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Introduction. This is a continuation of our recent papers [1] to [3].
We shall be concerned with a new integration which resembles the power-
wise integration in the wide sense and which will be called the Dirichlet
totalization. The reason for introducing this integration is the fact that
we can establish an integration by parts theorem for the new integral,
whereas it seems difficult to obtain an analogous result for the powerwise
integral in the wide sense. The validity of such a theorem is plainly a
desirable property of any integration theory. On the other hand, the con-
nection between the two integrations is not elucidated yet.

§1. Dirichlet totalization.

By a function, by itself, we shall mean any mapping of the real line
R into R, unless explicitly stated to the contrary. The increment of a
function ¢(x) over the closure of an open interval H will be denoted by
o(H). The letter p will always signify a generic real number >1. We
shall write &[] for |£|?sgné&, where & is any real number. All sets con-
sidered in this paper will be linear, i.e. contained in the real line. A set
(§.) will be called sigma-closed set in this paper.

Let ¢(x) be a function and @ a closed set. We begin by defining two
quantities A(p;p;Q) and Y(p;p;Q) as follows. If @ is connected, then
these quantities are to mean zero. If @ is not connected, we denote by
H a generic open interval contiguous to @ and we write by definition

A(¢;p;Q):§]¢(H)\p and Y(¢;p;Q):§ o(H)[?,

where we understand Y(¢;p;®) to have a meaning when and only when
the series X ¢(H)[J’ converges absolutely. This last condition comes to the
same thing as A(g;p;Q) < +oo. '

Given a function ¢(x) and a set Q, we shall call Q to be a Dirichlet
set for the function ¢(x), if @ is closed and if the following four conditions
are fulfilled :

(i) Alp;p;Q) is finite for every p (subject to the condition p>1);
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(ii) we have A(go;p;Q):0< pil ) as p—1;
(iii) if the end points of a closed interval A belong to @, then
Y(p;p;@NA) —> ¢o(4) as p—1;
(iv) there exists a constant §>0 such that we have
[ T(p;p;@NA)| <67! for every p<1+94

and for every closed interval A.

A few remarks are appropriate to these conditions. The interval A is
kept fixed in condition (iii), while it varies arbitrarily in (iv). The quantity
Y(p;p;QNA) appearing above has a meaning; in fact, every open interval
(if existent) contiguous to the closed set @\ A4 is at the same time con-
tiguous to the set @, so that A(p;p;Q@NA)<-+co by condition (i). Again,
condition (iii) shows that ¢(x) is a constant over each closed interval (if
existent) contained in Q. Further, every closed set on which a function
@(x) is a constant, is a Dirichlet set for ¢(x). ,

THEOREM 1. If Q is a Dirichlet set for each of two given functions,

then Q 1s so also for any linear combination, with constant coefficients, of
these fumnctions.

PROOF. This follows immediately from Lemma 1 of [1], according to
which we have the inequalities |a+p|?=2?""(|a|?+|B|?) and

(a+ B —allP—BP| =227 (p— 1) (la[?+ | BI7)

for any two real numbers « and fS.

A function ¢(x) will be termed Dirichlet admissible on a set E, if the
function is continuous on E and if there corresponds to each closed set
QCFE a function (x;Q) approximately derivable to zero at almost all
points of @, such that @ is a Dirichlet set for (x;Q) and that the dif-
ference ¢(x)—+(x;Q) is absolutely continuous on Q.

Plainly this property of a function is hereditary, i.e. a function
which 1s Dirichlet admissible on a set 1s necessarily so also on every subset
of this set. On the other hand, any function which is AC on a set, is
Dirichlet admissible on this set.

THEOREM 2. Ewvery function ¢(x) which is Dirichlet admaissible on a
measurable set E 1s AD at almost all points of E.

PROOF. By a well-known theorem, the set E contains a null set S
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such that E\S is expressible as the union of an infinite sequence of closed
sets, say <Q@,;neN)>. With the same notation as above, the function
¥(x;Q,) is, for each n, AD to 0 at almost all points of Q,. On the other
hand, the function ¢(x)—(x;Q,), which is AC on @, must be AD at
almost all points of @,, on account of the Denjoy-Khintchine Theorem (see
Saks [5], p. 222). Consequently ¢(z) is AD at almost all points of @,, and
hence at almost all points of the union Q,\V@Q,\V----=E\S. This completes
the proof, since S is a null set.

