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§1. Introduction

The present paper is a continuation to the previous paper?, which
has made use of an integral representation of sin p#/p for solving
wave equations. An initial value problem is to find a solution to a
given wave equation that fits to a given initial condition. For
example, we take the following wave equation

’u u  o*u u
TR TR TR R (1

with the initial condition

() =e=1(x), () =0=8Cx).

If we multiply (1) by e and integrate it with respect to ¢ from
0 to oo, we get an equation to its Laplace transform

o o
QU= T o =g(x)+qf(x)

where we set
%"L=f ue v dt
0

the real part of a complex variable g being positive enough to ensure
the convergence of the integral. Thus, the differential equation and
initial values are combined into one equation. On the other hand,
the solution G to the nonhomogeous equation

*G G G _ ., ot :
ot o1t ¢ ax%, —(Xt t)5(x x) (2) ‘
subject to the condition
G=0 for <t
gives its Laplace transform G satisfying
= G *G .
2 — - e — —p—at’ —x!
q*G o o e~ '§(x—x") (3)

¥ Now retired
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We call the function G Green function of the wave equation.
So, we can construct the solution # by means of the Green function
G({t, x;t',x") as follows

u(t, x)=[Gt, x;0, x’)g(x’)dx’—l——aat- [6t, %0, 61 ax.

We multiply both sides of the equation (3) by e~i#"* and integrate
with respect to x over the entire space. Then we get an equation
for Laplace-Fourier transform G

(@+p)G=e 0 =ime,  pr=piteeetpl,
By an inverse Laplace-Fourier transformation we get

S : 1 ea(t—t)+ip-(x—x")

. « 4! N —

G, x5l XD =5 ymr fdprdq

q*+p*

1 sin pl—1) . co—x
=Gy | AT )

rae/2) ¢ d -
N (22}52% L o Jd eXp[S“—f')“‘—%ﬂp-(x—x')}

/2 1 _
:%{2—1% LeXp s[(E—t)2—(x—x")2]-dssD7

— F(3/2) a(n—a)/zl:(t_ t/)z___ (x_x/)zj

7'5”/2
where we set
_ 1 rew
& (%)= 2m’f1,e svds

remembering the notations in the previous paper. The sign L shows
the path of integration along a straight line extending from c—ico
to c+ico, where ¢, which is the real part of s, is assumed usually
positive. In passing we note here that

0°(x)=0(x) Dirac delta function
0-1(x)=e(x) Heaviside unit function.
We encounter frequently with cases where we need to evaluate
integrals of the type

eql‘+il"x

finpqu @+ A(@+B)++++(g*+C)

A, B, ++--C being m positive quadratic forms in p. The integration
with respect to ¢ runs along L, while integration with respect to p
extends over the entire space. An integration with respect to ¢ gives

1 edt d
201 ) L (@ A (@ B)-+ -+ (g +C) 1
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~ 5 sin WA 1
cycl. \/A (B_A>""<C_A>
_ /2 s,z g4/

2ri L 33/2 &a. (B —-A) cees (C__A) > -?ZS>O

The last term in the integrand may be transformed as follows N

e—A/4s
o (B=A)- - (C=A)
1 e’ dr

T 2niJg (et AJAS)(c+ BJ/4s)«+++(c+C/4s) (4ds)mt
%27>O’ '72<A/S)>O’ M) @(C/8)>O !

and further

= zii L (4;;m—1 d”f: feXp[ ( +£) ”(” 4% )

—~~u—w(z-+7g;—>}dudvuudw
(4s)m“ ffé(l U—V— oo —W)

xexpl—(uA+vB+-++e+wC)/4s]dudv++ - -dw.
Therefore we get

1 e d
271 (@?+A)(@*+B)-+--(g*+C)

_I'G/2) fl?n{? f [ac1— zumdu-—f explst?— SuA/4s] mﬂ/zﬁ (4>

Fourier transform of this expression is easy to calculate since m
quadratic forms in p are on the shoulder of e. Likewise we get
another formula

1 e d
271 q(@*+A)(@*+B)e+++(¢*+C)
=tz L Jet-Swndu[ explst—SuA/s)- o R

§2. Wave propagation in a crystal

Wave propagation in a crystal is governed by Maxwell equations

Fx E+ aat =0, y-B=0 o
(5)
17><H-———a =0, p-D=0 o

ot
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and B=uH, D=c¢E.

