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Introduction. This is a continuation of our recent papers on integra-
tion theory. We shall be concerned with a new integration which generalizes
that of Denjoy and which the author proposes to name incremental in-
tegration. By means of a concrete example it will be shown that this.
integration is strictly wider than that of Denjoy. It appears to us that
on the whole the incremental integral is easier to handle than the ones.
hitherto considered by us, though there remains a number of undecided
problems on the new integral.

§ 1. Functions IC, GIC, IR, GIR.

The sets considered in this paper will exclusively be linear. A function,
by itself, will signify any mapping of the real line R into itself, unless
another meaning is obvious from the context. We shall denote by N the
set of the positive integers and by M that of the nonnegative integers.
The letter 6 will always represent a positive number, even when not
specified so. A set (¥, will synonymously be called sigma-closed set.

Given a function ¢(x), a compact set @, and a number 6>0, let H
stand for a generic open interval (if existent) contiguous to Q. We shall
denote by ¢(@;d) the sum of the increments ¢(H) for all the H with
|H|>d, where a possible void sum means zero. Thus defined, ¢(Q;d) is a
finite real number, since there exists only a finite number of intervals H
with |H|>d.

Given a function ¢(x) and a closed set S, let W denote a generic closed
interval (if existent) whose end points belong to S. The function will be
said to vary incrementally on S, if the following conditions are fulfilled,.
where 0>0 as above:

(i) If the interval W is kept fixed, then

e(SNW;0) — (W) as 60— 0.

(ii) There exists a positive number M independent of both W and 4,
such that |o(SN\W;d8)| =M for every W and every o.
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We find at once that when this is the case, the function ¢(x) must be
a constant over each closed interval (if existent) contained in S.

Obviously, if two funclions vary incrementally on a closed set, so does
also any linear combination, with constant coefficients, of these functions.

EXAMPLE 1. We shall construct a function which varies incrementally

on the compact set Q={1,q,, ¢y, - - - -}, where ¢,=m/(m-+1) for each me M.
Let ¢(x) be any function such that

o(1)=log2 and ¢(g,) =0, for meM,

o, denoting the mth partial sum of the infinite series

1, 1 1
1—*§+§—Z+ ----=log 2,

so that ¢,=0 in particular. This function is clearly continuous on Q.
We remark firstly that the sequence <¢,—¢.-:;n<N) converges to 0
in a decreasing manner. In fact, we have

1
qn_qn—lzm
Let us show that the function ¢(x) varies incrementally on the set @,
i’e. fulfils the above conditions (i) and (ii), where the set S is specialized
to Q. Consider any closed interval W=[u,v] with u=@ and v<Q.
re (1): We distinguish two cases, according as v<1or v=1. In the
former case, QW is a finite set and hence condition (i) is trivial. In
the latter case, the result is immediate from the remark made just now.
re (ii): Keeping W and ¢ fixed, we shall show that |p(@NW;0)|=1.
‘We may plainly suppose that ¢(@NW;d)#0. On account of the above
remark, there then exist two integers ¢ and j such that 0=<4<j and that
0 @NW;0)=0,—0;. But we have 0=¢,=<1 for every me M, as is readily
verified. Hence the result.

for neN.

EXAMPLE 2. Consider the infinite sequence <ay a,, ---->, where

4 . =1
n(n+1) 7 nn+1)

for neN. This sequence has the property that

Qop-1=

Cgmms>> Qan—1>> Con > Cans for neN.
Further, if r, denotes for each m< M the mth partial sum of the infinite
series a;+a,+----, so that »,=0 in particular, we have

limqﬂmzian=5§ 1
n=1

m-oo n=1 ’}’?/('n_*_l) =5.
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Hence the set R={5, 7, 7y, -+ -} is compact.

The function ¢(x) of Example 1 is continuous on the set . We shall
now construct a function which varies incrementally on the set B without
being continuous on K.

Let ¥ (x) be any function such that

¥v(B)=log2+/2 and (r,)=o, for meM,

where ¢,, has the same meaning as in Example 1. This function is evi-
dently discontinuous at x=5. We proceed to show that the function ()
fulfils the conditions (i) and (ii), where the set S is specialized to R.

re (1): Consider any closed interval W=[u,v] with % and v belong-
ing to R. We shall show that (RN\W;d)—(W) as d—0. It suffices
to treat the case in which v=5. Without loss of generality we may
assume further that =0, so that W=[0,5]DR. On account of the rela-
110N Qup-3> Qun-1>> Aan > Qun+1 Mentioned above, we find easily that

AN A 1 1
lggw(R’a)_E(4n—3+4n—l 2n>

n=1

< 1 1 1 1 a1/ 1 1
*jz<mr3_Mwa+4wq_E%»FEE(mfl_Zﬂ

:% S (ﬁ—%):%logﬂ =y (5) = (W).

