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0. Introduction. A Riemannian manifold (}, g) is said to be con-
formally flat, if it is locally conformally equivalent to a Euclidean space.

The study of conformally flat hypersurfaces in a conformally flat space
arose from Schouten [12], who showed that an n(=4)-dimensional hyper-
surface M in a Euclidean space is conformally flat if and only if M is
quasi-umbilic. Afterward this subject has been investigated by many
authors, for example, [3], [4], and [10]. However, Cecil and Ryan [1]
showed the counter example against [10].

Conformally flat submanifolds of codimension 2 is treated by Chen and
Yano [5]. On the other hand, Moore [8] and Moore and Morvan [9] studied
conformally flat submanifolds whose codimension is greater than 2. Espe-
cially, the latter studied the second fundamental form of such submani-
fold. And Kitagawa [7] studied the shape of such submanifolds.

The purpose of this paper is to study locally the shape of a conform-
ally flat manifold M™ (n=5) which is isometrically immersed into a
Euclidean space with parallel mean curvature vector. Then we obtain
the next theorem :

THEOREM. Let M™ (n=5) be a conformally flat manifold which is
isometrically immersed into an (n+2)-dimensional Euclidean space E™2,
Assume that the mean curvature vector is parallel and it s non-trivial
on M. Then 1f we take off points of constanl sectional curvature and a
certain subset of measure 0 from M, the rest satisfies locally one of the

Jollowing two conditions, where (x', ----, x"*?) denotes the natural coodi-
nate of E"*?:
(1) There exist a curve (x'(t), 2*(1),0, ----,0) in E*** and a C”-function

7(&) (>0) such that M is denoted by

(ml(t), 902({3), 963, ceee, X" +2)
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where
(903)2+ e +(xn+2)2:r(t)‘z .

(2) There exist a surface (x'(u,v), 2°(u,v), 2*(w,v),0, ----,0) in E*'?
and a Ce-function y(u,v) (>0) such that M is denoted by

(x'(w, v), 2*(u, v), 2*(u, v), 2, -+, 2",
where
@)+ o+ @) =7, 0)

In Section 1, the notations are explained and some properties of the
manifold M which we will seek are prepared for. Section 2 is devoted to
the study of the situation of the second fundamental form of M, which is
devided into different three cases (Theorem 2.1). In particular, M is
totally umbilic in a FEuclidean space in the case of III in Theorem 2.1.
In Section 3, we study the shape of M in the case of II in Theorem 2.1
and obtain that it becomes as the statement (1). In Section 4, we study
the shape of M in the case of I in Theorem 2.1 and obtain that it becomes
as the statement (2).

The author is grateful to Professor Y. Ogawa for his many valuable
suggestions.

1. Preliminaries. Let M be an n(=2)-dimensional connected Rieman-
nian manifold with the Riemannian metric g. Let f be an isometric
immersion of M into an (n-+p)-dimensional Euclidean space E"*?, Since
the argument is only considered in the local version, M needs not to be
distinguished from f(M). So, in order to simplify the discussion, we
identify a point ¢ in M with the point f(q) and a tangent vector X at ¢
with the tangent vector df,X.

Now, we choose an orthonormal local frame field {e, -+ -+, en, €041, * -+,
enspy ON E™*? in such a way that, restricted to M, the vectors e, ----,e,
are tangent to M, and hence the others are normal to M. With respect
to the fields of frame of E™*?, let {&', ----, """} be the dual forms. Here

and in the sequel, the following convention on the range of the indices is
adopted, unless otherwise stated :

A’B,...._—_1’....,7’/’%_}_1,....,%_{_29,
i)j}....:l,....,%,
a’ﬁ)....:n+1’....’%+p_

Then, associated to the frame field {e,}, there exist 1-forms &5 on E"*?
so that they satisfy the following structure equations on E"*?:
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(1.1) di+a2=0,

where the Einstein convention for the summation is adopted. ILet D denote
the connection on E™*?, Then we have

Dye,=a5(X)ep

for any tangent vector X on E™*?, And {@i are called connection forms

on E"*P,
Restricting {@*} and {@3} on E™'? to the submanifold A, we denote
them by «* and wi respectively, that is,

@A|M:wA)

Ol w=w3s.
It then yields
(1.2) w*=0.