Where E, H, D, B stand for electric field strength, magnetic field
strength, electric displacement, magnetic induction respectively, and
the permeability p is assumed to be a constant while the dielectric
constant ¢ is assumed to be a diagonal tensor

5 0 0
e=|{ 0 & O
0 0 &

in the crystal with suitably chosen coordinate axes.
We denote the Laplace-Fourier transform of a quantity A(x, y,z, 1)

by A~<1)1,1)2, Ps, Q), or
A<p17 D D @) =fiwfdxf:dt/1(x,y, z, De—at—irx

(A, =fj fdxA(x,y, z,0)e~ir=®,
Then we have Maxwell equations
~ ~ ~ 0 -z )
PE+pqH = p(H), _ P 'pZ
~ ~ ~ P= Yo 0 —1p: | (6)
PH —eqE=—¢(E),, ) )
—1p, 1P, 0

in terms of Laplace-Fourier transforms while equations p.B=0 and
y-D=0 are satisfied by virtue of these equations if they are satisfied
at the initial epoch. We denote the matrix e by ¢. From (6) we

get
E=(g*+07'P) ™ {q(EDo+po~ P(HD,)
H=(q*+ PoPy{gCDv—, PCED).
Here we note that
det(q*+o 1 P?)=det(q*+ Po~'P)=q* {q*+2Uq*+ p*V}

2\ o, o oy

U= l(i + 01_3>p%+%<—1— +ai1>p§+%(—1——+ %;)Pi

V= pi n b n pi
003 030, 0103
pr=pi+pi+ 3
and that two inverse matrices (g*+o¢7 P2t and (g*+ Po'P)~* multi-
plied by det (g?2+¢7'P%) have elements that are all polynomials in ¢
and p. We have E and H by an inverse Laplace-Fourier transform
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of E and H respectively,

H Z@%)Tzf :of dpf _dqHea i,

If we obtain an inverse Laplace-Fourier transform of 1/¢*(q*+2Ug?
+Vp?), or

1 had eat+ipx
(275)41. f_mfdprdq q° {q4 +2Uq2+sz}
then E and H may be got by differentiating G(x,#) with respect to

x and ¢
When two of dielectric constants are equal we can factorize

q*+2Uq>+Vp? into two factors each quadratic in p. We assume ¢, =¢,,
then we see that

q*+2Uq*+Vp*=(g*+ A)(¢*+ B),

A=(pi+pi+ D/,  B=(pi+pD/0s+ D5/,

=G(x, )

and

1 AL
27i J . q*(qt+2Uq*+Vp?

_r (jz/ 2) 212. f : Jea—u—w>auan| Lexp[stz—@q?li]dss%[

Therefore we have, integrating with respect to p and s,

N S 1 g o
G, 0= | [T T2 el = w— ) dua,

y 4

Tepo— x2 4 y? _0122
u/o,+v/e; u+tv’

A change of variables
ut+v=w
u/a+v/o;=w/c

and the convention ¢.=Max(s;,0;), e.=Min(s;,0;) leads to the range
of integration

0<w<l, 0.<o<o>

and

LN (740 i xyoi—x
G(x, D)= 1672'1777?17; v @ e((—XD(¢ X):

X=vV{x*+y)o+2z0,}
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: Vo, 22
T X = X+ (a2

x 1og (X —o25) + (4 Va2 log (X + \/a?ﬂﬁ .

The bracket [ ]ﬂ means the difference between the values of the

a

expression within the bracket at X=8 and X=a, where g=Min(X,, )
and a=Min(X., {).
By the way we add another formula
*G(x,t) _ Vo,
T2 871' Vo=1/a, Lfct X>_
These integrals may be evaluated by means of elementary func-

tions.
When all three dielectric constants are different from each other,

evaluation of the functions G(x,¢), 9°G/3¢* needs numerical integra-
tion as has been shown in Courant-Hilbert’s Methods of mathematical
physics?. Our method differs from that by Courant-Hilbert a little.
In this case we assume o¢; >0, >0; and put

1
_1____1___261, ___L—:Z‘Bz, —]‘—__l__zﬁs

Os o; O o O
Then we see B; >0, 8.<0, ;>0 and
—V0*=Bipi+ Bipi-+ BDi—20.5: Dibi— 26,6, BiDi— 26,6, D13
=(—.81P?+,82 §+ﬁ3ﬁ%)2—4‘3253p§p§- (7)
Since B.8; is negative, U?—Vp? is positive. Therefore
A=U+JUz=Vp?) and B=U—-JU:—-Vp?)

are real and positive for real p.

Remembering the formula (4) we may write

1 et
2ntd qz(qz+A>(q2+B>

— FK%” 2mf f(l u— v)dudvf ex:p[szf2 z’iﬁ];ﬁ}dss”/z.

