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Introduction. This is a continuation of our recent works [5] and [6]
on the powerwise integration. We shall be concerned with showing that
this integration is capable of still further generalization. The new integra-
tion is strictly wider than the old, as will be ensured by a concrete ex-
ample. The final section, which is supplementary, will deal with a few
results on the Dirichlet continuity of functions.

§1. Functions powerwise continuous in the wide sense.

A function will be called strongly Dirichlet continuous on a compact
nonconnected set of real numbers, if the function is Dirichlet continuous
on this set and approximately derivable to zero at almost all points of
the same set. We do not know whether this property is really more.
restrictive than the Dirichlet continuity.

We shall term a function ¢(x) to fulfil the condition (Pw) on a linear
set F, if there exist two functions F(x) and G(x) such that

(i) we have o(x)=F(x)+G(x) for x=R,

(ii) F(x) is absolutely continuous on E,

(iii) G(=x) is strongly Dirichlet continuous on some compact noncon-
nected set containing E (so that E must be a bounded set).

Evidently, such a function ¢(x) fulfils the condition (Py) on every
subset of E. Again, a function which fulfils the condition (P) on a linear
bounded set, necessarily fulfils the condition (Py) on the same set.

THEOREM 1. A fumnction ¢(x) which fulfils the condition (Pw) on «a
set E, does so also on the closure of E, provided that the function is con-
tinuous on this closure.

PROOF. By hypothesis, there exist a function G(x) and a compact
nonconnected set @DFE, such that G(z) is strongly Dirichlet continuous on
@ and that the function F(z)=¢(x)—G(x) is AC on E. Now ¢(x) is
assumed continuous on the closure E, of E. On the other hand G(x), which



16 K. ISEXI NSR. 0.U., Vol. 36

is continuous on @, is so also on E,CQ. It follows that F(x) is continuous
on E, But a function which is AC on E and continuous on E|, is neces-
~sarily AC on E, (see Saks [7], p. 224). Hence F(z) is AC on E,, and the
proof is complete.

THEOREM 2. The sum, or more generally, any linear combination
with constant coefficients, of two functions ¢(x) and @,(x) which fulfil
the condition (Pw) on a set E, itself does so on this set.

PROOF. It is sufficient to deal with the sum ¢(x)=¢,(®)+¢(x). By
hypothesis, we can write ¢;(x)=F(z)+G(x) for +=1 and ¢=2, where in
each case the function F(x) is AC on the set E and G(x) is strongly
Dirichlet continuous on a compact nonconnected set @, DF. Then the sum
F(z)=F(x)+Fy(x) is AC on FE. Let us write Q=Q,NQ, so that @ is a
compact set containing FE.

We have two cases to distinguish, according as the set @ is connected
or not. In the former case, the function G,(x) is a constant on @, and
similarly for G,(z). Accordingly the sum G(z)=G,(x)+Gy(x) is AC on E,
and hence so is also the function ¢(x)=F(x)+G(x), which therefore fulfils
the condition (Pw) on E. In the latter case, @ is a compact nonconnected
set, and both Gi(x) and G,(x) are strongly Dirichlet continuous on §. Hence
the same is true of their sum G(x). The function ¢(x)=F(x)+G(x) thus
fulfils the condition (Pyw) on E, and the proof is complete.

A function will be called powerwise continuous in the wide sense, or
continuous (Pyw), on a linear set K, if it is continuous on E and if this
- set is expressible as the union of a sequence (finite or enumerable) of sets
on each of which the function fulfils the condition (Pyw). Plainly, a func-
tion which is powerwise continuous (in particular, GAC) on a set, is
necessarily continuous (Pw) on this set. Again, a function which is con-
tinuous (Pw) on a set, is so also on every subset of this set.

THEOREM 3. FEvery function ¢(x) which is continuous (Pw) on a
measurable set E 1is approximately derivable at almost all points of this
set.

PROOF. Consider first any linear set S on which the function ¢(x) of
the theorem fulfils the condition (Pw). Then ¢(x) is expressible as the
sum of two functions F(x) and G(z), such that F'(z) is AC on S and that
G(z) is strongly Dirichlet continuous on some compact nonconnected set
containing S. G(x) is then continuous on S and AD at all the points of
SN\T, where 7T is some null subset of S. But it is known that every
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function which is continuous on, and AD at all the points of, a linear set,
is GAC on this set (see Saks [7], p. 239). Hence G(x) is GAC on the set
S\\T, and it follows at once that so must also be the function ¢(x).

This being premised, the assertion may be established as follows. The
set E is the union of a sequence of sets E, on each of which ¢(x) fulfils
the condition (Pw). But FE, contains, for each #», a null set 7, such that
o(x) is GAC on E,\T,. The union T of the sets 7, being null, the set
E\T is measurable together with E; and ¢(x) is GAC on this set, since
E\T is the union of the sets E,\TCE,\T, and since ¢(x) is continuous
on E. But any function which is GAC on a measurable set, is AD at
almost all points of this set (see Saks [7], p. 223). It follows finally that
the function ¢(x) is AD at almost all points of the set E. The proof is
thus complete.

THEOREM 4. FEwvery linear combination, with constant coefficients, of
two functions which are continuous (Pw) on a linear set, is itself con-
tinuous (Pw) on this set.

This is immediate from Theorem 2.

THEOREM 5. In order that a function which s continuous over a
nonvoid closed set E, be continuous (Pw) on E, it is mecessary and suffi-
cient that each monvoid closed subset of E contain a portion on which the
Junction fulfils the condition (Pw).

Making use of Theorem 1, we may establish this in quite the same
way as in Theorem 11 of [5].

THEOREM 6. Given a function F(x) which is AC on a compact non-
connected set Q and given a function G(x) which s Dirichlet continuwous
on the same set, suppose that F(x) has a finite nonnegative approximate
derivative Fi(x) at almost every point x of Q and further that the sum
E(x)=F(x)+G(z) has a monnegative increment over each closed interval
contiguous to Q.

Then &(x) s nondecreasing over Q.

PROOF. Let A be any closed interval with end points belonging to
the set Q. We have to ascertain that £(4)=0. But this is obvious if
ACQ; in fact, the hypothesis then implies that F'(x) is nondecreasing on
A (see Saks [7], p. 225) and that G(x) is a constant on A. We may there-
fore assume in the sequel that @ does not contain A.

If we write A(x) for the linear modification of F'(x) with respect to
@, then Theorem 4 of [5] shows that A(x) is AC on the interval I spanned
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by @. Hence A(x) is derivable almost everywhere on I. Moreover, by
Lemma 3 of [5], the function A(x) is AED with F'(x) at almost all points
of Q. Consequently A(x) has a finite nonnegative derivative 1’'(x) at almost
all points xr=Q. We may plainly suppose, without loss of generality, that
F'(x) coincides with A(x) identically.