We shall say that a function is generalized Dirichlet admissible, or
briefly GD admissible, on a set Z, if the function is continuous on Z and
if Z is expressible as the union of a sequence of closed sets on each of
which the function is Dirichlet admissible.

When this is the case, the set Z must be sigma-closed and the func-
tion is GD admissible on every sigma-closed set contained in Z. Again, a
function which is GD admissible on a set, is necessarily AD at almost all
points of this set, as we find at once by means of Theorem 2. On the
other hand, any function which is GAC on a sigma-closed set, is GD ad-
maissible on this set.

THEOREM 3. FEwery linear combination of two functions Dirichlet [or
generalized Dirichlet] admissible on a set Z, is itself so on this set.

THEOREM 4. In order that a function which is continuous on a non-
void closed set Z be generalized Dirichlet admissible on Z, it is mecessary
and sufficient that every monvoid closed subset of Z contain o portion on
which the function 1s Dirichlet admissible.

Of the above two theorems, the former is immediate from Theorem 1
and the latter admits a proof quite similar to that for Theorem (9.1) on
p. 233 of Saks [5]. As to the latter theorem we remark that a portion
of a closed set is mecessarily sigma-closed. :

Inspecting the proof of Theorem 3 of [1], we get easily the following

THEOREM 5. If a function is BV on a closed set which is a Dirichlet
set for the fumnction, then the function 1s AC on this set.

THEOREM 6. A function ¢(x) which is generalized Dirichlet admissible
and GBV on a set Z, is necessarily GAC on Z. If in addition the set Z
1s compact and the fnnction is BV on Z, then it 1s AC on Z.

PROOF. The second part of the assertion follows in a routine way
from the first, to which we may therefore confine ourselves.
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Since ¢(x) is GD admissible on Z, this set is the union of a sequence
of closed sets on each of which ¢(x) is Dirichlet admissible. It thus suf-
fices to ascertain that ¢(x) is GAC on each constituent E of this sequence.
We shall keep E fixed in what follows.

The function ¢(x), which is GBV on Z, is so also on E. Hence E is
the union of a sequence of bounded sets on each of which ¢(x) is BV. The
proof is thus reduced to showing that ¢(x) is AC on each set M appearing
in this sequence. We shall keep M fixed in the sequel.

The function ¢(x) is continuous on Z and hence on E, which is a closed
set. We may therefore assume M closed. Then there is a function +(x)
for which M is a Dirichlet set and whose difference from ¢(x) is AC on
M. Since o¢(x) is BV on M, so is also the function +(x). Consequently
Y(x), and hence ¢(x) also, is AC on M, on account of the preceding theorem:.
This completes the proof.

THEOREM 7. Gwven a function F(x) which is AC on a compact set @
and gwwen a function G(x) for which Q is a Dirichlet set, suppose that
F(x) 1s approximately derivable to Fo(x)=0 at almost every point of Q
and that the sum &(x)=F (x)+G(x) has a nonnegative increment over each
closed interval (if ewxistent) contiguous to Q.

Then &(x) s monotone nondecreasing over Q.

This may be established as in Theorem 6 of [3]. But the proof of the
following theorem is somewhat different from that of the corresponding
Theorem &8 of [3].

THEOREM 8. Given two functions ¢(x) and +(x) which are general-
ized Dirichlet admissible on a closed interval I, if we have ¢u,(x)=<rap(2)
at almost every point x of I at which both the functions are AD, then
the difference (x)—¢(x) 18 AC and nondecreasing, on the interval I.

Consequently, +f two functions are generalized Dirichlet admissible on
a closed wnterval I and if they are approximately equiderivable almost
everywhere on I, then the functions differ over I only by an additive
constant.