A change of variables

utov=uw, u—v=uwp
leads to '

f jexp( uA+vB> (A—u—v)dudv

=—f wdwf dp expl— U+ pvy(U—=VDp2))w/4s]. (a)
2J9 ~1
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Here we employ a device for any Z
1 o
~0Z (o= 1— o2)e-+7
f__le o f_m€< p>e “dp
‘"735[ :cf L explE(l—p*) —pZ1dpdt/¢

L[ expre+2ze/4e1vnde e

=277.'Z L
and get
Nzt o 1
(=7 wdw |
wU . NEAWS 5
x exp|¢— =+ W — V(5 ) ] de/e 8

We need another device. Remembering the equality (7), we may
write

exp[ @~V (4-)

:fin”dv exp[—$u2+(—ﬁlp§+‘32p§+/33p§)_%u_5vz+2m2p34_u;4.E/ﬂ
7=v(—B:2Bs).

Inserting this equality in (8) and integrating with respect to & we get

) =%f:wdwfi J eg/ll__z:;:v;; dudv

x exp| — 4o (Co i+ B+ p) + (— Bu i+ Ba b Ba DU+ 2 b bv) |

aj:%(%+L+L_J_>’ j=1,2,3.

g, 03 0y

Hence we have, integrating with respect to p, s, w successively,

eqt+i1)-x

P "
S e =R SIS oL

32r? Vi—w—v? °
| 1
~ \/ (a, ”“,Blu) {<az+.32u><a3 +,33%> "7'27)2} dudy
x? Cas+ Bsu)y?—2yvyz+ (ay+ B.u) 2?

Xi= a;—Biu <a2+,32%><a3+183”)_7’202

The range of integration here is limited by the condition t—X >0
and 1—#*—v*>0. The expression of 9*G/dt2 may be got by replacing
the term (¢—X)? of the integrand by 2.
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§3. Wave propagation in the presence of a plane boundary.

We take a scalar wave equation
| n 9 O*u
kz=:1 axk at2

The quantities a(x) and c¢(x) are assumed to depend on only one
coordinate x,, which will be written x hereafter, dropping the suffix
1.

a(x) 88;2 —c(x) =—-9(t—1") klia(xk——x;). (8)

We assume
a(x)=a and c(x)=c for x>0
and further a(x)=a' and c(x)=c' for x<0.

The boundary condition at x=0 is assumed to be the continuity of
kR(x)u and h(x)ou/dx where k(x) and h(x) are given as follows

k(x)=Ek, h(x)=h for x>0
k(x)=Fk, h(x)=n' for x<0.
Another assumption is that

xi=x">0 and u=g—7;=0 for <¢.

We denote a Laplace-Fourier transform of # by «, or
?/'szo dtf_mfdxzo coodrxu eXpl—ql—ip,x,— oo v —ipx,].

Initial values of » and ouw/dt are zero from the preceding assumption.
The equation to be satisfied by % becomes then

44y T (g + ) (Pt e+ V= —3—3DE  (9)

E=expl—qt' —ip,xt— s+ —ipx}].
We seek a solution to this equation which satisfies said boundary
condition and the condition that the quantity % vanishes as x—oo and
x——oo, We set

and
| " e rrdx=w, Bp<0

and assume
k(x)u=B, h(x)ou/ox=A
at x=0, both B and A being unknown quantities. Since E(x)u(x)
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and 2(x)ou/dx are assumed to be continuous at x=0,%(x) and odu/dx,
and also % and du/dx may not be continuous. We define two quan-
tities 2 and 2’ by

V(Piteeee+pi+cq?/a)=2, RA>0
V(Dit oo+ pi+c'qg?/a")=1, RA>0
both quantities being understood to have positive real parts.

Multiplying both sides of the equation (9) by e~?* and integrating
either from 0 to o or from —o to 0, we get

2 2‘—_£—px'_fi é_
(p2—=2)u = ae +h+pk

. A B
(Pt =2 = WP
The condition that # vanish as x—c and % vanish as x——o
determines unknown quantities A and B. Vanishing of 4 requires
that % should have no pole at p=24, so that

A B E
‘7;4-27——-8

Likewise, vanishing of & as x——o leads to the condition that %
should have no pole at p=—2', so that

A B

i’ =),

V2
Hence we have
_ Ma'e™ Eh _ e Eh _ I bt
A"" Za—l—l'a' a » _Za—l-l'a' a y a—h/k, a-—-h/k
and
~ 1 o Zla,l_'_pa i E
u_pZ—zz{ L P e }a
71/,—":— 1 Al+p =z’ Eh

D=7 Jatia’ © ak’

and consequently

- e—ilz—z’l_e—l.z;—lz’ ae—lz—/\x’ E

u_< 22 T Aa+2a >7 %20
_ g Mtz Eh

U= a+a ak’ #<0.