For definiteness, let us set F’(x)=0 for every point xR at which
F(x) is not derivable. F'(x) is then summable on the interval I. Denot-
ing by H a generic open interval contiguous to the compact nonconnected
set ANQ, we find that A\Q is the union of all the H and that

F(A)= SAF’(x) da =SMQF’(m)doc +SA\QF’(90) do

:S F’(x)dx+ZSF’(x)dm=S F'(@)de +SFH).
ANQ H JH ANQ H

Since F''(x)=0 at almost all points of Q, it follows that

F(A);;F(H'), where %}IF(H)I<+OO.

On the other hand, writing p generically for a real number >1, we
have '

%}F(H) =lim XX F(H)[? and G(4)= ligl %}G(H)Dp ,

p-1 H
since X |F(H)| <+ and since G(z) is Dirichlet continuous on Q. Hence

E(A)=F(A)+G(A) 2 lim SFHP + GEH)T)

But we have, for any two real numbers « and S, the relation
la+B)F—allP—glF| =27 (p—1)(la|?+1B17)
by Lemma 1 of [5], and this ensures that
§H)P—FH)P—GH)P =2"(p—D{FH)|"+|G(H)|?}
for every H, where &(H)[?=0 since £&(H)=0 by hypothesis. Thus
FR)P+GH)P =z —2(p—D{FH) P +1G(H)|},
SF(E)IP+GH)P) 2 —27(p— DS IF(H)?+ S |G(H) 7).

This inequality, together with the relations

SIFE)P=SIFH)| +o() and LIGE)P=0(—15),

implies that lzi)i?;{F(H)DerG(H)DP}zO. It follows finally that &(A4)=0,

which completes the proof.
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THEOREM 7. Given a function &(x) which 1s continuous on a closed
interval I and having a finite nonnegative approximate derivative almost
everywhere on I, define a subset S of I as follows: a point of I belongs
to S iof and only +f there exists no open interval V containing this point
and such that the function &E(x) 18 GAC on the interval INV.

Then S is a perfect set. Moreover, 1f a finite interval D contained
in I 1s disjoint with S, the function &(x) 1s GAC and nondecreasing on D.

This proposition is incidentally established in the proof for Theorem
13 of [5]. The function &(x) is even AC on D, as we can easily show.

THEOREM 8. Given two functions ¢(x) and | (x) which are continuous
(Pw) over a closed interval I, if we have ¢u,(x)=<+,,(x) at almost every
potnt x of I al which both functions are AD, their difference (x)—¢(x)
is both AC and mondecreasing, on the wnterval I. ‘

COROLLARY. If two functions are continuous (Pyw) on a closed in-
terval I and if they are approximately equiderivable almost everywhere
on I, then the functions differ over I only by an additive constant.

PROOF OF THEOREM 8. The difference &(x)=+r(x)—¢(x) is continuous
(Pw) on I by Theorem 4 and has a finite nonnegative approximate deriva-
tive almost everywhere on [ (see Theorem 3). ILet S be the set at-
tached to &(x) and I in the manner of Theorem 7. The assertion will
follow if we show that S is void; for then &(x) will be GAC and nonde-
creasing, on the whole interval I, and therefore, by a routine inference,
also AC on 1.

Suppose, if possible, that S is nonvoid. There exists, by Theorem 5,
an open interval H such that the intersection M=S~H is nonvoid and
that &(x) fulfils the condition (Pw) on M. This set M must be infinite;
for otherwise each point of M would be an isolated point of S, contradict-
ing the fact that S is a perfect set. The function &(x), which is continuous
on the interval I, fulfils the condition (Pw) on the closure M, of M, in
virtue of Theorem 1. We can therefore write &(z)=F(x)+G(z) for z<= R,
where the function F(x) is AC on M, and where G(x) is strongly Dirichlet
continuous on some compact nonconnected set containing M,.

We shall show that &(x) is nondecreasing on M, This is obvious if
M, is a connected set and hence a closed interval. Indeed, G(z) is then a
constant on M,, so that &(x) must be AC on M, But nggg-(x) < +o00 almost
everywhere on I, and the result follows at once. We may therefore
assume in the sequel that M, is a compact nonconnected set. Then G(x)
is strongly Dirichlet continuous on M,.
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At almost every point « of M, the function F(x) is AD by the
Denjoy-Khintchine Theorem (see Saks [7], p. 222) and G(x) is AD to zero.
We thus have

Foo(®)=F () + Gap() = &4 () [0, 4 c0)

at almost every point 2 of M,. On the other hand, since M, is the closure
of the set M=S\ H, each open interval D contiguous to M, is at the same
time contiguous to S. Hence £&(x) is GAC and nondecreasing on D, in
virtue of Theorem 7. This together with the continuity of &(x) on I,
shows that &(x) is nondecreasing on the closure of D and in particular
that £(D)=0. Combining the above results and applying Theorem 6, where
we replace the set Q by M, we find that £(x) is nondecreasing over M,
as announced. ’

This fact implies that the function G(x)=§&(x)—F(x) is BV on M,.
Since G(x) is further Dirichlet continuous on M, Theorem 3 of [5] shows
that G(x), and hence &(x) also, is AC on M, But &(x) is GAC on each
open interval contiguous to M, as already proved. We thus conclude that
&(x) is GAC on the closed interval spanned by M, This contradicts the

definition of the set S, since M, is an infinite subset of S. This completes
the proof.

THEOREM 9. If a function ¢(x) which is continuous (Pw) on a closed
set E, i1s GBV on this set, then the function is necessarily GAC on E.

If wn particular the set E is compact and the function i1s BV on E, then
1t 1s AC on E. '

PROOF. We need only prove the first half of the theorem, the second
half being an easy consequence of the first. We express the set £ as the
union of a sequence of bounded sets M on each of which ¢(x) fulfils the
condition (Pw). In view of Theorem 1, we may assume the sets M closed.
It suffices to verify that the function is GAC on each M. '

Suppose, if possible, that ¢(x) fails on some M to be GAC. Then M
must be an infinite set. The function ¢(x) is expressible on R as the
sum of two functions F(x) and G(z), such that F(x) is AC on M and that
G(x) is strongly Dirichlet continuous on some compact nonconnected set
containing M. If M is a connected set, then G(x) is a constant over I,
so that ¢(x) must be AC on M, which is impossible. M is therefore a
compact nonconnected set, and the function G(x)=¢(x)—F(x) is GBV as
well as Dirichlet'continuous, on M. Hence it follows from Theorem 6 of
[5] that ¢(z) is GAC on M. This contradiction completes the proof.

