Natural Science Report, Ochanomizu University, Vol. 36, No. 1, 1985 1
BEREOKLFRE BRBFRE #£36% K15

On the Dirichlet Continuity of Functions

Kanesiroo Iseki

Department of Mathematics, Ochanomizu University, Tokyo
(Received February 20, 1985)

This paper, which is a supplement to our recent work [5] on the
powerwise integration, consists of three mutually independent sections,
each being concerned, respectively, with elucidating a doubtful point con-
tained explicitly or implicitly in the paper [5].

As defined in [5], a function is called Dirichlet continuous on a com-
pact nonconnected set @, if it is continuous on @ and if it fulfils the
Dirichlet condition on every compact nonconnected set contained in Q.
Now the definition of the Dirichlet condition consists of three items. We
are interested in examining whether or not the second item is superfluous.
The answer is in the negative, as will be shown in § 1.

As defined in [5], a function is said to fulfil the condition (P) on a
linear set E, if either the function is AC on E, or else if there exists a
CT null set which contains £ and on which the function is Dirichlet con-
tinuous. It is the object of §2 to show that the Dirichlet continuity
cannot be replaced here by the Dirichlet condition, in the sense that the
theory of the powerwise integration would collapse if we did so. We
thus find that the Dirichlet continuity is essentially stronger than the
Dirichlet condition.

We proposed in [5] the following problem: To decide whether a func-
tion which 1s Dirichlet continuous on a compact monconnected set, is
necessarily powerwise continuous on this set. This problem will be solved
in the negative in § 3.

As in our previous papers, a function, by itself, will always mean a
mapping of the real line R into itself, unless another meaning is obvious
from the context. We shall also continue denoting by N the set of the
positive integers and by M that of the nonnegative integers.

§1. Concerning the definition of the Dirichlet condition.

The letter p will represent a real number >1 in this section. Given
a compact nonconnected set @, let H denote a generic open interval con-
tiguous to Q. A function ¢(x) will, for the nonce, be termed to fulfil the
condition (Dy) on Q, if X |e(H)|? <+ for every p and if
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> o(H)P=¢(J)+0(1) as p—l1,
HCJ

where J is an arbitrary closed interval such that the set @ contains the
end points of J without containing the whole of .J.

Let @, be the compact set consisting of 1 and of the numbers 1—n7",
where n=N. We shall show that the class of the functions which fulfil
the condition (Dy) on @, is not closed under addition. h

Given an infinite sequence of real numbers, o=<ay, @, ---+>, with the
series Xa, converging, let s, be for each m<M the mth partial sum of
this series, i.e. let s,=0 and Sp=01+ - -++a, for neN. We associate

with the sequence ¢ a continuous function F(x;o) defined as follows,
where we write S(o)=a,.

(i) F(x;0)=0 for <0 and Fl(z;0)=S(s) for z=1;
(ii) FA—n"';0)=8,-; for neN;
(iii) . F(x;0) is linear on each closed interval contiguous to Q.

Let us consider two special cases of this function F(z;¢), taking ¢ to
be respectively

01:<1J —%;'%; —%: ”"> and 02:<0;'%: 0; '—%1'0:—1—) "“>)

so that S(g,)=log 2 and S(o,)=2"'log 2. Writing for short
fx)=F(z;0), filx)=F(z;0,), flx)=F(x;0),

1 1 1 1 1

where 0201+02:<1, 0, 5 TR 0, T ->, we have

S(0)=5(0)+Se)="log 2 and f(a)=F(x)+/(x).

It is easy to see that the functions fi(x) and f,(x) both fulfil the con-
dition (D,) on the set @, On the other hand, from

o= (3 -3+ (3 () -,

where D means a generic open interval contiguous to @, it follows that

lim Zf(D)Dpzlgzrll SADIT=£1)—~£(0)

p->1 D

=8(a1) <S(0) =f(1)—5(0).

This shows that the function f(x)=/fi(x)+fi(x) fails to fulfil the condition
(Dy) on Q,. Consequently, as stated above, fulfilment of the condition (D,)
is not preserved under addition of functions.