If we define two functions G and H

Gt ) =—gryiy | [aur++-an.f a5
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X expLqt+ip,(Xy—x2) + o+ s+ D, (X, — %) ]

—Ay-Ay’

1 en ey
H(t, 3,9 =zp5eg | [0+ -dbn] A4

X exXpLqt+ip,(Xy—x5) oo oo +ip (X —2x) ],
the solution # may be represented as follows
u=%{GU—ﬂJx—x®—{Xﬁ—ﬂx+x®+aH(#4%x+xC®L x>0
ye h
T ak’

To evaluate G and H, we employ an integral representation of
e /22 for y>0,

e 17 ewy

—ﬁ: o) e pz_*_xz dp: y>Oy *722>O)

H({-V,x', —x) x<0.

and a formula based on the assumption 22>0 and 22'>0

]- — = —rQat+i’a’)
rat+Aal —Jﬁo € ar.
These formulas lead to the following representation
e—-)y—/l'y’

o
— —My+ra)-A (y'+ra’)
Aa+ Ao _fo € ar

_i——__l_. “ i ' eip(y+’r‘a)+ip’(y’+ral)
= ayay/ 2 fO drfhwfdpdﬁ (1)2"‘22)(?/24—]/2) .

- We have then

Gt 9= L2 (Y geol o e iyt et a2

nn/Z a

and

re/2) /ad & (°
H(t) J’, yl>= n,(<,,+/1)/2 CLZ‘Z/ ayaay/ fO d?’

n—

1 du | 1 3 n—4)/2
8 o\/u(l—u)(au/c—l-a’(l—u)/cl) 3= 2(T),

c(y+ra): (Y Hra)? (= xi)Pteee e+ (X2

au a'(1—u) au/c+a’'(1—u)/c’

T=t—

The range of integration with respect to 7 is forr_ﬁally from 0 to oo,
but it is actually limited by the condition 7°>0, since the integral H
vanishes when 7<0.
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§4. Electromagnetic waves in the presence of a plane boundary

The plane z=0 is supposed to separate two media. The medium
for z2>>0 has dielectric constant ¢, permeability x and conductivity o
while the medium for z<0 has dielectric constant ¢/, permeability g/
and conductivity ¢’. Maxwell equations for z>0 are

oH _

VXE—l-pW——O, V’(;JH)ZO
(10)
oF
FPXH—¢ 3 =oF, p(eE)=0

Physical quantities for z<{0 are marked by a prime. Boundary
conditions at z=0 are known to be®

ek,=¢'E], pH,=p'H;
E,=E, H.=H'
E,=E, H,=H]!

We define here a Laplace-Fourier transform A of a quantity A as
[Cat|” [axdy| dzAexp(—qt—ipx—ipy—ipd=A4,
0 —o0 0

2g>0,  F9,<0,

and likewise
fmdtfw fdxa’yfo dz A’ exp(—qt—iplx—z'pzy—ipsz):fI,'
0 —_—0 — o0

Rq >0, Fps>0. .
Further we define &, # from field quantties E and H at t=0 as

[ Jaxas az(my.-0 expc-ipxr=c

fimfdxdyf:dz<ﬂ)t=o exp(—ip-x)=%

and e, 2 from E, H at z=0 as

[Tatf” [axay(E>... exor—qt—ipii—iv.y1=e

[ at|” faxay(m).exol-qt—ipix—ipuyI=h.

Here we note that & and ¥ are known from given initial values
of E and H while e and & are unknown since the values of E and
H at the boundary can not be given. Similar quantities with a
prime are defined for the region z<0. We derive then from Maxwell
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equations (10) the following relations
PE+pqH=p¥+a
PH—(cq+0)E=—c8+b

for the region z>>0, where we use the following symbols

0 —ipy  ips —e, —h,
P: ipg 0 _ipl y aA= e, | b= hx
—1ip, oy 0 0 0

and
PE 4+ p gl = ' ' —a
PH'—(e'q+o)E'=—¢'8'—b
for the region 2<0. The vectors @ and b are common to said two
regions because of the continuity of E,, E,H, H, at the boundary.
The difference in the sign stems from the difference in the range of

integration with respect to z in A and A’
These relations give

-
E= Ny T {(rq(e6—b)+ P(p#+a)}
H=—Lo (— P(6-b)+ (eq o) (it +a))
r=pq(eq+0)
and
1

E'=W{y’q(s’@’-l—b)—i—P(y’%’—a)}

p 1
'+ P?