3
-

oo

re (ii): Denoting the nth partial sum of the infinite series

1 1 1 1 1

e T s Tt e T

by 7, for each n= N, we have 0<r,<2. This is an immediate consequence
of the following inequalities:

1 1 1 1 1 1
"o Tt T3 st -1 o

This being premised, we shall prove first that if veR, 0<v<5, and
V=I[0,v], then |y (RNV;0d)|<2 for every 6>0. Keeping v and § fixed, let
us write for short A=y (RNV;d). We may plainly assume that A+0.
Let us denote by ¢ the largest of the integers n>0 such that »,<v and
Yn—"n_1=0,>0, the existence of ¢ being ensured by A#0. The integer q
is expressible, by means of a k=N, in one of the forms

q=2k—1, or q=4k—2, or q=4k.

SINCe a;> s> a> + v+ > Quy_s> CQin_1> e > - -+ -, we find without difficulty
that according to the above three forms of ¢, the quantity A is expressed
respectively as follows:
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(1) If q:2k—1, then A:T2k—1;

1k 1 1
(2) If q=4k—2, then A:T,;k_g'—"gm:() ]G‘l—’n’b Z’Hk—s_‘é‘;
3) If q=4k, then A=ry —=3 -1 5. 1

] 4k -1 2 = k+m 4k -1 .

This, combined with the relation 0<rzr,<2 obtained already, leads at once
to —1<A<2. The announced inequality |A|<2 is thus verified.

It is now easy to prove the validity of |[Y(RNW;d)|<4 for every o
and every interval W =[u,v] such that v R, ve R, and u<v<5. In fact,
if >0, then we evidently have

Y(RNAW; 0)=y(RNV;0)—4(RNU;9),

where we write for brevity U=[0, ] and V=[0,v]. Hence it follows at
once, from what we established already, that |y (RN\W;0)|<4. But this
holds for w=0 also, since (RN\W; d)=+(RNV;d) in this case.

We pas's on finally to the remaining case in which uweR, u<5, and
W=[u,5]. Writing A=y (RN\W;d), we shall derive the appraisal [A|<4
for each W and each 6>0. We may assume that A+0. If u=0, there
is an ne N for which A=+(R;d)=r,, so that we have 0<A<2. We may
therefore suppose u positive. Writing U=[0, u], we can express A in the
form A=y (R;0)—(RNU;0d). But we have

0=w(R;8)<2 and [w(RAU;d)|<2

by what was already proved. We thus obtain [A]<4.

To conclude, we have [y (RNW; d)| <4 for every >0 and every closed
interval whose end points belong to E.

We shall say that a function is incrementally continuous, or IC for
short, on a closed set S, if the function is continuous on S and varies
incrementally on every closed set 7 contained in S. When this is the
case, the function is evidently IC on every such set 7. In other words,
as a property of a function, the incremental continuity on a closed set is
hereditary with respect to this set. Again, ¢f two functions are incremen-
tally continuous on a closed set, the same s true of any linear combina-
tion, with constant cofficients, of these funclions.

We do not know whether the continuity of the function on the set S
1s superfluous im the above definition of the imcremental continuity.

EXAMPLE 3. We shall show that the function ¢(x) of Example 1 is
not IC on the set Q@={1,qq, q, ----}. For this purpose, consider the set R
consisting of 1 and of the numbers q., and Q..;, where m< M. - Since
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Gn—Qn-1={nn+1)}"' for n< N, the three points ¢un<qimis<Qqimss Of R
determine two open intervals of respective length

11 3
Uimas™ Im™= A1 dm+4 4m+1D)@EM+1)’

B 1 B 1
Yama ™ Qimts™= 0 VN Am+5)  4(m+1)@m15) "

In what follows, we shall write for short

SM) =Qumrs— Qumss  ADAd  g(M) = Qunss— Qam -

Clearly, both f(m) and g(m) are decreasing functions of me M.