REMARK. Concerning the function G(x), it may be observed that the



July 1985 Powerwise Integration in the Wide Sense 21

above proof utilizes only its Dirichlet continuity on the set M.

§2. The powerwise integration in the wide sense.

The descriptive definition and the properties of the powerwise integra-
tion in the wide sense, or simply the integration (Pw), is quite similar to
those of the powerwise integration, and we think it needless to state them
at great length here.

We shall be concerned in this § with showing that the integration
(Pw) is strictly wider than the powerwise integration. For this purpose,
we shall have recourse to the same method as used in § 4 of our paper [5].

Given a closed interval I=[ga, b] and an integer m=0, let us determine
four points ¢, <e¢,<es;<c, of I so as to fulfil

ci—a=b—c¢, and c¢;1—¢;=2"""%b—a),
where 1=1,2,3. We attach to I two figures ['™ and ['™ defined by
I™=[a, ¢;]\ey, ¢;]\V[ey, b] and I"™=la, ¢,|\I[e, b].
It is obvious that
[I™|=(1—2"""%[1] and |[I\I"™|<2™ ™ I|.

Given a nonvoid figure F' with the components I, <----<I,, we write
further by definition

F(m):[(lm)U el UI%m) and F[m]:]Em]U e U]%m]

for me M, where and subsequently M denotes the set of the integers =0.
Clearly

[F®=(1—2""9|F| and |FN\F™|<2"|F|,

This being so, we now construct inductively a descending infinite
sequence U,DU,D---- of figures by the rule:

U,=[0,1] and U,.=Uy for meM.

Writing I'=U,NU,N----, we find easily that /" is a nonconnected perfect
set spanning the interval U,.

LEMMA 1. With the above motation, let K be any component of the
figure U,, where meM. Then |K|=2™™ and |[KNI'|>27"K]|.
In particular, we have |I'|>27".

PROOF. The first inequality being obvious, we need only prove the
second. Keeping m fixed, we define inductively a descending infinite



22 : K. ISEKI NSR. 0.U., Vol. 36

sequence F,DF,D--.- of figures, as follows:
F,=K and F,,,=F™% for =M.
Then F; =K\ Uy, 80 that
KﬂF:FomFlm"--:himFi and ]KnFIzliimIFi].

But |Fi|=0—2"""*7?)|F,|, and it follows that
’Kﬂf!:(Fof _11 (1_2‘m“i*2)> [K{(l-— iz-m—i—z)

=(1—-2"NK|=z27|K],
which completes the proof.

The above inequality |K|=2"™ implies that /" is a nondense set.
Given any m< M, we now construct inductively a descending infinite
sequence WD W,D---- of figures, writing

W(): Um and W7;+1: W5m+i] for 'LEM.

Then every component of W, is a component of U,.;. as is easily verified
by induction on 1.
Consider now the following set I, :

=W Wi CUNUpiie-o=1".
Evidently, I',, is nonvoid and compact.
LEMMA 2. We have |I'\I',|<2™™ for me M.
PROOF. Using the above sequence W,DW,D----, we find successively
INFWCUNT = U (W),
AWNW | = | WA W <27 g <27,
INIl S B IWN\Wil < S27mti=27m,

By a binary sequence of mumbers we shall understand any infinite
sequence <a,, &, - -+ +» such that a,={0,1} for every n< N, where and sub-
sequently N denotes the set of the positive integers.

Let z be any point of the set I'=U,nU,n----. For each m = M there
exists, among the components of the figure U,, exactly one, say K,, to
which « belongs. It follows, from the relation U,,,=US”, that the in-
terval K,,, is then one of the three components of the figure K3». Let
Am+: De 1 or 0 according as K, ., is the middle one among these components
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(in their natural ordering) or not, respectively. We have thus defined a
binary sequence o(x)=<a, a,, ----> for each point x of I". When occasion
demands, we may write a,=a,(x) for ne N.

From now on, let § denote a generic positive number <27!. By means
of the above sequence o(x)=<ay, ay, ---->, we now define on the set I” a
function @(x;d) with 2 for the variable, as follows:

O(x:0)= ii“qi—“”)a for wel.

n=1

We then extend the domain of definition of this function to the whole real
line, in such a way that the extended function, which we shall denote
still by ©(xz;d), is linear on each closed interval contiguous to I and
vanishes outside the interval U,=[0, 1].

LEMMA 3. If K is any component of the figure U,, where me M,
the function @(x)=0(x;0) is a constant on the intersection KNI ',, where
L,=WinWin:-+ as above.

PROOF. The definition of the sequence W, D W,D----, namely W,=U,
and W,,,= W43 for 1€ M, clearly implies that if x =7, then the binary
sequence o(x)=-<a(x), ay(x), - ---> has the property :

a,(x)=0 for all n>m.

On the other hand, in the case in which m>0, it is obvious that for
each n=1,2, .-+, m the number a,(x), as a function of x, is a constant
over KNI

It follows that the sequence o(x) is independent of x, when x ranges
over KN\I',. The function @(x) must therefore be a constant over this
intersection, and the proof is complete.

We shall say that a function is locally constant on a linear set E, if
there corresponds to each point (if existent) of E an open interval J con-
taining this point and such that the function is a constant over ENJ.

LEMMA 4. FEvery function ¢(x) which is locally constant on a meas-
urable set E, is AD to zero at almost all points of E.

PROOF. Assuming E nonvoid, take any point of £ and consider the
corresponding open interval J of the above definition. We may plainly
suppose that the end points of J are rational numbers. It then suffices to
show that the function ¢(x) is AD to zero at almost all points of the
measurable set EnJ. But this is an immediate consequence of Lemma 3
of [5]. In fact, we need only consider, alongside of ¢(x), the function
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which is identically equal on R to the constant value assumed by ¢(x)
on EnJ.

LEMMA 5. The function O(x)=0(x;0) is AD to zero at almost all
points of I.

PROOF. Let m be a fixed integer =0. On account of Lemma 3, the
function ©(x) is locally constant on the set /',,C/I". This, together with
Lemma 4, shows that @(x) is AD to zero at almost all points of 7I7,.
Consequently, writing M for the set of the points x=I" at which O(x) is
not AD to zero, we have |[MNI[,|=0. Combining this with Lemma 2,
we get

M| = |MAL W+ M\ S0\, <27,

which completes the proof since m is arbitrary.

Let H denote generically an open interval contiguous to the set I,
i.e. a component of the open set U,\/I". We clearly have

Uo\F: QO(Um\Um+l)y

where the summands U, \U,., are open and mutually disjoint. Each H
is therefore a component of U,\U,,, for an m< M, where m is uniquely
determined by H. This integer m will be called order of the interval H.
H is then contained in a component, say K, of the figure U, and hence
coincides with one of the two components of the open set K\U,.,. We
shall term H ascendent or descendent, according as it is, respectively, the
first or the second of these components in their natural ordering.