In our paper [5] a function ¢(x) was called to fulfil the Dirichlet con-
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dition on a compact nonconnected set @, if it fulfils the condition (D;) on
Q@ and if we have

%lso(ﬁ)lp———O( ) as p—1,

p—1
where H ranges as.above over the open. intervals contiguous to Q. If the
set @ is fixed, the class of all such functions ¢(x) is closed under linear
combination, as asserted by Theorem 1 of [5]; and this theorem is funda-
mental to the whole theory of the powerwise integration. We find now,
from what was proved already, that the requirement X |¢(H)|?=o0{(p—1)""}
is not superfluous in the above definition.

As we may observe in passing, the failure of the functions fi(x) and
fo(x) to fulfil the Dirichlet condition is seen at once by means of the
relation

2\ = 1 &
(1.—§>n2=1;’b—p_n2=1 nf

which together with the mean value theorem implies that

1
log 2 2= n®

© 1
(p—1) nZ=31 ne =

§2. Concerning the definition of the condition (P).

Let us begin by recalling the following basic symbols used in §4 of
[56]: Given a closed interval I, we write by definition

Ey=1, Ep.= m(g;ggﬁ) for mEM,- F:EomE1f\

This being premised, let H denote a generic open interval contiguous
to the set I'. There exist for each H an m<e M and a component K of
the figure E,, such that HCK\FE,,;. Plainly m and K are each uniquely
determined by H, and we shall call the index m the order of the interval
H. Denoting the components of the ramification K(3) by K,<K,< K, con-
sider the case in which the interval H is contiguous to K(3). H will be
termed ascendent or descendent, according as K, <H<K, or K;<H<K,,
respectively. On the other hand, we shall call H horizontal, when it is
not contiguous to K(3).

The function Z(x)=¥(x;I;3"") of [5] can now be completely charac-
terized by the following conditions, where H means the same as above.

(i) If the order of H is m, we have respectively
A(H)=3"™" or —3™ ™ or O,

according as H is ascendent, descendent, or horizontal ;
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(ii) &(x) is Dirichlet continuous on the set [7;
(iiil) &(«x) is linear on the closure of each H;
(iv) E(x) vanishes outside the interior of I.

The letters A and 6 will represent generically an ascendent open in-
terval and a positive number, respectively, in the sequel. In connection
with the function 5(z), we define a quantity f(d;A) as follows:

(3 A)= 373 omt —gmamn®y
where m is the order of the interval A. Clearly 0<f(5;A4)<3 ™
LEMMA 1. If K is a component of the figure E,, then
> f(6; A)=38"9*P""  for §5>0.

ACK
In particular, we have ;}f(ﬁ;A)=1.
PROOF. For each integer k=m, the interval K contains exactly 3**~™*

ascendent intervals of order k, since K contains exactly 3**~™® components
of the figure E,. Consequently

S f6;4)=X Skz—mz'8‘k2{3—-5k2___3—5(k+1)2}
icx” Kzm

—g-m? b {S—Bszg—B(k+1)2}: g-a+om?

kzm

In the special case in which m =0, we have %} f(o;A)=1.

Let us write I=[a, b] henceforth. Given a ¢>0, we define on [ a
function F'(x;6) of the variable x as follows. If a<ze<l’, then

F(x;ﬁ):Agxf(ﬁ;A), where X=la,x];
while if x=a, we set F(a;6)=0. We find at once that
0= F(w;3) S 3 15 4)=1.
It is also obvious that F'(x;d) is a nondecreasing function of .

 LEMMA 2. If ¢ 1is a fixzed point of I', then F(c;0) tends to a finite
limit F(c;0), as 6—04+. In particular, we have the values F(a;0)=0
and F(b;0)=1.

- PROOF. If ¢ is a boundary point of an FE,, the assertion follows im-
mediately from Lemma 1 and the definition of the function f(5;A).
This being premised, consider the general case. Given any >0, let
us take an m< M such that 3 ™" <e. The point ¢ belongs to a component,
say K=l[r,s], of the figure E,. Lemma 1 then shows that
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0<F(c;0)—F(r;0)< X f(6; A)<3 ™ <.
ACK

On the other hand, F'(r;d) tends to F'(r;0) as d— 0+, since » is a boundary
point of E,. Hence there exists a number §,>0 such that

—e<F(r;0)—F(r;0)<e whenever 0<d<4,.
It follows that, for the same values of 0,
—e<F(c;0)—F(r;0)<2e.