Let us now associate with each k=N a number §, subject to the con-
dition f(2k)>0,>f(2k+1). If k is fixed, the inequality f(m)> g, has exactly
2k+1 solutions m=0,1,----,2k. On the other hand, we have g(m)>0,
for m=0,1, ----,3k at least, since

96k = JEr T Azh D) ~ 4@k 1)@k 1T5)

This being so, we go on to appraise the quantity ¢(R;d.) from below
for k= N. Noting the relation
1 1 1 1

Oim+s ™ Om™= o T T It dmE3” dmt2’

we find successively that

2k 3k
@(R ) 5k) = 7:44:0 (0'4m+4—"0'4m+3) + mZ—O (U4m+3_0'4m)

2k 3k
=2 (04m+4“‘04m) + 2 (04m+3_“04m)
m=0 m=2k+1

L 1 1
Zomet L R Imre T I

Suppose, if possible, that the function ¢(x) is IC on the set Q. Then
we have o(RN\W;d)—¢@(W) as 0—0, whenever W is a closed interval
whose end points belong to R. Choosing W to be [0, 1], so that RnNW=R
and ¢(W)=¢(1)=log2, we find that

1

14

):10g2+ =

which is a contradiction. This shows that the function ¢(z) is not IC on
the set Q.

We now widen slightly the notion of condition (B) as defined on p. 4
of [1]. Given a closed set S, we denote by H a generic open interval (if
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existent) contiguous to S, and by W an arbitrary closed interval (if existent)
whose end points belong to S. A function ¢(x) will be said to fulfil the
condition (B) on S, if

§I¢(H)I<+OO and if H§W¢(H‘)=90(W)

for every W, where in each series a possible void sum means zero. We
find easily that this property of ¢(x) is hereditary with respect to the set S.
In the special case in which the set S is compact and nonconnected,
the new condition (B) plainly reduces to the old one, so that there is no
fear of ambiguity or confusion.
Each of the following three theorems admits a proof similar to that
of the corresponding result of the paper [1].

THEOREM 1. Ewery function which ts BV and varies incrementally,
on a closed set, fulfils the condition (B) on this set.

THEOREM 2. Ewvery function which fulfils the condition (B) on a
closed set, is both AC and IC, on this set.

THEOREM 8. Ewery function which is both GBV and IC, on a closed
set, 18 GAC on this set.

THEOREM 4. FEvery function ¢(x) which is 1C on a closed set S and
AD at all points of a set ECS, maps E onto a null set.

PROOF. The function ¢(z) is GAC on the set E by a well-known
theorem (see Saks [5], p. 239). Hence E is the union of a sequence of
bounded sets on each of which ¢(x) is AC. Let M be any one of these
sets. It is enough to show that |o[R]|=0, where R denotes the closure
of M. The function ¢(x), which is clearly AC on R, must be BV on R,
since R is a bounded set. By hypothesis, on the other hand, ¢(x) varies
incrementally on R. Consequently ¢(x) satisfies the condition (B) on R,
on account of Theorem 1. It thus follows from Theorem 5 of [1] that if
R is not connected, we have |¢o[R]/=0. But this holds for connected R
also, since ¢(z) is then a constant on R by the above definition of the
condition (B). This completes the proof.

By an argument similar to the above, we can show that Theorem 4
has the following analogue for Dirichlet continuous functions: FEwery
Sfunction which 1s Dirichlet continuous on a compact nonconnected set Q
and AD at all points of a set ECQ, maps E onto a null set. This result
includes Theorem 11 of [3] whose proof was unnecessarily prolix (occupy-
ing about two pages).
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We do not know whether every fumnction which is IC on a closed set,
maps this set onto a null set and is AD at almost all points of this set.
The main result that we have at present on this assertion is the following
theorem, whose proof is the same as that for Theorem 12 of [3], except
that the above Theorem 4 is used in place of Theorem 11 of [3].

THEOREM 5. In order that a function which 1s IC on a compact set
Q, should carry Q onto a null set, it is mecessary and suffictent that the
Sfunction be AC superposable on Q.

Starting with the unit interval E,=[0,1], let us now construct a de-
scending infinite sequence of figures, <K, F,, ---->, by the inductive rule
E,...=E,@3), where me M and where FE,(3) means the 3-sized ramifica-
tion of the figure E, (see [1], p. 22). The intersection I'=E,NE,N---- is
then a perfect set of measure zero, and FE, is the minimal closed inter-
val containing I'.