LEMMA 6. Let K be any component of the figure U,, where me< M.

(1) The function O(x)=0(x;0), where 0<5<27', assumes the same
value at the end points of K and, denoting this value by y(K), we have
25m+1

7(K)=0(x)<r(K)+ il

for xzeK;

this 1mplies in particular that @(x) is continuous on I, and hence on R.
(ii) If H 1s an open interval contiguous to the figure K™, then

m+1 m+1
0 0

OH)=- 5 or OH)=—- -7,

according as H is ascendent or descendent, respectively.

PROOF. We associated before with each point x of the set I" a binary
sequence o(x)=<a(x), ax(x), «+ - +>, by means of which the value of ©(x) was
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defined as follows:

O(x)=0(x;0)= éla"T(x)B", where 0<0< %
By Lemma 3 the function ©@(x) assumes the same value y(K) on the set
KNI, which contains the end points of K, and the proof of that lemma

shows further that
0w)=7()+ L “Dgr  tor wekAT,

where

an(x) 1 N 5m+1 25m+1
S - n —_— n:

This establishes part (i) of the assertion, since ©@(x) is linear on each
closed interval contiguous to KNI/'.

Passing on to part (ii), let us assume first that the interval H is
ascendent. Writing H=(u, v), we have O(u)=y(K), since uKNI,. On
the other hand, we find immediately that a,,,(v)=1 and that a,(v)=0 for
n>m-+1. Hence

m+1 5771.-)—1

O(H)=0(v)—0O(u)= il

O()=r(K)+ 2=,

The case in which H is descendent may be treated similarly, and the
proof is complete.

We shall denote henceforth by 4, the boundary of the figure U,
where me M, and by 4 the union 4,\J4,\J-.--. Noting that 4CI" and
that every component of U, has length =2 by Lemma 1, we see that
I’ is the closure of 4. It follows at once that, for any function ¢(x)
which is continuous on /', we have

Vip; IN=V(p;H)=lim V(p;4,),

where the symbol V signifies the weak variation (Saks [7], p. 221).

LEMMA 7. If 0<6<37Y, the function O(x)=0(x;6) is BV on the in-
terval [0,1]. On the other hand, the function O(x;37') is not BV on
the set KNI for any component K of the figure U,, where me M.

PROOF. By the preceding lemma, ©@(x) has a vanishing increment
over each component of U, where neN. Accordingly V(0;4,) equals
3 16(G)|, where G denotes generically an open interval contiguous to U,,
i.e. a component of the open set UNU,=\J(U,.\U,), where 7 stands for
1,2,----,n and where the summands are disjoint open sets. But each
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U, \U; has exactly 2-3""! components, over each of which, by Lemma 6,
O(x) has absolute increment 77'6¢. It thus follows that

V(©; 4)=3 -2 (30)".

But the function O&(x) is continuous on R by the same Lemma 6. Con-
sequently, if 0<§<37!, we have

V(@;F)zlimV(@;An)zi}l—f—i(?ﬁ)i< Lo,

On the other hand, ©(x) is linear on each closed interval contiguous to I,
so that V(@;U)=V(@;I'). O(x) is therefore BV on the interval U,.

We proceed to deal with the second half of the assertion, writing
Q(x)=0(x;37") for short. Given an me M, let K be any component of
U, Then KNI is the closure of the set KN4, and it follows that

V2, KNN=V(Q;, KNnd)=1imV(2;Kn4,),

where and below 7 represents an integer >m. We have further
V(2;Kn4,)=X|2(D)],

where D denotes generically an open interval contiguous to Kn\U,, i.e. a
component of the open set K\U,. But this set is the union of the n—m
open sets

S;=Kn(U;_\U;), where i=m+1,----,n.

Since each S; has precisely 2-3"™~! components, we find successively that

9.gi-m-1 ( 1 >z’_ no 2

o9 ) — m+is 2
i=m+1 3 v

V(2;Kn4d,)= >3 3

t=m+1 7

V@ KAT)= % =2 =+

1, b
©>m +1 3m+ (4

which completes the proof.

LEMMA 8. The function 2(x)=0(x:3"") is not powerwise continuous
on the set I.

PROOF. In view of Theorem 11 of [5], it is enough to show that £2(x)
does not fulfil the condition (P) on any portion of I'. Given a portion S
of I', let ¢ be a point of S. Then ¢ belongs, for cach m<M, to a com-
ponent K of the figure U,. Since |K|<2™ by Lemma 1, we can take m
so large that KNI lies in S. Then |S|=|KN{'|>0 by the same lemma.
On the other hand, by Lemma 7, the function 2(x) fails to be AC on
KNI, and does so a fortiori on S. This completes the proof.
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LEMMA 9. If p>1 and of four real numbers &, n, {, § belong to a
closed interval of length 1, we have

(1) |6—=C|P—|e—pl?—|p—LlP<2212(p—1),
(i) |6—0P—|e—p|P—|y—ClP—|C—0? < 3717(p—1) .

PROOF. 7re (i): We may clearly suppose that £>{. We need only
consider the case in which &>#%>({, for otherwise the inequality (i) is
evident. Then Lemma 1 of [5] shows that

(E—=0P—(E—n)?— (=0 =27 (p—D{(E—n)?+ (p—0)?},

whence (i) follows at once.
re (ii): We may suppose that £>6. Let us write for short

d=(E—0)"— | —p|?—|p—LIP—[—~0]7.
If »=¢, we have by the inequality (i)
d=(—0y—lp—ClP—|—0lP =271 (p—1) ;

while if =0, then evidently d=<(—6)?—(&—»)?<0. We may therefore
assume in the sequel that £>7>4, and similarly that £§>{>46.
If now »={, then the inequality (i) implies that

d=(E—0)—(E-0P—(C—o)r=2r"(p—1).

Consequently we may restrict ourselves to the case &£>7>(>60, and it
follows from Lemma 2 of [5] that

d=(E—0)P+ 00— +C—nlP+ -l =37 (p—1),
which completes the proof.

Let Z,DZ D---- be a descending infinite sequence of nonvoid linear
figures. Such a sequence will be called regular, if the following condi-
tions are fulfilled :

(i) The first figure Z, is a closed interval,
(ii) the set Z,\Z,.: is nonvoid and open for each m< M,
(iii) the intersection Z=Z,NZ, N ---- is a nondense set.

We find easily that the above condition (iii) is equivalent to the fol-
lowing condition : if 1, denotes max|K| for each m< M, where K ranges
over the components of the figure Z,, then 2,—0 as m— -+ co.