This shows that the oscillation of the quantity Fle;d) for 0<6<3J, is at
most 3e. F'(c;d) therefore tends to a limit F'(c;0) as d—0.

We have finally F(a;0)=0 and F(b;0)=1, since F(a;0)=0 by defini-
tion and since F(b;&)z%}f(é;A)zl by Lemma 1.

LEMMA 3. The function F(x;0), thus defined on the set I', 1s non-
decreasing and continuous. Moreover, this function has a vanishing in-
crement over each closed interval contiguous to I.

PROOF. Given any two points z,<wx, of I, we have F'(x;0)=<F(x,;0)
for every 0>0. Making 0—0, we get at once F'(z;;0)=<F(x,;0), which
shows that F'(x;0) is nondecreasing.

To prove the continuity of F(x;0), suppose given any ¢>0 and choose
an meM such that 3 ™*<e. Writing K for a generic component of the
figure E,, we take any two points x,<x, of Kn\I'. Then |

0= F(2y;0)—F(x;0)= X f(0;A), where X=[x, xs].
ACX

But this sum is appraised by Lemma 1 as follows:

> f0; A)= 3 f(5; A) =370 e,
ACX

ACK
Consequently 0=F'(x,;0)—F'(x;0) <e, whence we get
0=F(25;0)— F(x,;0)<Ze.

This plainly implies the continuity of F'(x;0).
Let H be any open interval contiguous to I'. Then the increment,
written F(H;0), of F(x;0) over the closure of H is expressed by

F(H; 5):3-m2{3—5m2_3—5(m+1)2} ,

provided that H is an ascendent interval of order m; while F(H;J0)
vanishes if H is descendent or horizontal. Hence, making d—0, we obtain
F(H;0)=0, which completes the proof.
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On account of Lemma 2 and Lemma 3, we can extend the domain of
definition of the function F'(x;0) to the whole real line, in such a way
that the resulting function, which we denote by F'(x), fulfils the following
conditions, where H means the same as hitherto:

(1) F(x) is a constant on the closure of each interval H;
(i) F(x)=0 for x=<a and F(x)=1 for z=b;
(iii) F'(x) is continous and nondecreasing over R.

The function F'(x) is thus singular on every closed interval (see Saks [6],
p. 96).

Let us write 2(x)=&(x)—F(x) for x= R by definition. The following
properties of the function £2(x) are obvious:

(i) £(x) is linear on the closure of each H;
(ii) we have Q(H)=5(H) for each H;
(iii) Q(x) is continuous on the real line.

Consider now any ascendent interval 4=(u,v). We associate with A
a finite set A*C A defined by

A*={u+3""™49(v—u) ; 1N, <3},

where m is the order of A. TLet M be the union of all the sets A* and
let us write I"™=I"UM. Clearly I'* is a CT null set, together with I

As in §1, the letter p will denote generically a real number >1, in
the rest of this section.

LEMMA 4. The fuuction 2(x) fulfils the Dirichlet condition on the
set I'*.

PROOF. Let D be a generic open interval contiguous to I'*. If A is
any ascendent interval, then 2(x) increases strictly on the closure of A4
and we have

> 7(D)< 27(A) for every p;
DCA
this is a particular case of the evident inequality

EAEE  HE< GGt e 607,

where 7 is any integer >1 and where &, &, -+, &, are n arbitrary posi-
tive numbers. It follows that

sl =Dl =SIEE@ I =o( 1),

since the function 5(x) is Dirichlet continuous on I".
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Let us fix a point ¢ such that a<c=Il* and let us write L=Ja, ¢] for
brevity. It remains to show that

D%)LQ(D)W:Q(O) +o(l) as p—l.