THEOREM 6. There exists a function that is 1C on the set I' without
betng GBV on any portion of I.

PROOF. Let & be any point of I'. For each m< M, there is among
the component intervals of the figure FE, exactly one, say K,, to which
the point & belongs. The intersection K, N\E,,, which coincides with the
ramification K,(3), is the union of three disjoint intervals, say A<B<C
in their natural ordering, and the interval K, ., is one of them. We now
define w,.(&§) to be 1 or 0, according as K,.,=B or not, respectively.
Using the binary sequence <(w,(£);n<N) thus obtained, we construct on
the set ' a function £2(¢), writing by definition

& wa(§) (1

o0= 25 )

We then extend the domain of definition of this function from I” to R, in

such a manner that the extended function, still denoted by £, vanishes
outside FE,=[0, 1] and is linear on each closed interval contiguous to I.

We proceed to show that the function 2(x), thus defined over R, con-
forms to the statement of the theorem.

In the first place, £2(x) is a continuous function such that

2 1 m+1

O K) <7 <_3“> ’
where me M and K is any component of the figure FE,. In fact, as is
readily seen, Lemma 6 of [3] and its proof hold good, mutatis mutandis,
for our function £2(x) also. Moreover, inspecting Lemma 7 of [3] and its
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proof, we find that £2(x) is not BV upon the set I'"K for any component
K of E,, where me M. From this it follows by a routine inference that
2(x) is not GBV on I'n\K for any K, or what comes to the same thing,
that 2(x) is not GBV on any portion of 7.

We shall now ascertain that the function 2(x) is incrementally con-
tinuous on the set I'. For this purpose, suppose that the end points of a
closed interval W belong to a closed set @ contained in the intersection
I'NW. We shall prove first that 2(Q;0)—Q(W) as §—0.

More precisely, it will be shown that |2(W)—2(Q;0)|<4n”, if ne N
and 5<0<5'"" Let H denote a generic open interval contiguous to the
set @ and let k& be the number of the intervals H with |H|>d. We shall
distinguish three cases, according as k=2, k=1, or k=0.

Consider the case in which £=2 and arrange all the H with |H|>d
in a sequence H;<--:--<H, in their natural ordering. For ¢=1,----, k
we write H;=(p;, q;) and we choose from among the components of the
figure E,_, that one, say M;, to which the point p; belongs. Then the
point ¢;_; necessarily belongs to this interval M; for each =2, ----,k. To
see this, select from among the components of E,_, that one, say L;.; to
which ¢,_, belongs. Since ¢;_,=7p;, we must have either L,=M; or L,<M,.
To show the truth of L,=M,, let us suppose, if possible, that L;<M,, so
that ¢;.,<p;. From the construction of the sequence E,DFE,D---- we find
easily that the distance between any two different components of E,_, is
at least 5'°*. It follows that the interval [¢;_, p;] must contain at least
one open interval H* with |H*|/=5"" and contiguous to the set Q. We
then have H;_ ;< H*<H; and this relation, together with the hypothesis
5 "<§<5'", contradicts the definition of the sequence H,<--.--<H, We
thus have L,=M,, so that q,.,= M,.

If we write W=[p,ql, then {p,q}CQCI' "W by hypothesis and we
thus have p=p,<¢;=:-:-=p,<q,=q, where for each 1=2, ----,k the set
{q:-1, »;} is contained in one and the same component of the figure E,_,
as shown just now. But this is true of the sets {p, .} and {q.,q} also,
the verification being the same as above.

Now we have O(£2;K)<2n7'3™" for each compont K of E,_,, as stated
already. It follows successively that

QW) —2@Q;0)=2W)—L2(H)—---- —2(H,)

2 10000 — 20 D}+12(0) — 2(0)) + (20)~ (),
QW) —R(Q;0)| <2(k+1)n~'37",

[

On the other hand, since E,_; is the union of exactly 3"! components of
equal length 5'™", there are exactly 3"'—1 open intervals contiguous to
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E,_; and further each component of E,_; can contain at most five of the
intervals H such that |H|>d6=5"" Hence k+1=5-3""'+8"1=6-3""!, and
it follows that |2(W)—2(Q;d)| <4n~'.

Passing to the case in which k=1, denote by H,=(p, q:) the uniquely
determined interval H with |H|>d. Then

QW) —2(Q;0)={2(p)— 2(p)} +{L2(9) — (a1},

where W=[p,q]. Since each of the sets {p, p.} and {q, q} is contained in
a component of £,_,, we have

|2(W)—R2(Q;0)| <4n™'37"<2n".