)

{(=P(E'E+b)+('qg+o)(p X' —a)}

t'=p'q(e'q+a").
To determine two vectors a and b we use the condition that the
field quantities £ and H vanish as z—oc and E’ and H' vanish as

z——o0, Then the inverse Fourier transforms

IE exp(ip;2) dp, fﬁ exp(ip:2)dp,,  Fp:<0 (11)
and

B exvlip2ddp, [ expGpddp, — £5>0 (12

should vanish as z—o and z——o respectively. The inverse of the
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matrix =+ P? turns out to be

11
t+P? " (r+p2) K

t+pt PP, Dibs
R=| p.p: z+p3 D205 |
Dsby psp. THPE
The factor =+ p*=7+pi+pi+p: vanishes at p,=21 and p,=—2,
A=V(=pi—pi—o),  F1>0.
For the inverse~Fourier transforms (11) to vanish as z—co, the inte-
grands £ and H should not have a pole at p,=—21, because the term

e #—co as z—oo due to the convention #2>0. When r+p® vanishes,
we see

—pi—103 Db D1Ds
R= D204 —1?%—1?% D:Ds =—P
Dsbs Dsp: —pi—13
so that vanishing of £ and H as z— leads to the conditions
P {pq(e6—b)+P(p#+a) =0 for p,=-—2
and P {—P(e85—b)+(eq+0o)(p¥+a)} =0 for p,=—2a

The matrix P satisfies the equation P?=p2P and p? is equal to
—7 when p,=—2, so these two conditions turn out to be equivalent
each to the other. We choose the second condition which may be
- written

Pla—pqPb+ peqPS+pP2#=0  for p,=-—2a as
For the region z<0 we define
O A=pp, 0,
The‘conditi(in that E’ and H' vanish as z——oo entails that the
numerators of E’ and H' should vanish for p,=2', consequently

Pra—p'qPb—p'e'qPE — ' P2¥' =0, for p,=2". 14
Each of these two vector equations (13), (14) has three components,

but the third components of @ and & vanish. So we discard the
third components of these vector equations and get ,

Di+22  —pips 0 —ipqa

=D DPIHA ipqg2 0 a A
e d N AETI
pg‘}'llz _plpﬁZ O Zﬂqu, b B

_pzpl p?—i—]'z _iﬂIQZI 0
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where two vectors a and & are deprived of their third components
and

A=[—peqPE—uP?¥ -~
B=[p'e'qP8 +p' P2X' ] poerr

are similarly deprived of their third components. We denote the

matrix on the left side of (15) by . The determinant of the matrix
@ is computed to be

det Q@ =g%22'(pd'+p' D (zp' 2 +7' pd)

and two vectors @ and b are given by

o )=ol5)
b) Q (B '

Then E, H,E', H' are fully determined, so that we can establish
formal solutions FE, H, and E'’, H' for given initial values. But the
expressions of E, H and E’, H' depend on 2 and 2, which are radicals
having their positive imaginary parts. So the computation is very
difficult. '

We try to bring the formal solutions into a form more easy to
compute. The vectors e and b depend linearly on A and B, which
depend, in turn, linearly on initial values of £, H,E',H'. So if we
establish the solution to a special initial value where one of field
quantities =0(x—x') and others vanish, desired solutions may be
obtained by a linear superposition of similar solutions. Hence the

main task is to obtain an inverse Laplace-Fourier transform of a
typical term

1 1
(c+p?) det@

expl—ipx’ —ip,y' +iAl+12'(']

¢, ¢’ being to be replaced by z’ or 0 after integration. Even now,
computation is formidable. When conductivities of the media vanish
c=0'=0, the task may be easier. We are faced then with the evalua-
tion of

eqi+ip'1‘+i,2c+z'2'C'

_ 1
K= @)% fdprdq q%(q*+ D2/ pe)(p' 2+ p2' ) (' 2+ed' )22 "

Since the imaginary parts of 1 and ' are positive, both p'2+ pd’
and ¢'2+e2’ have positive imaginary parts. So we may have the
following integral representations

#’2_{1_ #2/ — %fﬂ ei(p’/l+,u}.’)udu
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1 _lfw (e’ A4+ ed)v
e'a+ed T iy ¢ av
and
el +ia'ey’ —_I_J‘WJ‘ J““’ ‘J“ ,eir(C‘I‘p'u“l‘s'v) el‘i"(C'"i’[ﬂt“’“;U)
A g (A ed T~ w2 J v _ Jdrdr— rr—ar

With the use of these expressions we have

K= (271')4277: pspe f fdudvf fdpdrdi’

f d explgli+ip-x+ir({+p'u+e'v)+ir' (' + pu+ev)]
G+ 1/ 1@+ P+ B DD/ o) (@ F 7o B PO ae)
The denominator of the integrand is of the sixth degree in g2

so we introduce six variables p,, ¢=1,---+,6 corresponding to each
factor in 2, with the help of the formula (4), and get