For this purpose, we may assume ¢ to belong to I', without loss of
generality. ‘

This being so, write 6=p—1 and consider any ascendent interval A
of order m. Then 2(A)=5(4A)=3""" and hence

Z Qp(D) — 32m+1{3—(m+1)2}p: 3—m2. 3—5(m+1)2
DCcA
=3O f(5; A)=57(4) —£(5; A).
It accordingly follows that
> EH)P— T 2D)FP= 3 {(57(A)— 3 27(D)}
HCL DCL ACL DCA4
= 2 f(0;4)=F(c;0).
ACL
Combining this with HELE(H)Dpz”(c)+o(1), we get
5%QQMP=E@%JWM®+MD

=5(c)—F'(c)+o(1)=£2(c)—o0(1),

as p—1 (i.e. as 6—0). This completes the proof.

Let us introduce now two temporary definitions. A function will be
said to fulfil the condition (P*) on a linear set K, if either the function
is AC on E, or else if there exists a CT null set which contains £ and
on which the function fulfils the Dirichlet condition. Again, we shall
term a function to be continuous (P*) on a linear set E, if the function is
continuous on K and if this set is expressible as the union of a sequence
of sets on each of which the function fulfils the condition (P*).

Returning to the functions S(x) and £2(x), we find at once that both
of them are continuous (P*) on the underlying interval I=[a, b]. Moreover,
the two functions are AED (approximately equiderivable) at almost all
points of I, since they are linear on every closed interval contiguous to
I’ and since they have equal increments over every such interval. How-
ever, their difference F'(x)=5(x)—2(x) is nonconstant on I. This shows
that the theory of the powerwise integration breaks down if we replace
the Dirichlet continuity by the Dirichlet condition in the definition of the
condition (P). The Dirichlet continuity is thus essentially stronger than
the Dirichlet condition.
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§3. The Dirichlet continuity does not necessarily include the
powerwise continuity.

LEMMA 5. If f(x) and g(x) are continuous mnondecreasing functions
and if C is a linear compact set, then

l[CI=If[C]l+IglC]l,
where we write 0(x)=f(x)+ g(x).

PROOF. Assuming the set C nonvoid as we may, we express C as the
limit of a descending infinite sequence C,DC,D---- of elementary figures.
For this purpose, let = N and denote by V, the union of the open in-
tervals (x—n"', x+n%"!), where the point x ranges over C. Then V, is a
bounded open set and each of its components has length =2n7". It follows
that the components of V, must be finite in number. Consequently, writ-
ing C, for the closure of V,, we find that C, is a figure containing C.
Moreover, we have C,DC,,; for each ne N, since evidently V,DV,,.
The sequence of figures <C, C,, -+ --> has the required property, the set C
plainly being the intersection of this sequence.

The images f[C], fIC.], fIC:], ---- are all measurable sets since they
are compact; and we find at once that f[C] is the limit of the descending
sequence f[C|Df[C,]D----. It follows that

[FIC]=lm [fIC]].

The same relation holds of course for the functions g(x) and #(x) also.
The lemma is therefore reduced to the assertion that

01C.1l=1f[C.]I+19[C.]l  for meN.

Given any function h(xz) and any nonvoid figure L, let h(L) denote the
sum of the increments h(J), where J ranges over all the component in-
tervals of L. If, in particular, the function Z(x) is continuous and nonde-
creasing, we have the relation |A[L]/=h(L). To see this, we write J=
[as, b;] for each J and we find successively that

hJ1=[h(a,), k)], |R[J)=hG)—h@,)=h(]),
(KLY = \JALT 1 = ST ] = S 1) = h(L).
Let it be remarked that the interval [h(a,), h(b,)] is degenerate (single-

tonic) in the case in which Ai(a,)=h(b,).
It follows from the above that

101C11=6(Co) =f(Ca) +9(Co) = f1C.1+ 191 C.ll
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for n= N, which completes the proof.

LEMMA 6. Given any monvoid linear compact set S which is perfect
and nondense, there exists a continuous increasing function 6(x) fulfilling
G R]=R and which maps each portion of S onto a set of posilive measure.

PROOF. A closed interval I will be called admissible, in this proof, if
each end point of I is an accumulation point of the intersection IS (and
hence belongs to S).

By hypothesis, the open intervals contiguous to S cannot be finite in
number. Let us arrange all of them in an infinite sequence <D, D,, - -+ >
without repetitions. Given an admissible interval I, let k be the least of
the indices n such that D,CI. Writing by definition

I*:I\Dk,

we see at once that I* is a figure with exactly two components which
are themselves admissible intervals.