Suppose finally that £k=0. Then £2(Q;0)=0 and the interval W is
contained in a component of E,_,. Consequently

|2(W)—R(@Q;0)|=|2(W)|<2n™ 3" <n"" .

This completes the proof of |2(W)—2(Q;0)]<4n™', where 5 "<5<5'™"

The closed interval W and the closed set QCI'"W have been kept
fixed hitherto. We now make them vary arbitrarily, assuming of course
that the end points of W belong to Q. If 0<d<1, there exists an neN
such that 57§ <5'"". We therefore have [Q(W)—R2(Q;0)|<4n'=<4. On
the other hand, if =1, then £2(Q;5)=0; so that

|12(W)—=2(Q;9)|=2(W)|=0(2; ) <2/3.

Thus [2(Q;0)| <44 |2(W)| <5 for every choice of W, @, and 4.
The theorem is thus established.

A function will be called generalized incrementally continuous, or
simply GIC, on a linear set F, if the function is continuous on £ and if
E is expressible as the union of a sequence of closed sets on each of which
the function is IC.

When this is the case, £ must be a sigma-closed set and the function
is GIC on every sigma-closed set contained in E. The GIC property of a
function is hereditary in this sense. Again, every linear combination of
two functions which are GIC on a set, is itself GIC on this set.

If FE is a countable set, every function is GIC on E. For instance,
the function ¢(x) of Example 1 is GIC on the set Q={1, qy, ¢y, - - - -} which
is countable, though this function is not IC on Q.

We can establish the following theorem in almost the same way as
in Theorem 11 of [1].

THEOREM 7. In order that a fumnction which 1is continuous over a
nonvoid closed set S, be GIC on S, it is mecessary and sufficient that every
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nonvoid closed subset of S contain a portion on whose closure the function
28 IC.

A function ¢(x) will be termed wncrementally regular, or simply IR,
on a closed set S, if the function is continuous on S and if there corresponds
to each closed set QCS a function rq(x) fulfilling the conditions:

(i) the function ro(x) varies incrementally on the set @,

(ii) the function +ro(x) is AD to zero at almost all points of @,

(iii) the function ¢(x)—o(x) is AC on Q.

This property of ¢(x) is plainly hereditary with respect to the set S.
Further, any function ¢(x) with this property is AD at almost all points
of S, as readily seen by specializing the set @ to S itself. On the other
hand, any function which is AC on a closed set, is IR on this set. Again,
every function which 1s IC on a closed set S, is IR on S, provided that
the funtion is AD to zero at almost all points of S (especially, provided
that S is a null set).

We do not know whether the continuity of ¢(x) on S is superfluous
wn the above definition of the incremental regularity.

We shall say that a function is generalized incrementally regular, or
briefly GIR, on a set FE, if the function is continuous on E and if E is
expressible as the union of a sequence of closed sets on each of which the
function is IR.

When this is the case, £ must be a sigma-closed set and the function
is GIR on every sigma-closed set contained in E. The GIR property of a
function is hereditary in this sense. Again, we find easily that a function
which 1s GIR on a set, is necessarily AD at almost all points of this set.
On the other hand, every fumnction which 1s GAC on a stgma-closed set, s
GIR on this set. Finally, each function which s GIC on a set E, is GIR
on K, provided that the function s AD to zero at almost all points of K.

The following two theorems are immediate.

THEOREM 8. FEwery linear combination of two functions which are
IR [or GIR] on a closed set [or a set], is itself so on this set.

THEOREM 9. In order that a function which 1s continuous on a non-
void closed set S be GIR on S, it is mecessary and sufficient that every
nonvotd closed subset of S contain a portion on whose closure the function
1s IR.

Of the following three theorems, the second one may be established in
the same way as in Theorem 6 of [3], while each of the other two admits
a proof similar to that of the corresponding theorem of [4].
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THEOREM 10. A function which is both GBV and GIR, on a set, is
necessarily GAC on this set.

THEOREM 11. Suppose that a function F(x) 1s AC on a closed set S
and a function G(x) varies incrementally on S. If F(x) is AD to F,(x)
=0 at almost every point of S and if the function &(x)=F(x)+G(x) has
a nonnegative increment over each closed interval contiguous to S, then
E(x) 18 monotone nondecreasing over S.