K= 4557?:42% ,us;lz'e’ f:fdudvfjmfdpdrdﬂfdss—13/2f:f6(1_ épk)lfldpk

2 7,2_+_ 2+ 2 7,/2+ 2 2
X exp{stz— (%p1+ ﬁ; br 02+ #,il,—i_pz p3>/4s

+ip-x+i7’(€+p’u+s”l))+i1”(C'+,uu+sv)].
Integration with respect to variables p,, ps5, ps gives
oo 6 )
fofa(l_lepk>dp4d.05dpe:5(1—01‘“Pz_Ple“Pl_92—03)2/2!

and integration with respect to p, 7,7’ is immediate. We have then,
after integration with respect to s,

K= 297:22!3!\/ ffd”d”f Jleﬂ =P =) (L= p1—p2—p0)"

1 1
xe(TIT* /L —dodoidps,
0 Coi+0)/ et 0/ 1"V pipyp; “ 0100
T=t— Xty _pezr pe(C+p'ute'v)?
Cort+p2)/ pe+ps/p'e’ 01 Py
p'e! (€' + pu+ev)?
Os )

Then, remaining integration variables are u, v, p, ps, p3.‘ The presence
of ¢(T) and e(1—p,—p.—p;) reduces the range of integration to a finite
region. Now we change variables from p,, p;, ps to w, a, 8 by

017+ 02+ P =W, o1+ p.=wa, pe=wWaf

or
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pr=wa(l—g), p:=wap, os=w(l—a)
and get

32“7r2\/ ffdudvf@f \/1 a \/ﬁ(l ) a/.ue+(11 a)/p'e

f (1— w}2s(T)T37——--

1 _ xX*+y? pez?
Tr=¢# w Xz, Xo= a/pe+(1—a)/p'e’ T a(1—8)

+ ys(C+y'u+e’1})2 ’s’((’%—yu—i—w?
af l—-a

Integration with respect to w yields

[ :(1—w)2e(T)T3dw/x@= 16e(t— X)(f— X)¢/15
consequently

o 457':2 \/ f fdudvff\/l a \/13(1 B a/ye-l—(ll a)/p'e

X e(t—X)(t—X)G

the range of integration with respect to # and v being limited by
the condition {—X >0 in the first quadrant of the #-v plane.

§5. Elastic waves in an isotropic medium with a free plane
boundary

We suppose the region z>0 is filled with an isotropic medium and
no stress is applied to the boundary z=0. We denote the displace-
ment of a point by (#,v,w)=v and assume the equations of motion
to be

0*v
p—(ﬁ;—pdv—~(z+p)7(7-v)=f
where p, 4, ¢ denote the density and the Lamé constants respectively,
f standing for the body force. No stress at z=0 entails

(G 0 M 3)e0, A3 B+ ) s20m0 w0

In the following we abbreviate p/p=a, (A+p)/p=5.

Solutions to the initial value problem of the equations with the
body force may be constructed with the aid of the matrix Green
function satisfying the following equation

|2 —ad—pD|G=1-3x—xa(t—t") (16)
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82 . 62 62
0x®> 0x0y 0x0z

D 0% 02 02
| dyox dy* dyoz
T S

0z0x  0zdy  0z°
and the condition
G=0 for <t
and G vanish as z—co.

We denote the first column of the matrix G by (U,V,W), which
should satisfy

9 (oU , 9V oW

o~ — _ 4!

57— adU= B G+ )= oG X st 1)

&V o 93U, aV W\ _

o~V b5 (Gt a5 )=0 an
W U V. aW_

o TedW- ﬂaz( oy T )=0

and the boundary cond1t1ons

oU = oW oV aW oU
oz + o =0, az =0, (B— )<—+——)+(ﬁ+ )
at z=0.

We introduce a Laplace-Fourier transform A of a quantity A by
fizfmdtfm fdxdyA exp (—qt—ipx—ip,y)
0 —

and rewrite (17) as

(g2 +api+apDl — a +ﬁl)1(1—" U—|~;02V) 18D, aasz

=0(z—2') exp (-—iplx’—ipzy’—qt’)

(q2+ap%+ap)V a ‘{‘ﬁpz(plU"‘sz) Z,sz 8

— : = o 5
(q*+apitatdW —zﬂ%@ﬂ +p2v>—<a+ﬁ>—3¥=o
remembering U=V =W=0 for t<¢#. The boundary conditions become

%Z—]-+ ipW=0, 2

at z=0. We set

V+P2W 0, z<ﬁ “X,blU'*‘PzV)-l-(,B—I-a)————:;
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@oco=ia,  (V)yeo=ib, - (W),mo=ic

then we see

(55).mp (51). e (5F), = e har o)