By an admissible figure we understand any nonvoid figure all whose
components are admissible intervals. Given an admissible figure L, we
denote by L* the union of the figures J*, where J ranges over all the
components of L. It is evident that L* is itself an admissible figure.

This being so, we now define a descending infinite sequence of admis-
sible figures, 4,0A4,D----, inductively as follows: A, is the closed in-
terval spanned by the compact set S and

Apo =A% for meM.

‘Writing E=A,nA;N----, we obtain the relation
Ao\\E: mC;jo(Am\Am+l) ’

on account of the descent A, DA;D----. But the union on the right will
be identified below with the open set 4=D,\ID,\J.-.., We thus have

S=ANA=E=A,NAN-""".

The set A, \A4,.: is, for every m< M, plainly the union of exactly 2™
intervals of the sequence <D, D,, ----> and hence is contained in 4. It
therefore suffices to show that each D, is contained in A, \A4,.; for some
me M. ‘

Suppose, if possible, that there is a D, not contained in any A, \ A,
Then D, must be disjoint with every A,\A,.;, and we find at once by
induction that D,C A, for every me M. Consequently there is for each
meM a component I, of A, such that D,CI,. We then have I,,,CI}
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for every meM, and it follows that the sequence <I,\I};meM) is a

subsequence of <D, D,, ---->. Hence theres necessarily exist an me M and
an n< N such that

INI}=D, and n>q.

But the definition of I}, together with the inclusion D,CI,, implies that
n=gq, which is a contradiction.

Using the relation S=4,n4,N---- thus established, we proceed to
construct on S a continuous nondecreasing function f(x), as follows.

Let & be any fixed point of the set S. Then & belongs, for each me
M, to a uniquely determined component K, of the figure A,. For each
ne N, the interval K, is a component of the figure K*, We define &,
to be 0 or 1, according as K, is the left-hand or the right-hand component
of K.k, respectively. Using the sequence <&,6&, ----> thus constructed,
we write by definition

fO=T276=0.6&: ),

where the symbol (----), instructs that the decimal be understood in the
binary scale of notation.

We have thus defined on S a function f(x). It is obvious that f[S]
is the interval [0, 1].

The interval K, associated with meM depends not only on m, but
also on the point & In case we want to show this dependence explicitly,
we shall write K,(&). Similarly, the sequence <&,&,, ----> may be writ-
ten o(£), as occasion demands.

Besides the above point &, consider another point 7 of S. Then

S)=(0.pms- -+ )y, wWhere (g, 7s, -+ >=0(y).
Assuming that &<, we shall now show that f(£)=<f(»), so that the func-
tion f(x) will be found nondecreasing.
The perfect set S being nondense, the interval [£, »] contains an open

interval D contiguous to S. But DCA4,_ N4, for an n= N, as we proved
already. It follows that K,(&)+# K,(»); for otherwise we must have

(£, 7]CK.(§) T A CRN\D,

which contradicts the inclusion DCI¢, 5].
Denoting by ¢ the smallest of the indices i€ N fulfilling K, (E)q&K (9),

we find that ¢ is also the smallest of the indices j= N fulfilling &,#7;,,
where

<$1; 52; te '>:0'($) and <771) 772} Tt }:0(7)) .



July 1985 Dirichlet Continuity of Functions 11

Moreover, the inequality £<7 clearly implies that £,=0 and 7,=1. It
accordingly follows that

f(E):(O £y - )2§(0 ViY/E ')2:f(77) ’ Q E.D.

The above argument shows in passing that the mapping o(x), where
xe S, is biunique.

Let us examine the case in which we have f(§)=f(») in the last
inequality. This occurs only if

&=1 and #,=0 for all 1>gq,
i.e. only if ¢(§)=0(a) and o(n) =0(b) simultaneously, where we write
(a, b)=K, (5)\K;"(8).

This simultaneous condition implies, on account of the biuniqueness of
o(x), that £=a and »=b. .

Given two points £<75 of S, suppose that the interval J=[§, 5] is not
contiguous to S. Then f(¢)<f(y) by what we proved just now. But f(x)
is nondecreasing on S and further f[S]=[0, 1], whence f[JN\S]=[f(&), f(n)].
It follows that |[f[J\S]>0.