THEOREM 12. Given two functions o(x) and ¥(x) which are GIR on
a closed interval I, if we have ¢,,(%)=+rp(x) at almost every point of I
at which both ¢(x) and (x) are AD, then the function (x)—¢(x) is AC
and nondecreasing, on the interval I.

Consequently, if two functions are GIR on a closed interval I and if
they are approximately equiderivable almost everywhere on I, then the
Junctions differ over I only by an additive constant.

THEOREM 13. Suppose that a function F(x) is GAC on a set E and
that a function G(x) is GIC on E. If in addition the function G(x) s
AD to zero at almost all points of E, then the function o(x)=F(x)+G(x)
is GIR on E. '

The proof is easy and may be omitted.

Let us consider the special case of this theorem in which the set E
is a closed interval I. Then the function G(x) is GIR on I, and Theorem
12 requires that G(x) is a constant, say C, over I. Consequently we have
o(x)=F(x)+C on I, so that the function ¢(x) must be GAC on I

Thus a function which is not GAC on I, even though it is GIR on I,
is not expressible on [ in the form F'(x)+G(x), where F(x) is GAC on [
and G(x) is GIC on I as well as AD to 0 almost everywhere on I. The
function £2(x) constructed in the proof of Theorem 6 is an example of such
a function, the interval I being [0, 1].

§2. The incremental integration.

We are now in a position to state the descriptive definition of the
incremental integration. A function f(x) will be termed tncrementally
wntegrable on a closed interval I, if there exists a function ¢(x) which is
GIR on I and which has f(x) for its approximate derivative almost every-
where on I. Any such function ¢(x) is then called indefinite incremental
integral of f(x) on I. By the definite incremental integral of f(x) over I
we shall mean the increment ¢(I) of its indefinite integral ¢(x). This
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number ¢(I), which is uniquely determined by the function f(x) and the
interval I on account of Theorem 12, will be denoted by (S)SI flx) dzx.

All the properties, except Theorem 19, of the powerwise integral that
are stated on pp. 16-17 of [1] are shared also by the incremental integral,
as may immediately be seen. On the other hand, the function 2(x) con-
structed in the proof of Theorem 6 shows that the incremental integration
is strictly wider than the Denjoy integration.

We shall now proceed to obtain the integration by parts theorem and
the second mean value theorem for the incremental integral. For this
purpose, we establish first the following basic theorem. We remark that
a function is called of bounded wvariation, if it is BV on every closed in-
terval (see Saks [5], p. 59).

THEOREM 14. Given a function M(xz) of bounded wvariation and given
a function C(x) continuous on a closed interval I=[a,bl, let K(x) be any
Sfunction such that

K(x)~K(a)=S:M(t) daCt)  for wel,

where the integral is a Riemann-Stieltjes one. If the function C(x) varies
merementally on a closed set QCI and 1s linear on each closed interval
contiguous to Q, then the function K(x) varies incrementally on Q, too.

PROOF. We may assume the set @ nonconnected, for otherwise C(x)
is a constant on @ and hence so must also be the function K(x). Plainly,
we may restrict ourselves to the case where the function M(x) is nonde-
creasing over R and where I is the minimal closed interval containing Q.
We suppose further that C(a)=0, as we clearly may.

In what follows, let H denote a generic open interval contiguous to
Q. Writing 6(H)=C(H)-|H|™!, we associate with each >0 a function
ps(x) defined as follows:

(a) ps(x)=0(H), if x belongs to an H with |H|>d;

(b) ps(x)=0, if = belongs to no such H.

Using the function p;(x) which is evidently summable over R, we define
further a function P,(x) by

Pg(x)zgzpa(t)dt for zeR.

Let W denote hereafter a generic closed interval whose end points
belong to Q. Then P;(W)=C(@NW;d) for each W and each §>0, where
C(@N W, d) denotes the sum of C(H) for all HCQNW with |H|>4d, as in
§1. In point of fact, we have
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P;(W)= 3'0(H)-|H|= 2C(H)=CQNW;9d),
HCW HCW

where the prime indicates the additional condition |H|>3d.

Let & be a point of the interval I. We shall show that if & is kept
fixed, P;(&) tends to C(§) as 6—0. Since Pj;(a)=0=C(a), we may suppose
a<£&=<b. By hypothesis the function C(x) is linear on the closure of each
H, and the same is true of the function Ps;(x) by its construction. We
may therefore assume further that £¢=Q. Writing L=[a, &] for brevity,
we find that P;(&)=Ps;(L)=C(QNL;é). But this last quantity tends to
C(L)=C(¢)—C(a)=C(¢) as 0—0, since C(x) varies incrementally on @ by
hypothesis.