Let Z,2Z,D---- be a regular sequence of figures. It is evident that,
for each m, the boundary of Z,., contains that of Z, and the component
intervals of the open set Z,\Z,., are finite in number. Further, the in-
tersection Z is a nonvoid compact set spanning the interval Z, and the
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open set Z,\Z is the union of all the sets /NS | ¢ follows' that Z,\Z
is nonvoid and that an open interval H is contiguous to Z if and only if
it is a component of Z,\Z,.,; for an m< M. When this occurs, the index
m, uniquely determined by H, will be called order of H with respect to
the sequence Zy;DZ;D----.

Given a function ¢(x), a regular sequence Z,DZ,D----, and an open
interval H contiguous to Z=Z,NZ,N\----, let m be the order of H. Then
H is contained in a component K of Z,. We define a quantity «o(H) by

o(H)=w(p; H)=0(p; K),

where the symbol O signifies the oscillation. Needless to say, w(H) de-
pends also on the sequence Z,DZ,D----, though we omit explicit indica-
tion of this dependence. If ¢(x) is continuous on Z, then w(H) is always
finite.

Let @ be a compact nonconnected set and let X denote a generic open
interval contiguous to . Given a function ¢(x) and a positive number p,
we write by definition :

A(w;p;Q)=§l¢(X)l” and Y(so;p;Q):%()(p(X)D”,

where in the case of Y(¢;p;Q) Wwe assume that Ap;p;Q) <+ oo.
Let us agree to suppose, in the following two lemmas, that we are
given

(i) a regular sequence Z,DZ,D---- of figures,
(ii) a function ¢(x) which is continuous on the interval Z,
(iii) and a real number p greater than 1.

This agreement will not be repeated. Since the sequence Z,D0Z,D---- is
regular, it is allowed, in the above definition of A(p;p;Q) and Y(¢;p;Q),
to take as @ any CT subset of Z=Z,nZ,n----; in fact, such a set is
always nonconnected, on account of the nondenseness of Z.

For each me M, we shall denote by B, the boundary of the figure
Z,, so that B,CZ.

LEMMA 10. Given in Z a CT set Q, suppose that A(p;p;Q)<—+co
and that B,CQ for an me M. If we write Q*=Q\IB,,,,, then

IT(w;p;Q)~T(so;p;Q*)léSZ’(p—l)%w”(D),

where D ranges over the components of the open set Z,\Zn,...

Given further a closed set R such that R\YB,,.,=Q%, denote generically
by G an open interval contiguous to the figure Z,.i, by L a component of
Zimsr, and by J an open interval (if existent) contiguous to R and con-
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tarned im Zn,.. Then
T (p;p; Q1) —Ze(@IF1=220%(p; L)+ S,
where the last series means zero 1f it is a void one.

REMARK. Since B,.; is a finite set, the hypothesis A(p;p;Q) <+ e
implies that A(p;p;Q*)<+oo; in other words, Y(p;p;Q*) is an absolutely
convergent series. Consequently we have also > |o(J)|? <+ o0, on account
of the condition R\VB, . .=Q%.

PrOOF. Consider any component, say D=(a, ), of Z,\Z,,.. Then D
is contained in a component K of the figure Z,. Writing Q'=Q\Y{«, 8},
we shall appraise the difference d=7Y(¢;p;Q) — Y (¢;p;Q").

For this purpose, we express d in the form

d=Y(p;p;QNK)—T(¢;0;Q NK),

which follows at once from the fact that the end points of the interval
K belong to Q on account of B,CQ. We denote by a’ the rightmost point
of the set @\ (—oo,a] and by B the leftmost point of @N\[8, + o), so that
a' Sa<B=p, a’€K, and ' K. By means of o’ and B, the difference d
can now be written explicitly, as follows:

d=o¢(la’, g’ DIP—o([e, a])IP—o(la, BN — (18, &' DI,

where [a’, a] is singletonic if a’=a, and similarly for [B,5’]. It follows
from Lemma 2 of [5] that |d|=3%(p—1)w?(D).

We now arrange all components D of Z,\Z,., in a finite sequence
D, <D,<----<Dy and we define inductively a sequence of N-+1 sets.
{Qy, Ry, -+ -+, Qny, as follows, where we write D,=(a,, 8.) :

QR=Q and @Q,=Q,.,\V{an,, B.} for n=1,---- N,
By what was already proved we have, for the same values of #,
[ T(@;p0;@n-0)— Y(0;p;Q) =37 (p—1)0?(D,),

whence it follows immediately that
N
IT(so;p;Q)—T(so;p;Q*)IéSp(p~1)n§1w”(Dn),

since Qy coincides with the set Q*=Q\UB,,,,.. This establishes the first
of the asserted inequalities.

To prove the second inequality, we denote generically by G an open
interval contiguous to Z,., and by L a component of Z,.,. As B,..CQ%*,
we have the relation
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Y(so;p;Q*):§so(G)Dp+;T(so;p;Q*mL).
Fixing an L, let us write L=[u,v], so that
Q*NL=(RN\Bpi)NL=(RNL)I{u,v}.

If the set R\L is CT, then the interval spanned by RN LI is a subinterval,
say [u',v"], of the interval L. Denoting by J a generic open interval con-
tiguous to R and contained in Z,.;, we have in this case

Yp;p;Q*NL)=TY(p;p; RNL)+o([u, w NP+ (v, vDI?
=J§L§0(J)D"+sa([u, w DIP+o([v', o7,
IY(so;p;Q*mL)lézop(so;L)JrJngso(J)lp-

Again, if RN\ L is not CT, then L contains none of the intervals J, and the
last inequality still holds in this case also, the void series signifying zero.
Since L is arbitrary in the above, we have

IgY(w;p;Q*mL)l §2§Op(¢;L)+§I<p(J)IZ’-

This, together with the above expression for Y(¢:p;Q*), leads to

Y600~ Se(@P| 22507(0; )+ Sle(DP,  QE.D.

LEMMA 11. The notation and the hypothesis being the same as in
the foregoing lemma, we have the inequalities :

Ap;p;Q)— Alp;p; Q%) §3p(p~1)ZD)wp(D),
Ag;p;Q%) = ZGDIQD(G)I”+2§O’°(90 L)+ ZJISD(J)IP-

PROOF. We need only give an outline of the proof, since the argu-
ment is the same as in Lemma 10. Let D be any component of the open
set Z,\Zn+1. Then D is contained in some component K of Z,. Writing
D=(a, ) and Q'=Q\V{a, 8}, we shall appraise the difference

d=A(p;p;Q)—Alp;p; Q)
=Ap;p;@NK)—Alp;p; Q@ NK).