PROOF. The function &(x)=+(x)—¢(x) is GD admissible on I by
Theorem 3 and possesses a finite approximate derivative &,,(x)=0 almost
everywhere on I. :

Let us define a subset S of I as follows: a point of I belongs to S if
and only if there is no open interval V containing this point and such that
the function &(x) is GAC on the interval InV. We find, by Theorem 7 of
[8], that S is a perfect set and that &(x) is both GAC and nondecreasing
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on each finite interval contained in I and disjoint with S. It thus suffices
to show that S is void; in fact, the function &(x) will then be GAC and
nondecreasing on the whole interval I, and hence, by a routine inference,
also AC on L

Suppose therefore, if possible, that S is nonvoid. There exists by
Theorem 4 an open interval H such that SNH is a portion of S and that
&(x) is Dirichlet admissible on SNH. We shall show that &(x) is AC on
the intersection Q=S J for each closed interval JC H.

The set @ is closed and contained in SNH. Hence there exists a func-
tion G(z) approximately derivable to zero at almost all points of @, such
that @ is a Dirichlet set for G(x) and that the difference F'(x)=£&(x)—G(x)
is AC on Q. Then F(x) is AD at almost all points of @, on account of
the Denjoy-Khintchine Theorem (see Saks [5], p. 222). It follows further
that F.,(x) fulfils the relation

Fop() =Fop(%) + Gap(a) =&op() €[0, + )

at almost every point x of Q. On the other hand, each open interval D
contiguous to @ is at the same time contiguous to S. Hence &(x) is GAC
and nondecreasing on such an interval D. This together with the continuity
of &(x) on I, shows that &(x) is nondecreasing on the closure of D and in
particular that £(D)=0. Combining the above results and applying the
foregoing Theorem 7, we find that &(x) is nondecreasing over Q.

This fact implies that the function G(x)=&(x)—F'(x) is BV on Q. But
@ is a Dirichlet set for G(x). It thus follows from Theorem 5 that G(x),
and hence &(x) also, is AC on @, as announced above.

Since S is a perfect set which has SNH for a portion, the closed in-
terval JCH considered above can be so chosen that the set @=SNJ is
infinite. Let L be the minimal closed interval containing @, so that LCI.
As already proved, the function £(x) is AC on @ and GAC on each open
interval contiguous to @. Hence &(x) is GAC on the interval L. This
contradicts the definition of the set S, since @ is an infinite subset of S L.
The proof is thus complete.

We now proceed to give the descriptive definition of the Dirichlet
totalization. A function f(x) will be termed Dirichlet totalizable on a
closed interval I, if there exists a function ¢(x) which is generalized Diri-
chlet admissible on I and which has f(x) for its approximate derivative
almost everywhere on I. Any such function ¢(x) is then called indefinite
Dirichlet total of f(x) on I. By the déﬁmﬁte “Dirichlet total of f(x) over I
we shall mean the increment ¢(I) of its indefinite total. This number o),
which is uniquely determined by the function f(x) and the interval I on
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account of the foregoing Theorem &, will be denoted by (S)Slf(x) dx.

All the properties, except Theorem 19, of the powerwise integral that
are stated on pp. 16-17 of [1] are shared also by the Dirichlet total, as
may readily be verified. In particular, the Dirichlet totalization includes
the Denjoy integration.

THEOREM 9. The Dirichlet totalization 1is strictly wider than the
Denjoy integration. ’

PROOF. We observe first the following simple fact. Given a function
o(x) and a compact nonconnected set E, suppose that ¢(x) is Dirichlet con-
tinuous on E and AD to zero at almost all points of E. If there exists a
constant >0 such that

IY(p;p; Q) <07 for 1<p<1+96

and for every closed set QCE, then ¢(x) is Dirichlet admissible on FE.
Consider the function 2(x)=0(x;3™") and the set I'=U U :----,
where the notation is the same as in §2 of [3]. This function being
strongly Dirichlet continuous on I by Lemma 16 of [3], what was stated
above will apply to 2(x) and I, if only we ascertain the existence of the
constant 6. But this is an immediate consequence of the appraisal

1Y (2;p;Q)|<18”-vp—1 +1,

where p>1 and @ is any closed subset of /.