Let v denote the connection of M. Then V yY is equal to the tangential
component of DY to M, where X and Y are any tangent vector fields on
M. The metric g in M induced from the standard metric in the ambient
space E"*? is given by

g= 2 0'Qa’
in other words,

g= é (0)?
Then {e, ----,e, are also the orthonormal frame field with respect to g,
and {0', ----, 0"} are the dual fields with respect to {e, ----,e,. It

follows from (1.1) and the Cartan’s lemma that

wf=h&w’,
(1.3)
h&=hy;.

The quadratic form hfie'®@e’ is called the second fundamental form of
the immersion f on M in the direction of ¢,. The second fundamental
form « of M can be written as

(1.4) a(X, Y) =10 (X)a’ (V)e,

for any tangent vectors X and Y on M.
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From the structure equations (1.1) of the ambient space the following
structure equations on the submanifold M are given:

do*+oiNw’=0,
(1.5) dob+wi N t=02%,
1

‘QZ': _?R?'khwk /\(Oh y

where ! and 2! denote the connection form and the curvature form on
the submanifold M, respectively. Moreover they yield

dw§+of N\oh=02f
(1.6) 1

‘Qg: '_"_Z—RNapkha)k /\G)h 3

where w§ defines the connection form induced in the normal bundle N(M)
of M and Q2% is called the normal curvature form of M and RY is called
the normal curvature. If 2§=0 for any «, 8, the normal connection is
said to be flat. |

Taking the exterior derivative of (1.3), we have

(1.7) (dh&— h&w®— hiof +hio§) Ao’=0.
So, we define the covariant derivative i, of h{ by
(1.8) hew?=dhf— hfwl—h§of +hios .
It turns out that (1.7) says that

f‘jka}j Nw*=0,
which is equivalent to

h%k:hﬁj .

The mean curvature vector » on the submanifold M is defined by
1 1
=y Bl )= Zihies

which is independent of the choice of the orthonormal frame field {e,}.
The mean curvature vector y is said to be parallel if Dyyn is tangent to
M for any tangent vector X on M. It is equivalent that

for all indices k and a.
For each normal vector & at x, a linear transformation A: on the
tangent space T.(M) is defined by



July 1985 Conformally Flat Submanifolds of Codimension 2 45

g(AEX) Y):g(a(X: Y); E)

for any X and YT, (M). A: is symmetric with respect to the metric g
and it is called the shape operator or the second fundamental tensor with
respect to the normal vector & In particular if £=eg, then

945X, Y)=h{0'(X)o’(Y),
where Aﬁ:Aeﬁ.

Now, a Riemannian manifold is said to be conformally flat if each
point of M has a neighborhood where there exists a conformal diffeo-
morphism onto a subset in a Euclidean space.

'~ For a conformally flat submanifold immersed into a Euclidean space,
Moore and Morvan [9] proved the following property :

LEMMA 1.1. Let M be an n-dimensional conformally flat submanifold
an E"P, If p=<4 and p=n—3, then at each point x of M there exists a
normal vector & such that

for any vectors X, Y, Z and W at x, where
BX, Y)=a(X, Y)—<X, Y)¢

and a 1s the second fundamental form of the submanifold and <, > is
the metric of E"*?, and hence of M.

DEFINITION 1.2. M is said to be quasi-umbilic in the sence of Moore
and Morvan if at each point of M there exist orthonormal normal vectors
e, (@a=n+1,----,n+p) such that the second fundamental tensor A, with
respect to each normal vector e, has only two distinct eigenvalues with
multiplicity #—1 and 1 or » and 0.

THEOREM 1.3. (Moore and Morvan [9]) Let M be an n-dimensional
submanifold in E™*?. If p=4 and p=n—3 and if M s conformally flat,
then M 1s quast-umbilic in the sence of Moore and Morvan.