It is obvious that if a function, with a nonvoid linear set for its
domain of definition, is nondecreasing and maps this set onto a connected
set, then the function is necessarily continuous. The function f(x), which
is defined on S, is therefore continuous, and hence so is also the function
0(x)=f(x)+x, where x=S. Evidently 6(x) is an increasing function.

Let P be any portion of the set S. Since S is perfect, there exist in
P two points &<z such that the interval J=[&, ] is not contiguous to S.
We then have |f[J\S]|>0, as shown above. But [#[JNS]=|f[JNS]| by
Lemma 5, where we take C=JNS and g(x)=2. Noting the relation JNS
C P, we find that

0[Pl = |0[JNST = [f[INS]>0.

~ Since the portion P is a set (F,), so is also its continuous image 6[F],
which is therefore a measurable set. Thus @[P] is a set of positive
measure.

We now extend, as we easily can, the function 6&(x) defined on S to
one which is defined, continuous, and increasing on the whole R and which
maps R onto itself. This completes the proof.

We shall also use the following lemma, whose proof is quite imme-
diate and may be omitted.

LEMMA 7. If a function ¢(x) is Dirichlet continuous on a compact
nonconnected set Q@ and vf 6(x) is a continuous increasing function which
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maps R onto itself, them the composite function o8 '(t), defined on R, is
Dirichlet continuous on 0[Q] which is itself a compact monconnected set
together with Q.

THEOREM. Given a monvoid linear compact set S which 1s perfect
and nondense, suppose that a function ¢(x) is Dirichlet continuous on S
and not BV on any portion of S.

Let 6(x) be any continuous increasing function with 6[R]=R and
which maps each portion of S onto a set of positive measure, the existence
of such a function 6(x) being ensured by Lemma 6. Then the composite
Junction o6~ '(t), defined on R, is Dirichlet continuous, without being
powerwise continuous, on the compact set (S| which is perfect and non-
dense together with S. ‘

REMARK. Let I be a closed interval and let us resume the set I'=
EnE\N--+- and the function &H(x)=%¥(x;Il;3™') that we have already
used in §2. By Lemma 12 and Theorem 21 of [5], this function is Diri-
chlet continuous on 7', but not GBV on the intersection I'"\K, where K
is any component of the figure E, (meM). It follows at once that 5(x)
cannot be GBV on any portion of I'. Noting that /" is a perfect nondense
set, we see that the hypothesis of the theorem is certainly fulfilled if we
take S=1I" and o(x)=5(x).

PROOF. On account of Liemma 7, the function (t)=¢cf7'(t) is Diri-
chlet continuous on the set T=60[S]. To show that this function is not
powerwise continuous on 7', consider any portion 7, of 7" and express 7,
in the form 7T,=TnD, where D is an open interval. Let ¢, be any point
of T, so that 67'(t,)=S. We can take an open interval J, with 67'(t,) for
its centre, in such a way that 6[J]CD. Then

01SAJ1=0[SINO[JICTAD=T,,

where 6[SNJ], and hence T, also, has positive measure, since Sn.J is a
portion of S. On the other hand, the function ¢(x) is not BV on this
portion, so that the function +(t) cannot be BV on 6[SnJ] either. It fol-
lows that +(f) is not AC on T, This, combined with |7/ >0, shows that
Y (t) does not fulfil the condition (P) on the portion 7, of 7. We thus
find, by Theorem 11 of [5], that +(t) is not powerwise continuous on 7.
This completes the proof.

The above Theorem and Remark together imply that a function which
is Dirichlet continuous on a compact nonconnected set, is not necessarily
powerwise continuous on this set. We have thus solved in the negative
the problem proposed at the end of §2 of [5].
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In the particular case considered in the above Remark, it is possible

to construct a function #(x) which conforms to the requirement of the
Theorem and whose way of construction is simpler and more concrete than
in the proof of Lemma 6. For this purpose, we need only modify slightly
the sequence <{FE,, F,, ----> attached to the interval I, so as to make each
portion of the intersection of the modified sequence have positive measure.
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