To prove the validity of this inequality, we may assume that @ is
nonconnected. Let [u,v] be the minimal closed interval containing @. The
function 2(x) is everywhere nonnegative and we have £2(0)=£2(1)=0. Hence,
writing R=Q\Y{0, 1}, we find at once that

Y(2;p;R)=Y(2;p;Q)+2([0, uDI?+ 2([v, 1]
=T(2;p; Q)+ 27 (u) —L2%(v),
where p>1. This, combined with Lemma 15 of [3], gives
IY(2;p;Q)]<187- vVp—1 +[027(v) — 27(u)|.

The assertion will therefore follow if we show that 2(x)<1 for x</'.
By definition, the value of £2(x) for x=I" is expressed by

2(x)= n% %v)_ (%)n, where <a,(z);neN)>=0d(x).

Recalling that ¢(x) is a binary sequence, we obtain for 2(x) the following
appraisal, which completes the proof of the inequality in hand:



Dec. 1985 Integration Called Dirichlet Totalization 121

e 1/1\* _ =/1\» 1

2@z 2 (3) <2(5) =%

The function 2(x) is thus Dirichlet admissible on the set I'. But 2(x)

is so also on every open interval J contiguous to I, since it is linear, and

hence AC, on J. £2(x) is therefore GD admissible on the interval U,=[0, 1],

which is the minimal closed interval containing I. Consequently, if f(x)

is any function such that 2;.,(x)=f(x) almost everywhere on U, then f(x)

is Dirichlet totalizable on U, On the other hand, f(x) fails to be Denjoy

integrable on U, since £2(x) is not powerwise continuous, and hence not
GAC, on U,(see Lemma 8 of [3]). The theorem is thus established.

§2. Integration by parts.

LEMMA 1. Let M(x) be a function of bounded wvariation and C(x) a
Junction continuous on a closed interval I=[a,b].
(i) If M(x) is nondecreasing, then there is a point EI such that

®)| Cla) dM@)=C)- M) .

(ii) We have the relation (@)SIC(x) dM(x):SIC(x) AM(z), where the

wntegral on the right is a Riemann-Stieltjes one.

PROOF. We observe first that a function “of bounded variation” means
one which is BV on every closed interval.

re (1): This follows at once from the first half of Theorem (2.1) on
p. 244 of Saks [5].

re (i1): In the case where M(x) is nondecreasing, the assertion is
immediate from part (i) and the additivity of the &-integral with respect
to the interval.

In the general case, on the other hand, the function M(x) is expressible
in the form M(x)= U(x)— L(x), where U(x) is its upper variation and — L(x)
its lower variation. Since the &-integral of a function with respect to
M(x) over I=[a,b] does not depend on the values taken by M(x) outside
the interval I, we may assume that

M(x)=M(a) for x<a and M(x)=M(0b) for x>b.

Then a similar assumption is automatically fulfilled by each of the func-
tions U(x) and L(x). Consequently, by the definition of the &-integral and
by that of the Lebesgue-Stieltjes integral (Saks [5], p. 65), we find that

(@)SIC(oc) dM(z) :SIC(.%) dM*(z) =§10(x) dU*(z) —S]C(x) dL*(x)
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= (@)SIC(oc) dU(x)— (@)SIC‘(w) dL(z).
Both U(x) and L(x) being nondecreasing, it follows finally that

(@)SIC(”) dM() :SIC(oc) AU (z)— S]C(x) dL(z) =510(x) AM(z).

LEMMA 2. Gwen a function M(x) of bounded wvariation and given a
SJunction C(x) which s continuous on a closed interval I=[a,b], let K(x)
be any function such that

K(oc):M(x)C(x)—S:C(t)dM(t) for wmel,

where the integral is a Riemann-Stieltjes one as above.

(i) The function K(x) is then continuous on the interval I

(i1) If the function C(x) is absolutely continuous on a set ECI, so
1s the function K(x) also.

(ili) We have K. (x)=M(x)Ca(x) at almost every point xI at which
ihe function C(x) is approximately derivable.

