suffices to prove the inequality
LD, N PJ[++++++|p[D,N P = p(A)

on the assumption that P is a nonvoid perfect subset of A\S.

This being so, let us denote by H a generic open interval (f
existent) contiguous to P, and by G the union of all the H fulfilling
|H|=dist(P,S). If I is the minimal closed interval containing P,
then the figure F=I\G contains P and pertains normally to P. We
see further that this figure is disjoint with S. Hence F is partitioned
into the figures F,=D,NF, where i=1,+++-,n.

Keeping the index ¢ fixed for the time being, consider a generic
component K (if existent) of the figure F';,. Then the image o[ K N P]
is a bounded set, since the function ¢(x) is bounded on A. Given
any ¢>0, each interval K thus contains a closed subinterval L per-
taining to P and such that d(o[KNP]) <|e(L)|+e Associating such
an L with each K, we denote by Z, the union of all the intervals L.
The two figures Z, and F,; have the same number of components.
Writing N, for this number, we must have |[o[D,NPIZ¢*(Z,)+ N,e.
In fact, the inclusion PCF implies that D,NnP=(D,NF)NP=F,NP,
whence we have the relation

|§0[DMP]|:lgo[FiﬁPﬂé%lgo[KﬂP]léKZd(so[KﬂP])
é%lso@)HNie:go*(Zi)JrNie.

Now write Z=Z,U++--UZ, and N=N,++++-+N,. Then N is the
number of the components of F, while the figure Z clearly pertains
normally to P and hence to A also. We thus obtain the following
relation, where ¢ may be arbitrarily small.

3 ¢[D:N PII= 3 *(Z)+ Ne=¢*(Z)+Ne< o(A)+Ne.
It follows that |p[D,NPJl++++|p[D,NPJ=p(A), which completes
the proof of the theorem.

§8. Two open prepositions and the seminormal integration.

We begin with a supplementary theorem on normal continuity.

THEOREM 31. A function ¢(x) which is normally continuous on
every countable subset of a set E, is mecessarily normally continuous
on the whole set E.
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Proor. We shall show first that the function is continuous on
FE. For this purpose, suppose ¢ to be an accumulation point for £,
and extract from E any infinite sequence of points, say <xi, %, ++« >,
which tends to the point ¢. Then the function ¢(x) is NC, and
hence continuous, on the countable set of the points ¢, x,, x5, *+--.
Thus ¢(x,) — ¢(¢) as n—> +oo. In other words, ¢(x) is continuous
at ¢ on the set E. This proves the continuity of ¢(x) on E.

The set E plainly has a countable subset A whose closure con-
tains E. Then the function ¢(x), which is NC on A and continuous
on E, must be NC on the whole set E on account of Theorem 3.
This completes the proof.

A function will be called seminormally continuous, or SNC for
short, on a linear set E, if it is normally continuous on every closed
null set contained in E. Such a function is necessarily continuous on
the set E, as we can easily verify by the same argument as in the
above proof. ' _

The following properties of SNC functions are obvious. (i) The
seminormal continuity of a function on a set is herveditary with respect
to this set. (ii) Every linear combination of two functions which are
SNC on a set E, is itself SNC on E. (iii) A function which is SNC
on a set E, necessarily maps every closed null set contained in E onto
a null set (see Theorem 2).

As Theorem 31 clearly implies, a function which is NC on every
null subset of a set E, is necessarily NC on the whole set £. In
contrast with this fact, we do not know if the following statement
is true. From our viewpoint, its falseness is more favourable than
its truth.

ASSERTION A. Euvery function which is seminormally continuous on
a closed set, is normally continuous on this set.

The converse of this assertion is evidently true.

We shall say that a function is generalized seminormally con-
tinuous, or GSNC for short, on a set E, if the function is continuous
on E and if E is expressible as the union of a sequence of closed
sets on each of which the function is seminormally continuous.
When this is the case, the set E is sigma-closed of itself.

The following propositions are obvious. () Ewvery function which
1s GNC on a sigma-closed set is GSNC on this set. (i1) The GSNC
property of a function on a sigma-closed set E is heveditary with
rvespect to E. (iii) Every linear combination of two functions which
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are GSNC on a set E, is itself GSNC on E. ({Av) A function which
is GSNC on a set E, necessarily maps every closed null set contained
in E onto a null set. | |

We do not know if the following statement is true.. At least,
however, it is an evident consequence of Assertion A.

ASSERTION B. Every function which is genervalized seminormally
continuous on a closed interval I and approximately derivable almost
everywhere on I, is generalized normally continuous on 1.

THEOREM 32. FEvery function which is gemeralized seminormally
continuous on a closed interval I and has a nonnegative approximate
derivative at almost every point of I, is monotone nondecreasing on I.

THEOREM 33. If two functions are gemervalized seminormally con-
tinuous on a closed interval I and approximately equiderivable almost
everywhere on I, then the functions differ over I only by an additive
constant.

The former of these two theorems may be established in the
same way as for Theorem 5, while the latter follows immediately
from the former.

The proof of the following result resembles that of Theorem 7.

THEOREM 34. Ewvery function which is both BV and GSNC, on a
closed set S, is AC on S. Hence, every function which is both GBV
-and GSNC, on a closed set, is GAC on this set.

Using the above results, we can now introduce an integration
named seminormal. The definition and the basic properties of this
integration are the same, mutatis mutandis, with those of the normal
integration. Among others, we have the integration by parts theorem
and the second mean value theorem.

Of the normal and the seminormal integration, the latter one
plainly includes the former. As we readily see, the latter is strictly
wider than the former, if and only if Assertion B is false.

ADDED IN PrOOF. Recently the author found out that the essential
part of this paper can be generalized further by replacing the normal
continuity and normal fluctuancy with outwardly less restrictive
properties of functions termed sparse continuity and sparse fluctuancy.
We do not know if the generalization is strict. The details are to
appear in the forthcoming number of this Natural Science Report.
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