We must remark that in Lemma 1.1. it is not proved for the normal
vector & to be smooth and in Theorem 1.3. it is also .not proved for
e, (a=n+1, .-+, n+p) to be smooth. For the smoothness of & Kitagawa
[7] asserted the followings:

LEMMA 1.4. (Kitagawa [7]) If the same assumption as Lemma 1.1.
1s satisfied, them there exists an open dense set M* of M on which & is
smooth.
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THEOREM 1.5. (Kitagawa [7]) Suppose D be a distribution on M*
defined by

D(Q={XeT,(M):a(X, Y)—<X, YE=0 for all Y& T (M)}.

Then D is completely integrable and its integral manifold is umbilic in
En+p.

From now on, we study M* in place of M. Lemma 1.4. implies that
the complement of M* in M is of measure 0.

2. Conformally flat submanifolds of codimension 2 with parallel
mean curvature vector in a Euclidean space.

From now on, we assume M" is isometrically immersed into (n+2)-
dimensional Euclidean space E"*’. Let 7 be the mean curvature vector
on the submanifold.

THEOREM 2.1. Let M be a conformally flat submanifold in E"**. If
the mean curvature vector n is parallel and non-trivial on M, then there
exists an open dense subset M* im M as follows :

At each point p of M*, there are o meighborhood U of p, a C
orthonormal frame field e, ----,e, and C= orthonormal mnormal wvector
fields enyy, €n10 sSuch that the commection form with respect to ey, ----, ey,
€ni1y €nra SAtiSfies ome of the following three conditions 1, II, III on U:

o= 20", wiP=10",
ol =po™ ™, onti=to" !,
I
w:+1=2wn, (l):lL+2:‘0(!)n,
where 2+ p,t+p and s=1,----, n—2.
J Wi =2w?, Wl =7r0?,
II { wn'=20", wn P =pw™,
where t#p and a=1, -+---,n—1.
J 0= 2w, Wt =r0t,
11T
1 where 1=1, -, n.

PROOF. Choose arbitrary C= orthonormal normal vector fields &,.,
8n.e. Since the codimension is 2 and the mean curvature vector 7 is
parallel and non-trivial, which implies 7/l»| is parallel, it turned out that
the unit normal vector which is orthonormal to » must be also parallel.
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This yields that the normal connection is flat. It follows from the flat-
ness of the normal connection that the second fundamental tensors of é,.,,
and &,,, are simultaneously diagonalizable. Therefore, at each point p of
M there exist a neighborhood V of p and an orthonormal C= frame
e, ++-,e, on V such that the second fundamental tensors A,,; 4A,., with
respect to é,.,, é,., are represented as follows:

Y1
- Vg
(<A‘n+1(ei)’ e]>):
Yn
Ty
~ Ty
(<An+2(ei); ej>):
T
where y;, 7; (1=1, -+ -+, n) are C”-functions on V.

Let « be the secoed fundamental form. Then,
a(ei) ej): <An+1(ei); ej>en+1+ <An+2(ei); ej>en+i

= Viaijen+l+ 751‘51‘;9“2 .
Therefore

Bles, €;)=vi0;€n11+ 70, €049— 04;€
where 8 and £ are those defined in Lemma 1.1. Clearly,
(2.1) Bles, e;)=0 if 1+#7.

Replacing the indices if necessary, we may consider

,6(61; 61)205 Tttty ﬁ(el: 8;):0 )
(2.2)

,B(el+1, €41 #0, -0+, ‘B(en; €,)# 0

at each point of V. We set r=n—I, and consider r as a function on V.
If »(q)>0 for a point g=V, then there exists a neighborhood U(C V) of ¢
where » is equal to 7(q).
For each ¢t (t=I1+1,----,n) we define a real-valued function ¢, and a
normal vector field {; by
)B(et; e)=cls,
(2.3)

&, l>=1.
From (2.2), we find '

(2.4) ¢, #0 for t=Il+1,++++,m:
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Making use of (2.3), (2.4) and Lemma 1.1., we get

<Cu: C >—‘

e, ﬁ(eu, e

for u,t=10+1, ----,n. Therefore
(2.5) & C=0 if u#t

because of (2.1). By (2.3) and (2.5), we find {, (t=I[+1, ----,n) are ortho-
normal normal vector fields.
From definition,

C — ‘B(et,' et)
‘ “,B(et; el ’
where | || denotes the norm with resrect to the metric {, >. Since g,

is a C*= unit vector field on UCV, ¢, is a C* vector field on U. By the
assumption that the codimension is 2, » (=n—1[) is at most 2.