Further we introduce a Fourier transform A of A by

A= f :ff exp [—ipzldz, ;<0

then we see

. 52 €XP (—ip,2)dz= —ia+ip3(7
= U
0 022

%Z exp (—zp3z)dz— —zb+zp3

exp (—ip,2) dz— —p.c+p.a— sz

fm_aéz_eXp (—ips2)dz=—poc+psb—piV

a;/V exp (—zpaz) dz= —zc+zp3
0 4

: 8622/ exp (—ip2)dz=—77— poa (Dra+p:b)+psc— ﬁ

B+a
consequently
@+ap*+ppt Bbibe B s U
Brudy  @tapttBpy Bpups |V
- Bbshy BDsp- q*+ap*+ppi W
ap;, 0 (B—adp:\[a\ [E .
= 0 apy (B—adp: | b |+|0 18

ap; ap, (a+Pps/\c 0
pi=pi+pi+ps,  E=exp (—gqt'—ipx’—ip,y' —ips2)).
We denote the matrix on the left side by S and the matrix on
the right side by Y, and represent (18) as follows

INJ, a 1
S|V |1=Y|b |+| 0 |E.
ﬁ/ c 0

The vector (a,b,¢) is unknown. To determine the vector, we
use the condition that U, V, W vanish as z—o. If we write ¢*+ap?
=s, then we have det S=s2(s+8p?) and
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S+‘8p2_18p% _ﬁp1p2 '—ﬁplﬁs
1 _—-—1——— » = — 2 2 _
STseapm o K Bbuby  STEP—DE  —Ppubs
—BDsh1 —BDsDs s+pp*—phi

U a E

5 | 1

T: _—_S(s+ﬁp2)RYb +10

w c 0

The factor s=q¢*+a(pi+pi+p}) vanishes at
ps=t and py=—x, &=J(—pi—pi—q*/a),  F&>0
and the factor s+8p2=q¢*+ (a+pB)(Pi+pi+p}) vanishes at
po=r" and py=—r', &'=J(=pi—pi—q*/(a+p)), F£'>0
where both x# and &’ are chosen so as to have positive imaginary
parts. So, for ﬁzﬁvfexp (ips2)dps/2x to vanish as z—oo, U should

not have a pole at p,=—x and at p;=—«', since the poles at these
points give rise to terms diverging as z—co. Therefore we have the
following conditions

a 1
R(—e)Y(—=r)| b |+| 0 |[E(—&)}=0 - a9
c 0 ’
a 1 .
R(—k")Y(—&D| b |+] 0 |E(—£") =0 NCOR
C 0

where R(—«) means the value of R when p,=—&x When s=0, the
matrix R is of rank 2, so we use the first and second rows of R in
(19). When s+p>=0, the matrix R is of rank 1, so we use only the
third row of R in (20). Combining these three rows, we have the
relation to determine the vector («,b,c) ‘ '

a 1 [a*+2apt 2app,  —2apu

Q b|—FZ 0 |=0, Q=| 2ap,p, q*+2ap? —2ap,k ‘,
c 0/ - \ 2api’ 2ap’ @2+2a(Pi+ PR
E(—k)/k 0 0
F= 0 E(—r)/x 0 )

0 0 E(—&")/e'|
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q*/a+ p} D10 — D
Z= D:0, q*/a+pi — Do
D! Do’ qz/(a+,8)+j)%+p§

So we have

U 1
V4 —‘—__———.—.—1 —1— L

v —s<s+ﬁp2>R{YQFZ+1 Ef 0|
774 0

1 : unit matrix.
In a similar manner we have

=__ 1 1 .
C= i R{YQFZ+1 E}.

The solution G will be given by an inverse Laplace-Fourier trans-
form

__ 1 ~ .
C= Gy 2ni | _Jan| ,44G exp [qi+ip-x].

Integration, however, is very difficult. At first we compute the

determinant of the matrix @ to be '
det Q=@ {q*+2fq>+ 2+ 2afkc'}, [f=2a(p2+p.2).