PROOF. We may clearly assume M(x) to be nondecreasing. Writing
Dix)=|"C(t) AN =©)| Cl)dMEt)  for el

where the second equality is ensured by part (ii) of Lemma 1, and defin-
ing D(x) arbitrarily for x outside I, we have

K(x)=M(x)C(x) — D(x) for z<1.

re (i) and (ii): These results are stated respectively on p. 245 and
on p. 246 of Saks [5], in the course of the proof for Lemma (2.2).

re (iii): The second half of Theorem (2.1) on p. 244 of Saks [5] shows
that the function D(x) is derivable to D’ (&)=C(&)-M'(€) at every point &
interior to I and at which M(x) is derivable.

Suppose that & is such a point and that C(x) is AD at this point. Ap-
proximately deriving at & both sides of the relation K(x)=M(x)C(x)—D(x),
we obtain at once K.,(§)=M(¢)-C.,(6). This establishes the assertion, since
M(x) is derivable almost everywhere on R.

LEMMA 3. Suppose that a function U(x) is Riemann integrable on a
closed interval I=[a,b] and that a function V(x) is, on this interval, an
mdefinite integral of a function v(x) summable over I. Then U(x) is
Riemann-Stieltjes integrable over I with respect to V(x) and we have

gl Ux) dV(x) =§I Ux)v(x) das,
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where the integral on the right is a Lebesgue one (see [4], p. 254).

LEMMA 4. Given a function M(z) of bounded variation and given a
Junction C(x) which ts continuous on a closed interval I=[a,b], let K(x)
be any function such that

K(x)—K(a)=g:M(t) ac)  for wel,

the integral being a Riemann-Stieltjes one. Further let Q be a closed
subset of I '

If Q is a Dirichlet set for C(x) and if C(x) is linear on each closed
interval contiguous to Q, then Q 1is a Dirichlet set for K(x), too.

PROOF. Suppose first that the set @ is connected, so that the linearity
hypothesis on the function C(x) is vacuously true. Then C(x) is a constant
over ¢ and hence so must also be the function K(x), for which therefore
@ is certainly a Dirichlet set. Thus we may suppose @ to be nonconnected.

Plainly we need only treat the case where the function M(x) is non-
decreasing and where I is the minimal closed interval containing Q.

If ¢ and - are constants and if ¢>0, then the function N(x) determined
by M(x)=oN(x)+7 is likewise nondecreasing and we have

K(x)—K(a) = S:M(t) dC() :aSZN(t) dCHt) +[Cx) — Cla)]

for x=1. On the other hand, choosing ¢ and ¢ suitably, we can ensure
that 0<N(x)<37! for x=l. This, together with Theorem 1, allows us to
suppose that M(x) itself fulfils the condition 0<M(x) <3 for x<1.

Furthermore, we may clearly add the assumption that C(a)=0.

Let J stand in the sequel for a generic open interval contiguous to Q.

We shall begin by appraising the series A(K;p;Q) =2|K(J)|?. By
hypothesis, the function C(x) is linear on the closed interval [u,v], if we
write J=(u,v). Consequently, denoting by w a positive upper bound for
|M(z)| on the interval I, we find at once that

C(J)
|J|

On the other hand, @ is a Dirichlet set for C(x), by hypothesis. Hence it
follows that, as p—1, '

K = M@) do@) = [\ M) dv, whence [K(J)|=w|C().

AK:p:Q) 507 ACip: @ =0( =25 =o(—=11)-

We proceed to verify that for each closed interval A with end points
belonging to @, we have T(K;p;Q@NA)—K(A) as p—1. For this purpose,
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we need some preliminaries.
Ior each interval J considered above, we write for brevity

,O(J)=p(J;p):l—}|[C(J)D”]

and we define a function y(x)=y(x;p) by the following conditions :

(a) 7(x)=p(J), if 2 belongs to an interval J;
(b) 7(x)=0, if x belongs to no interval JJ.

The function y(z), thus constructed, is evidently Borel measurable on K.
Further, it is summable over R, since
+ oo
|1 @)de=21p(D)1- 17| = S0 =A(C;p; @) < +-oo.
This being so, let us consider the function

F(x):F(x;p)ZSxT(t) dt, where z<R.