Consider the minimal closed interval [a’, 8’] fulfilling the conditions
la, BlCla’, B'1CK, a'€Q, Q. Then we have

d=lp(la’, FDIP—lo(la’, al) P —lo([a, BDIP—1e (8, /DI

But this amounts at most to 3?(p—1)w?(D), on account of Lemma 9. Using
this result and arguing as in Lemma 10, we obtain the first of the as-
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serted inequalities. _
The deduction of the second inequality is quite similar to that of the
corresponding inequality of Lemma 10.

We now resume the sequence of figures, Uy,DU,D-- -, whose intersec-
tion I' was seen nondense and which is therefore regular. The boundary
of U, was denoted by 4,, for each me M, so that 4,={0,1}. The function
O(x)=0(x;0), where 0<d<27!, was originally defined for x=I" by

O(x)= > —a’;i—xL5”, where <a,(x), as(x), -+ -->=0(x).

n=1

We then extended its definition to the whole R in a routine way. The
new function, still denoted by ©(x), was found continuous over R. The
reader is requested to keep all this in his or her mind.

LEMMA 12. Suppose given a compact set R such that 4,CRCI’. If
0<0<3 ! and p>1, then we have

2@ < () 7y

PROOF. Let us take, in the foregoing lemma,
<Z0: Zl; ot '>:<U0: Ul: e '>: SD(.’,E):@(Q'}), and Q:Rm:

where me M and R,=R\J4,. Since by Lemma 7 the function O(z) is
BV on the interval U,=[0,1], we have A(@;1;R,)=V(O;U,) <+, s0
that A(@;p;R, must be finite on account of p>1. Thus the hypothesis
Alp;p;Q) <+co of Lemma 11 is fulfilled. Hence, noting the relation
Q*=Q\Yd,,,=R,., we obtain for every m

A(Q;p;Rm)~A(@;p;Rm+1)§3p(p—1)§wp(D),

where D ranges over all the components of the open set U,\U,,,. But
U, \Up. has exactly 2.3™ components, while we have w(D)=<26"""/(m-+1)
for every D by part (i) of Lemma 6. Consequently

(8o7)mH!

A@;p; Bn) = MO p; Bin) <67(p—1) ==~

This, together with R,=R\JU4,=R, leads to

, , = (387"
A(©;p; )= MO p; Ry <6°(p—1) 30,

where the last series converges to log(1—367)7%
On the other hand, the second inequality of Lemma 11 gives

A3 p; Rn) S IO +2207(0; L)+ ZUO()P,
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where we denote generically by G an open interval contiguous to U,.,
by L a component of U,.,, and by J an open interval (if existent) con-
tiguous to R and contained in U,.,,, But Lemma 6 shows that

. m 2.3 G+D 2.3m" m+2
SO +230°0; L) = 5 22 pirn 23T g meys

+(367)™;

1
<log 1357

Combining the above results, we get

A@;p;R)<6"plog

1 m
g (BT EDIOWP.

Now each interval J is contained in U,.,; and hence |J|<2 ™ by Lemma
1. Moreover, J is contiguous to R and we have A(@;p;R)<+ . Con-

sequently 2|@(J)|? tends to 0 as m— +co. But the same is true of (367)™
also. It thus follows that

1
AO;p;R)= 6Pplog T o

We proceed to estimate the logarithm. For this purpose, we write
0=37% so that ¢>1. Then, by the mean value theorem,

1—867=1—3"2> 312 (pt—1) > 30%(p—1).
On the other hand, logé=2logv& <2+& for £>0. Hence

log — % — < z2___
135" S V3oP(p—1)

We thus conclude that

o 2><6Pp 7 » P

The following lemma is obtained immediately from the definition of
the function @(x)=0(x;0) for the points z=1".

LEMMA 13. If = s a fized point of I, then O(x;0) i1s a continuous
Sfunction of 6, where we suppose that 0<6<271,
LEMMA 14. If S is any CT set contained tn I', we have

g
A(Q;p;S)<~Vf’T—% for p>1,

where we write 2(x)=0(x;3"") as before.

PROOF. Let <(H,, ----, H,> be an arbitrary finite sequence of disjoint
open intervals contiguous to the set S, and let M denote the boundary of
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the union H,\V-.--\UH,. Specializing the compact set R of Lemma 12 to
M\J4, we have

31000 =A©: ;MU ) < () s

for p>1, where @(x)=0(x;6) and 0<d<3~. Making now 6—3"!, we find
at once by Lemma 13 that

n p(7T+/3)P
112=1 |2(H)IP < V1

Since <{H,, ----, H,> is arbitrary, this inequality gives

(7T+/3)? < 13%p
vVp—1 vVp—1"-

A@2;p;S) <2

LEMMA 15. If R s a closed set such that 4,CRCI’, we have
IY(2;p;R)| <137« vVp—1 for p>1.
PROOF. Let us take, in Lemma 10,
Zo, Zy, + - >=XUp, Uy, »=++>, @(@)=2(x), and Q=R,,

where me M and R,=R\Y4,. The hypothesis A(p;p;Q)<+co of that
lemma is then secured by the foregoing lemma. Consequently, taking
note of the relation Q*=QU4,,,,=R,.; and arguing as in the proof of
Lemma 12, we obtain for every me M

1
IY(Q;0; R) =Y (2505 Rna)| <67 (p—1) log 75775~

2 —
<6p(p~l)W‘_l—) <127« A/p—1.
On the other hand, the second inequality of Lemma 10 gives
T(Q;p;Rmﬂ)—%Q(G)DP =2307(2; L) +12()P,

where G, L, and J range respectively over the open intervals contiguous
to U,.; the components of U,.,, and the open intervals contiguous to R
and contained in U,,,. But X 2(G)? vanishes by part (ii) of Lemma 6,
while part (i) of the same lemma shows that

2ZOP(Q;L)§ wg—p(m+1)<(31~p)m_
m=+2

Combining the above results, we get

IY(2;p;R)<122- v/ p—1 +(31'Z’)m+§_}|9(J)IZ’.
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We now make m—+oco here. Using A(2;p;R)<+o and arguing as in
the proof of LLemma 12, we conclude that

IT(Q2;p;R)| <127« v/p—1<18?+Vp—1.

LEMMA 16. The function 2(x)=0(x;37") s strongly Dirichlet con-
tinuous, without being powerwise continuous, on the set I.

PROOF. To prove the strong Dirichlet continuity of 2(x) on I, it is
enough, in view of Lemma 5, to show that it is Dirichlet continuous on I".
For this purpose, consider any compact nonconnected set RcCI. We
have to ascertain that £2(x) fulfilis the Dirichlet condition on R. Let p>1

and denote by H a generic open interval contiguous to R. Lemma 14
then shows that

;;].Q(H’)[P:A(Q;p;R)=0< pl_ ) as p—l.