So the determinant of @ involves ¢ and ', each of which is a radical
of a quadratic form in ¢, p, and p,. The presence of radicals in the
denominator of G is awkward. To get rid of radicals from the
denominator we multiply det @ by its second factor with the sign of
2afks’ changed and have

det Q- {(g*+ ) —2afkk')
=q*{qg°+4fq*+ Qa+6p) f2q?*/ (a+B) +28/%/(a+ B}
| =q*{¢°+4fq*+C+2/(A—a)) f2q*+*/(1— o))
remembering the relation 28/(a+p)=1/(1—0), ¢ here denoting the
Poisson ratio. The cubic equation in x=¢q%/f
2 +4x2+C2+2/(A—6))x+1/(1—06)=0
has three negative roots for 0<¢<e¢,=0.26308” and one negative and
two complex conjugate roots for ¢>¢,. We assume here ¢<o, and

denote three negative roots by —y, —v, —v; and rationalize the
denominator of 1/det @

1 _ q*+2fq>+ f2—20 frx'
det @  ¢*(@*+vi )@+ /)G +vs )

so that evaluation of G needs evaluation of the integral K




July 1986 Some Initial Value Problems in Wave Propagation 87

K595, 0.8 = 57 [ [dp[ da-J-N-M

J= exp [gt+ip-x] .
(@*+ap®)(g*+(a+p)p»)
N=1/‘14(([2+i)1f>(q2+véf><qz+”3f)
_ eirl .’et'lc'C' i

M= ,

K K

and its differenciation with réspect to six variables ¢, x, y, z, ¢ .
When ¢ and ¢’ are positive we use the following representations

£ widwr—e T al) o @ +a(pH P
el’l‘,c, —-L had ez'r'{' ' a+ﬁJ\oo eir/cr ,
&' Tt o 72— g2 dr'= 7wl J e @+ (a+ (PP ar’.

Then the denominator of the integrand of K has nine factors,
each quadratic in ¢. So allotting nine variables 4,,7=1,2, «+++,9 to nine
factors and employing the formula (4), we have

K LD ST ({1 3 i e

H=ff:fd1'd7’ dp exp [Stz—;—f;-l-ip-x-l-i?C-i—ir’C’}

where we put
L=ap*a+(a+p)p*A+a(pi+pi+ 7D+ (a+ DI+ Di+7"2)2,
+2a(pi+ p3) (125 +vade 5 27)
=PI+ Do+ bl + 7205 +7"p,
pr=al+(a+ )+ als+(a+B)A+2a(vids+ v+ v547)
pe=ai+(a+p)2,
p3=als

p4=(a+ﬁ)24.
Integration with respect to variables p,» and »' gives

N e
H=(4rs)52 e ,
(4ms)52 exp (sT) pl\/ Py

Integration with respect to s gives

1 = —
5r7)  expsT-dssT=e(TOTY/61.
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Remaining nine variables 2;,4=1,+-+-,9 may be reduced to p, p,,
o5 ps as follows. For any function A(2) we see

o 9 o . : . - .
fo fa(1~ ;zk)ndzkAm:J"_O [a01-zaomdaAf .. fﬂ
X6l p;—ar,—(a+ B A, —al;—~ (a+B) A —2a(v, A5+ v,4¢+v32,) 1dp,
X 6(p,— at — (a+B)2:)dp,0(p;—al;)dp;5(o,— (a+p)2,)dp,
‘:j : f dp,dp,dp;dp, AW (py, 02, ps, p)e(0),

P=P1— P2 P37~ P
w( 0= G B AT B o
015 P2, P35 P4 20(2‘8(“—}—‘8) 4! cycl. (Uk—vi>(vk_vf)

~ {[[1_—’;—3_' a“(-t‘ﬁ B aff—)li‘@ - 2£vk ]:[4_[[1_%—0(—&5_%— 2apvk ]:‘4}’
where the symbol [[x]] is meant to denote e(x)x and 3 means the

sum over three cyclic permutatlons of (k 5, 7)=0»1, 2 3). Finally we
have | o

1

21571'2

K=— a(a—i—ﬁ) f fdpldpzdpgdmTGE(T)E(P)W/P1<sz03404>1/2

The range ofinte‘gration with respect to p,, ps 03 ps is formally 0 to
o, but it is actually confined to a finite region by virtue of the
factor 6(1—2>32,), further limited by 7 >0 and p=p,—p,— ps;— ps>0.

When the Poisson ratio ¢ exceeds the critical value o, two of
v, Vs, v; become complex. conjugates, and evaluation of K becomes
difficult.

$6. Remai’ks‘

Techniques used for solving some wave equations in‘ physics in
the present paper are

1) Use of integral transforms. This technique enables to com-
bine wave equations with initial values and boundary values into
united equations, as is well known.

2) Use of integral representations of sin pt/p, e*/1 etc. This
technique makes some integrations easy. In particular, use of the
integral representation of sin p¢/p leads to the appearance of discon-
tinuous factors, which is inevitable in the process of wave propaga-
tion. -

3) Use of the formula (4). The formula allows straightfoward
calculations of some Fourier transforms. However, when the deno-
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minator cannot be factorized rationally, more powerful techniques
need to be invented.
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