This function vanishes for x=a and is absolutely continuous (i.e. AC on
every closed interval). Furthermore, we have the relation

I'A)=I'(A4;p)=TY(C;p;QNA)

for every closed interval A whose end points belong to the set Q. In
fact, I'(A)=0=Y(C;p;Q@NA) when ACQ, while in the opposite case

I4)=3 p(J)-1J 1= 2 CIP=T(Cip;QnA).

We shall show that if we keep fixed any point & of I, then I'(¢;p)
tends to C(¢) as p—1. On account of I'(a;p)=0=C(a), we may assume
that a <£=b; moreover, we need only consider the case in which &£<Q,
both functions C(x) and I'(x) being linear on the closure of each interval
J. Writing L=l[a, &], we find that

I'é¢;p)=I'(L;p)="Y(C;p;QNL).

But this last quantity tends to C(L)=C(¢)—C(a)=C(¢) as p—1, since by
hypothesis @ is a Dirichlet set for the function C(x).

The same hypothesis on @ ensures further the existence of a number
6>0 such that for every closed interval R we have

I Y(C;p;QNR)| <ot whenever 1<p<1+ad.

Specializing R to the above interval L=[a, £], we obtain |I'(£;p)|<dé™'. We
thus see that [I'(x;p)|<dé™' for every xz=@, and hence for every z<1,
provided 1<p<1--d.
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This being so, now suppose given an infinite sequence of real numbers,
{pn; nEN), tending to 1 and such that 1<p,<1+44 for n=N. It follows
from what was shown just now that

(1) |I'(x;p,)| <07 on the interval I for ne N,
2) lmI(x;p,)=C(x) for each xz<1.

Given a closed interval A=[r,s], with » and s belonging to the set Q,
suppose that A itself is not contained in Q. Let us consider the function
H(z) coinciding on the whole A with M(xz) and such that H(x)=M(r) for
x<r, H(x)=M(s) for x>s. The function H(z), thus defined, is evidently
nondecreasing. It is further continuous from the left at x=» and from

the right at x=s.
Now the well-known integration by parts formula for the Riemann-

Stieltjes integral shows that
K(A)={ M) dC) = M@)C) | - | C) am),
4 T 4
where the last integral is expressible as a Lebesgue-Stieltjes one:

SAC(ac) dM(z) :SAC(x) dH () = (@)SAC(x) d.H(z) =SAc<x) dH*(z) .

Hence K(4)= [M(x)C(x)]s —SAC(x) dH*(z) .
If we replace the function C(x) by [I'(x;p,), we get similarly
| M@ dr@;p)=| M@ @300] =] Tewip)dH*@)

for every n=N. Utilizing the above properties (1) and (2) of the sequence
I'(z;p,);neN) and appealing to Lebesgue’s Theorem on termwise integra-
tion, we find that

lim SAM(oc) Al (z: p) =K(A).

Since this is valid for every sequence {p;, ps;, --++> of the above kind, we
obtain the following relation, where we assume p>1 as hitherto:

113111SAM(9¢) Al (z:p)=K(A).

Let us transform this integral. The function M(x) is Riemann inte-
grable over A, since it is nondecreasing. On the other hand, the function
I'(x;p) was defined to be an indefinite integral of the summable function
r(x;p). Hence it follows from Lemma 3 that
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SAM(w) dl'(z; p) =SAM(90)7(90;10) dz.
But the function y(x;p) vanishes over the set ¢. Consequently
S M(x) dI'(x; p)= ES M(2)r(x;p) du
A JCAJJT ]

C(J)?

=2 [T M@ ds]= B un-coe,
where we write ;z(J)zI—}—I—SJM(m) dx for each J. Thus u(J) is the average

value of M(x) over J. We observe that K(J)=pu(J)-C(J) for each J.
By means of p(J) we now define on R a function W(x) as follows:

(a) Wi(x)=p(J), if there exists a J to which z belongs;
(b) W(x)=M(x), if = belongs to no .J.

‘We find easily that the function W(x), thus constructed, is nondecreasing
over R. On the other hand, we have 0<M(x)<3! for x<=I by assumption,
and we may clearly replace here M(x) by W(x).