1

We shall verify next that if the end points of a closed interval A belong
to R, while A itself is not contained in R, we have

2 QEH)P=T(2;p; ANR)=2(A)+0(1)

as p—1. To see this we may, without loss of generality, suppose first
that R spans the interval A and secondly that A=[0,1]. Then this asser-
tion reduces to Y(2;p;R)=o0(1) as p—1, which is ensured by Lemma 15.

The function Q2(x) thus fulfils the Dirichlet condition on every compact
nonconnected set RC/'. Since Q(x) is further continuous on /' by Lemma
6, we conclude that £2(x) is Dirichlet continuous over I'. This, together
with Lemma 8, completes the proof.

THEOREM 10. The integration (Pw) s 'stm'ctly wider than the power-
wise integration. '

The proof is almost the same as in Theorem 22 of [5].

§ 3. Supplements on the Dirichlet continuity of functions.

It was stated in §1 of [5] that we do not know whether the follow-
ing assertion is true: If a function ¢(x) is Dirichlet continuous on a com-
pact nonconnected set Q, then |p[Q]|=0 and the function is AD to zero at
almost all points of Q. If this is true, then the strong and the ordinary
Dirichlet continuity are equivalent.

We are unable, at present, to prove or disprove this assertion. We
can only establish a few results related to it, as will be shown in the
rest of the paper.
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LEMMA 17. If a function ¢(x) is derivable to zero at all the points
of a linear set K, then mnecessarily |o[E]|=0 (see Saks [7], p. 226).

THEOREM 11. Suppose that a function ¢(x) is Dirichlet continuous
on a compact monconnected set Q and linear on each closed imterval con-
tiguous to Q. If D denotes the set of all the points of @ at which the
Sunction is not derivable, we have |p[Q]|=|plD]\.

PROOF. The function ¢(x) is plainly continuous on the closed interval
I spanned by the set @. This being premised, we attach to each point y
of the set ¢[Q] the leftmost point, say f(y), of the nonvoid compact set
o' (YWNQ. If we write M for the set of all the points f(y) at which ¢(x)
is derivable, then clearly ¢[Q]=o¢[D]\Vo[M], so that

lolD1 = 10[Q1 < | o[ D1+ e[ M]].

It thus suffices to prove that |o[M]]=0.

Denoting by H=(a, f) a generic open interval contiguous to Q, we
define a subset R of M as follows: a point s of M belongs to R if and
only if there is an infinity of intervals H such that 8<s and ¢(s)E¢[H ]
Given any point s of R, let us choose, from each interval H of this defini-
tion, a point sy such that ¢(sy)=¢(s). The set of all the points sz is in-
finite and hence has an accumulation point, say ¢. We find at once that
c=s and o<@. Furthermore, the continuity of ¢(x) on the interval I
(spanned by @) implies that ¢(¢)=¢(s). It follows that o=s; in fact,
the relation s RC M and the definition of the set M together imply that
s is the leftmost of all the points x=@ at which ¢(x)=¢(s).

At every point s of the set R, the function ¢(x) is derivable and the
coincidence of ¢ and s necessitates that ¢’(s)=0. It accordingly :follows
from Lemma 17 that |o[R]|=0. '

In order to ascertain the wvalidity of |p[M ]|=0, it is thus sufficient to
show that |p[M \R]|]=0. For this purpose, we may conveniently suppose
that ¢(l) <e@(x) whenever [<x<(), where [ is the left extremity of the
interval I. Plainly there will arise no loss of generality from doing so.

As above, let H(a, ) stand for a generic open interval contiguous to
the set Q. Writing W=M\R, let us consider the set of all the points
xc W for each of which there exists no interval H such that <z and
o(x)=@[H]. This set, which we denote by FE, will be shown to fulfil
lo[E]]=0. Obviously, we need only consider the case in which £ is an
infinite set.

We shall verify first that the function ¢(x) is increasing on E. For
this purpose, let us take any two points s;<s, of E. These points belong
to the set M, and hence ¢(s;) # ¢(s;). Suppose, if possible, that ¢(s,) <(sy).



36 K. ISEKI NSR. 0.U., Vol. 36

This inequality, combined with ¢(1) <¢(s;) which is true since [<s,<s,=Q,
ensures the existence of a point s, such that [<s,<s; and ¢(sy)=¢(ss).
Since s, M, the point s, cannot belong to @, so that there exists an H=
(a, B) containing s, We then have f=<s,<s, and ¢(s;))=¢(s)) €p[H], where
s, K. This contradicts the definition of the set E. It thus follows that
o(s) <op(sy), which shows ¢(x) to be increasing on K.

Supposing as above that FE 1is infinite, consider now its closure C.
Since ECQ, we have CCQ also. By hypothesis, ¢(x) is Dirichlet con-
tinuous on @. We thus distinguish two cases, according as C is connected
or not. In. the former case, C is a closed interval, so that ¢(x) is a con-
stant over C and hence over E. On the other hand, if C is nonconnected,
then ¢(x) is Dirichlet continuous on C. But ¢(x) is nondecreasing on C,
since it is increasing on E. It follows from Theorem 3 of [5] that ¢(x)
is AC on C. Then Theorem 5 of [5] requires that |o[C]|=0 and a fortior:
that |¢[£]|=0, Q. E.D.

It remains to show that | W,]|=0, where we write W,=W\E for
short. . Take any point s of W, and consider all the intervals H=(«, B)
contiguous to @, such that f<s and ¢(s)e¢p[H]. Since s does not belong-
to E\VR, we can arrange these intervals H in a sequence H,<--.--<H,,
where n=N. The last interval H,, which is uniquely determined by the
point s, will be written H,=H(s).

There corresponds, to each open interval H contiguous to @, the set
of all the points s of W, such that H(s)=H. Denoting this set by E, we
find at once that W, is the union of all the sets Ej. But there evidently
exists at most a countable infinity of the intervals H. Consequently the
relation [o[W,]|=0 will follow if we prove that |o[Ey]|=0 for every H.

Keeping an H=(a, f) fixed, let us assume, as we may for this purpose,
that the set Ej is infinite. Consider any point s of Ej, so that f<s and
further . there is a point s’ H at which ¢(s’)=¢(s). Since s M, we cannot
have ¢(B8)=¢(s). On the other hand, by hypothesis, ¢(x) is linear on the
interval [a, 8]. It thus follows that ¢(a)+ ¢(B) and that

) <p(s)<e(B) or ola)>e(s)>e(f),

according as ¢(a)<¢(B) or ¢(a)>¢(B), respectively.