The same hypothesis ensures the existence of a number C,>0 inde-
pendent of both W and 4, such that [C(QNW;d)|=C, for every W and
every 8. Then, specializing W to the above interval L=[a, &], we obtain
|P;(&)|=C,. It follows that |P;(x)|=C, for every xz<l.

Writing W=[r, s], where r=Q, s€Q, and r<s, let us consider the
function N(x) coinciding on W with M(x) and such that

N(x)=M(r) for x<r, N(x)=DM(s) for x>s.

Plainly, N(x) is a nondecreasing function continuous from the left at x=7r
and from the right at x=s. Integrating by parts the right-hand side of

K(W)zSWM(x) dC(x), we find that
K(W)=| M) | —| c@) v,

where the Riemann-Stieltjes integral on the right can be transformed into
a Lebesgue-Stieltjes one, as follows :

SWC(Q:) AM(z) :SWC(x) dN(z) :(@)ch(m dN(z) :SWC(x) AN*(z).

Hence K(W)= [M(x)C(oc)T— S _Cla) AN*().

If we replace the function C(x) by P;(x), we obtain similarly
| M@ dP,;(oc)z[M(m)Pa(w)T—g Pylz) AN*(z) .
w T w

As already shown, however, we have the relations

|Ps(@)[=Co and  lim Py(x) =C(z)

for x=1. Hence Lebesgue’s Convergence Theorem gives
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-

limg M(z) dPy(x)=K(W).
3-0 w .
Applying Lemma 3 of [4] to the integral on the left, we get
|, M@ aPy)=| M@pio) de,
w w
where p;(x)=0 for x=@Q. Consequently
|, M@ ars@)= 2§ M@ps(2) do= 00| M) da,
w HCWJH HCW H

where the prime indicates, as before, the additional condition |H|>4. But
the function C(z) is linear on [u, v], if we write H=(u,v). Hence

K(H) =S2M(x) 4C(z) =0(H)SHM(90) dz,

KQAW;0)= SYK(H)=| M) dPs).

Combining the above results, we find that
KQNW;6) — K(W) as §—0.

It remains to show the existence of a number K,>0 independent of
both W and 4, such that |K(QNW;éd)|<K, for every W and every é.
Writing again W=[r,s] and transforming the above integral expression
for K(Q\W;d), we obtain

KQNW;0)=| M) Ps(z) | | Pit) abr ().

Since the function M(x) is nondecreasing, |M(x)| has an upper bound M,>0
on the interval I. On the other hand, we have |P;(x)|=C, for z<I, as
already shown. We can therefore choose as K, the number 4C,M,>0. This
completes the proof.

The reader will have noticed the important role played by the condi-
tion (ii) on p. 131 in the above proof.

Each of the following two theorems admits a proof quite similar to
that of the corresponding theorem of [4].

THEOREM 15. If M(xz) is a function of bounded variation and if f(x)
s a function incrementally integrable on a closed interval I=[a,b], then
the function M(x)f(x) shares this latter property with f(x), and moreover
denoting by F(x) any idefinite incremental integral of flx) on I, we have

& M) do=[ M) F@) | | Fo) ame).
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THEOREM 16. If M(x) is a nmondecreasing function and if f(x) s @
Sunction incrementally integrable on a closed interval I=[a, b], there neces-
sarily exists a point E=1 such that

b 3 b
| M@)f @) do=10(@)| f(o) do+ MO f(@) da,
where each integral is an incremental one.

AMENDMENTS. (i) The estimation at the end of §1 of [2] ought to
be substituted by the following one which is simpler:

“der 1

. P p—1 "

byl

(ii) In the proof of Lemma 11 of [3], we used Lemma 9 to obtain
the appraisal d=3?(p—1)w?(D) for the quantity

d=le(le’, FDIP—le(a’, aD|?—le(la, BDIP— o (8, 8 DI*.

But the evident appraisal d=|¢p([a’, 8'])|?=w?(D) serves our purpose quite
as well, the first inequality of Lemma 11 being then replaced by

A(so;p;Q)—A(so;p;Q*)é;aﬂ’(D).

Thus Lemma 9 was superfluous in [3].
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