This being so, let us consider for p>1 the following two integrals:

Stw)= W) dl'(w;p) and T(p)=| W(x)dl(@;p).
Using Lemma 3 we transform these integrals and we have

S ={ W@t p) do= 3, px(J)-CIP=] M) dl'w;p),

T(o)=| W*@r(e;p) do= 3 p2(J)-C)?
= 3 (¢(])- CLNIP= 3 K(P=T(K; p;QNA).

Integrating by parts, we find on the other hand that

S~ T(0) =] (W)~ W) dl w;p)

=[ W@ = W*@) Iw;)| = T'@w;p) AW —we@).

But the monotonity of the function W(x), together with the inequalities
0< W(x) <37, where x=I, imply that the function W(x)— W?(x) is nonde-
creasing over I and that 0< W(x)— W?(x) <38 '—87? for x<I. This is an
immediate consequence of the fact that if 0<u<w<e™', where ¢ is the

base of the natural logarithm, we have

u—ur<v—r?, ie v?—uPlv—u.
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Indeed, by the mean value theorem, there is a number & such that

’Up_%p
—U

u<é<v and =p&Pt,

Then £<e™! and hence we find that
-1 D __ b
E?’"’<<—1—>p :% <l, whence -2 % 1.
e e P VU

We now combine the results obtained above. In view of the relation

[I(x;p)| <67, where x=1I and 1<p<1+4, we derive at once the followmg
appraisal for the same values of p:

1S()— T(0)] <5 (1—3"7).

We thus have lim[S(p)—T(p)]=0. This, together with the above expres-
p-1

sions for S(p) and T(p), leads to the relation
lim T (K; p; @A) =1lim T(p) =lim S(p)=lim | M(z) dT'(z;p),
-1 p—1 p—-1 -1 JA

provided that the rightmost limit exists. But it does exist and equals
K(A), as already established.

We assumed in the above that the set @ does not contain the interval
A. If AcCQ, however, the quantity Y(K;p;QNA) vanishes and the func-
tion C(x) is a constant over A. Hence we still have

lim T (K p; QN A) :SAM(x) dC () = K(A).

We have thus proved that this relation is true for any closed interval
A, if only its end points belong to Q.

It remains to show further the existence of a positive constant » such
that |Y(K;p;Q@NR)| <n~! for every closed interval R, whenever 1<p<1+7.
But Y(K;p;Q@NR) vanishes if Q@NER is connected. Hence we need only
consider such R as makes QR nonconnected.

This being so, let A=[r, s] be the minimal closed interval containing
the compact nonconnected set Q@N\R. Then r=Q, s=Q, and QNR=QNA.
Consequently it follows from what was already proved that

Y(K;p;QmR)ZY(K;p;QmA):SAW”(x) al'(z;p).
Integrating by parts, we transform this last integral into

| W@ (i) | Tep) dWo(@).
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But Wi(x) is nondecreasing. Moreover 0< W(x)<3™! and |['(x;p)|<d* for
xel, where 1<p<1+4 in the latter inequality. We thus find finally that
IT(K;p;Q@NR)| <6 for every closed interval R, provided 1<p<1+40. Thus
it suffices to take simply 7=4, and this completes the proof.

Concerning integration by parts for the Denjoy integral, we have the
following well-known theorem (see Saks [5], p. 246) :

THEOREM. If M(x) is a function of bounded wvariation and f(x) a
Sfunction which s integrable in the Denjoy semse (wide or restricted) on
a closed interval I=[a,b], then the function M(x)f(x) is integrable on I
wm the same sense, and moreover denoling by F(x) any indefinite Denjoy
wntegral of f(x) on I, we have

b
@) M@)f(a) do=| M) F() | — @] F) dm().

The author endeavoured without effect to obtain a similar theorem
for the powerwise integral in the wide sense. Subsequently it occurred
to him that there is another way to deal with the problem. The present

paper is the result of this change of way.
We are now in a position to prove the following main theorem.

THEOREM 10. If M(x) is a function of bounded variation and if f(x)
18 a function Dirichlet totalizable on a closed inmterval I=[a,b], then the
Sunction M(x)f(x) shares this latter property with f(x), and moreover
denoting by F(x) any indefinite Dirichlet total of f(x) on I, we have

(SE)SIM(x)f(x) do = [M(oc)F(ac)]Z— SIF(x) dM(z).