- Making use of this last fact, we can prove first that o(x) is strictly
monotone on the set Ey and then that |¢[E,]|=0. The argument will be.
quite the same as in the above, where we dealt with the set E. This
completes the proof.

LEMMA 18. Let I be the closed interval spanned by a compact non-
connected set Q and let K denote generically a closed interval contiguous
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to Q. Suppose that a function ¢(x) is linear on each K, that a function
Ww(x) is continuous on I, and that o(x)=+(x) unless z=I\Q.

Given a point € of Q, 1f mo interval K has & for one of its end points
and if the function (x) is derivable at this point &, then so is also the
Sunction ¢(x) at & and we have ¢’ (§)="(&).

PROOF. We shall make use of two functions @(x) and ¥ (x) defined by

@(x):ﬂ?c;—:"g@—) and yf(x)-:i’i(%_—g’@

for every real number z#&, and by @@=V )=+’ (&) for z=& The
assertion amounts to showing that the function @(x) is continuous at x=£&.

By hypothesis, given any >0 there exists an open interval H contain-
ing the point & and such that |¥'(x)—¥(€)] <e whenever x=H. As we find
easily, this interval H can be so chosen that every closed interval K (if
existent ) contiguous to @ and intersecting H is entirely contained in H.

It is enough to show that |@(x)—®@(&)| <e for x=H. This will follow
at once, if we prove that @(x)s¥[H] for x=H. To see this, let x be any
point of H. Unless x I \Q, we have o¢(x)=+(x) by hypothesis, and in
view of £=Q this equality implies that @(x)=¥(x)=¥[H], the case x=¢§
being inclusive. We may therefore suppose that x=I\Q. Then the closed
interval K contiguous to @ and containing x, must be contained in H.
Moreover, the point & does not belong to K, since £Q and since & is
neither of the end points of K. Now, by hypothesis, the function ¢(z) is
linear on K. Hence, writing K=[a, 8], we find at once that if @(a)=0(p),
then @(x)=0(a)=¥(a)c¥[H], since a=Q. On the other hand, if we have
@(a) <D(B), the same linearity of @(x) necessitates that

VK J=[D(a), D(B)]=[¥ (), T (B)].

But this interval is contained in ¥[K], since ¥ (x) is continuous on K
together with (x). It follows that @(x) =¥ [H].

Needless to say, this last result is valid also in the case in which we
have @(a)>®(B). This completes the proof.

Given a function ¢(x) and a linear set E (which may be void), the
function ¢(x) will be called AC superposable on E, if it is expressible on
E in the form ¢(x)=GoF(x), by means of two functions F(x) and G(y)
the former of which is AC on £ and the latter AC on the set F[FE].
When this is the case, ¢(x) is necessarily continuous on F.

It appears to the author that the notion of the superposition of two
AC functions, as introduced on p. 286 of Saks [7], lacks clearness. Let us
understand this notion as follows: when he says that a function is ex-
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pressible on a closed interval as a superposition of two AC functions, this
in reality means that the function is AC superposable on this interval.
With this precise interpretation, everything goes well in reading the Saks
treatise [7].

LEMMA 19. If a function ¢(x) is AC superposable on a compact non-
connected set Q, there exists a function (x) which coincides with ¢(x) on
Q and which 1s AC superposable on the closed interval I spanned by Q.

PROOF. We can write ¢(x)=GoF(x) for x=@Q, where F(x) is AC on
@ and G(y) is AC on the set F[Q]. The assertion will be established by
choosing these two functions suitably and then writing (x)=GoF(x) for
r<eR.

We may suppose that F(x) is AC on the interval I and linear on each
closed interval contiguous to @; for otherwise we have only to replace
F(x) by its linear modification A(x) with respect to @ and to utilize The-
orem 4 of [5], according to which the function A(x) is AC on the whole
interval I.

If the set F'[Q] is singletonic, then so is also the set F'[/], since this
coincides with F[Q] in this case; and we have nothing more to prove.
We may therefore assume F[Q] to contain at least two points. Noting
that F[Q] is a compact set, let us denote by A the closed interval spanned
by F[Q]. The function F'(x) being linear on each closed interval contiguous
to Q, we find easily that F[I] coincides with A.

It may happen that F[Q]=A, in which case we have nothing more to
prove. When this does not happen, however, by replacing, if necessary,
the function G(y) by its linear modification with respect to F[Q], we may
still suppose G(y) to be AC on the whole interval A=F[I]. This com-
pletes the proof.

LEMMA 20. In order that a function ¢(x) which s continuous on a
closed interval I be AC superposable on this interval, it is mecessary and
sufficient that the set of the values assumed by the function ¢(x) at the
points of I at which ¢(x) fails to be derivable, be of measure zero (see
Saks [7], p. 289).

THEOREM 12. Let ¢(x) be a function which s continuous on o com-
pact nonconnected set Q. In order that |@[Q]|=0, it is necessary that the
Sunction @(x) be AC superposable on Q, and it is sufficient that ¢(x) be
both Dirichlet continuous and AC superposable, on Q.

PROOF. Without loss of generality we may assume that ¢(x) is linear
on each closed interval contiguous to @, so that ¢(x) is found continuous
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on the closed interval I spanned by Q.

(i) The necessity part. On account of the assumption just made,

the function ¢(x) is derivable at all points of the open set I\Q. It thus
i follows from Lemma 20 that if |¢[Q]]=0, then ¢(x) must necessarily be
AC superposable on Q.

(ii) The sufficiency part. Suppose that ¢(x) is both Dirichlet
continuous and AC superposable, on the set @. There exists, by Lemma
19, a function (z) coinciding with ¢(x) on @ and AC superposable on I.
Then +(x) is of itself continuous on I. Moreover, +(x) may plainly be
assumed to coincide with ¢(x) for the points x outside I, so that we have
o(x)=+(x) unless z=I\Q.

This being so, let us denote by D [or by 4] the set of the points of
@ at which the function ¢(x) [or (x) ] is not derivable, and by S the
subset of @ defined as follows: a point of @ belongs to S if and only if
it is an end point of some closed interval contiguous to @. We then have
Dc4US by Lemma 18. It follows that ¢[D]C¢[4]\Ve[S]=y[4]Ve[S],
since o(x)=+(x) for z=Q. Consequently |p[D]|=<|y[4][+]|¢[S]]. But both
y[4] and ¢[S] are null sets, the former fact being ensured by Lemma 20
(where we replace the letter ¢ by ) and the latter by the countability
of the set S. We therefore find that |¢[D]|=0, which combined with
Theorem 11 leads to the required relation |o[Q]|=0. This completes the
proof.
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