REMARK. If we integrate by parts the Riemann-Stieltjes integral on
the right, this equality is transformed into the following form which is
the essential import of the above theorem :

(iZ)SIM(x)f(x) dszIM(x) dF (z).

PROOF. The function F'(x) is continuous on the interval I, since it is
generalized Dirichlet admissible on I. Let G(x) be any function such that

G(x):M(w)F(x)—S:F(t) AM@®)  for wzel.
Then we have
G(I) = [M(x)F(x)]:— SIF(m) AM(z)

and the proof comes to showing that G(x) is an indefinite Dirichlet total
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of M(x)f(x) over I, or in other words, that

(1) the function G(x) is GD admissible on the interval I,
(2) we have Gy (x)=DM(x)f(x) almost everywhere on I.

Assertion (2) is immediate from part (iii) of Lemma 2, since we have
F.(x)=f(x) almost everywhere on I. Accordingly we shall be concerned,
in what follows, with proving assertion (1).

The function F(x) being GD admissible on I, this interval is expres-
sible as the union of a sequence of closed sets on each of which F'(x) is
Dirichlet admissible. Let E be any one of these sets. Then to each closed
set QCE there correspond two functions @(x) and ¥ (x) such that

(a) we have F(x)=0(x)+ ¥ (x) for x= R,

(b) @(x) is absolutely continuous on @,

(¢) ¥(x) is AD to zero at almost all points of @,
(d) @ is a Dirichlet set for ¥'(x).

The continuity of F(x) on I, together with the above condition (b),
shows that the function ¥(x) is continuous on . Hence there exists a
function A(x) which is (i) continuous on I, (ii) coinciding with ¥(z) on @,
and (iii) linear on each closed interval (if existent) contiguous to Q. Such
a function A(x) is necessarily AD to zero at almost all points of @, since
it is approximately equiderivable with ¥ (x) at almost all points of @ on
account of Lemma 3 of [1]. On the other hand, the function F(x)— i(z),
which coincides with @(x) on @, is AC on Q. Moreover, @ is clearly a
Dirichlet set for i(x). Consequently we may suppose without loss of
gencerality that '

() ¥(x) is continuous on I and linear on each closed interval (if
existent) contiguous to Q.

This condition and the continuity of F'(x) on I together imply that
@(x) is continuous on I.

The function G(x) is continuous on I by part (i) of Lemma 2. In
order to verify the above assertion (1), it is thus enough to show that to
each set @ considered above there correspond two functions U(x) and V(x)
subject to the conditions:

(a*) we have G(x)=U(z)+ V(z) for z= R,

(b*) Ul(x) is absolutely continuous on @,

(¢*) V{(x) is AD to zero at almost all points of Q,
(d*) @ is a Dirichlet set for V(x).

Let V(x) be any function which is expressed by
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V(x)=M(x)zzf(x)—-rzlr(t) AM  for wel
and let us write U(x)=G(x)— V(x) for x =R, so that by condition (a)
| U(x):M(x)a)(x)—gx@(t) dM(t) for ze<l.

The proof will be complete if we show that these two functions fulfil the
conditions (a*) to (d*), of which the first one is evident.
re (b*): This follows from condition (b) and part (ii) of Lemma 2.
re (¢*): This follows from condition (c) and part (iii) of Lemma 2.
re (d*): Integrating by parts the following integral, we find that

Viz)— V(a) =S:M(t) arE)  for zel.

The assertion follows from this combined with Lemma 4, in view of con-
ditions (d) and (e).

From the theorem established just now we deduce at once the follow-
ing second mean value theorem for the Dirichlet total. The proof is the
same as on p. 247 of Saks [5] and may be omitted.

THEOREM 11. If M(x) @s a nondecreaing function and if f(x) is a
Sunction Dirichlet totalizable on a closed interval I=|a,bl,, there meces-
sarily exists a point <1 such that

gZM(x) F(x) do=M(a) Sif(x) dx+M(b)S: o) da,

where each integral is a Dirichlet total, the function M(x)f(x) being Diri-
chlet totalizable on I by the foregoing theorem.
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