First we consider the case when »=2 on U. Using (2.1), (2.2) and
(2.3), we get

(Bei, e))i, =t 0= . 0
' Cr-1Cn-1
Caln

where ¢,_;#0 and ¢,#0. By the definition of g in Lemma 1.1., we find
ale;, e;)=Ple;, e;) +<es, €56 .
Considering £,.1, (. as €.,y €nts, We have
W=, Lhop o,
ol =(Coo 1+ <& GD)™
o' =4, L™,
0=, L',
wpti=<, e,
i = (et <&, Cd)o",

where s=1, ---+,n—2. Therefore, we find the condition I is satisfied on
U.

Next, we study the case where =1 on U. Since {, only exists, we
define the unit normal wvector &,.; such that {,.; is orthogonal to Ca-
By (2.1), (2.2) and (2.3), we get -
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0

(Bles, €))i,j=1- = -, ,
0
nln

where ¢,#0. By definition of 3, we find

ale;, e;)=ples, €;) +<ei, e,0€ .
Considering {,-1, &, as e,.1, €n.. respectively, we have

Wi =&, L0,

O =<§, L @",

wg =<, L,

;= (e +<§, La)o"

where a=1, ----,n—1. Therefore we find the condition II is satisfied on
U.
Now, we define a subset V in V by

V={geV : r(@)=0}",
where A° denote the set of all inner points of a set 4. On V
Ble;, e;)=0.

Let e,.1, €,., be arbitrary C> orthonormal normal vector fields. Then we
get

&, ens
(Lales, €5), €ns)ijmt = - ,
. &, ens+ry
<&, enroy
(Laley, €;), €nsor) = .
. &, ensa

on V. From which it follows that the condition III is satisfied, where we
consider V as U. Q.E.D.

REMARK 2.2. In the case of III, U is totally umbilic in E"*% It is
then known that this implies that there exists a totally geodesic (n+1)-
dimensional plane L in E™*? such that U is a part of n-dimensional sphere
of L.
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REMARK. 2.3. We call pe€M a point of constant sectional curvature
if all sectional curvatures at p have the same value. When we study
the shape of U which satisfies I or II, we avoid the points of constant
sectional curvature.

3. The case of II in Theorem 2.1.

In this section we study the shape of U on which the condition II in
Theorem 2.1. is satisfied.
In this case there exist C* orthonormal normal vector fields e,.;, €,.s

and a C” orthonormal frame e, --<-,e¢, on U such that
Wi =w?, WP =rw?,
3.1)
CDZH:](U" , wz+2=pwn s
where 1,7 and p are C*-functions on U,z#p on U and a=1,----,n—1L
In this section indices A,B,---- run over the range {1,-:---,n-+2}
and a,b, ---- move from 1 to n—1. For indices a,b, ---- the Einstein’s

convention is used.

LEMMA 3.1. A point p wm M 1is of constant sectional curvature if
and only 1f =0 at p.

PROOF. Let K(X,Y) denote the sectional curvature of the plane
spanned by X, YeT,(M). Then

Kleq, €,)=212+172%,
K(e,, €)=2+7p,

which imply that if p is a point of constant sectional curvature, then z=0.
Conversely let 7=0. Let X, Y be any unit vectors which are mutually
orthogonal. If we set ‘

X= 3 X'e,,
1=1
Y= 3 Yie,,
j=t
then
S (X=1,
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S XYi=0,
i=1 '

Therefore
‘ KX, Y)=2. g Q.E.D.

Since we have assumed that U has no point of constant sectional
curvature, we may consider z#0 on U.

We set
AA= 2,0+ A,0" .
(3.2) dr=rt,0*+1,0".
do=p,0"+ p,0" .
LEMMA 3.2.
a Tn a
wi=— ,
(3.3) TP
wnt3=0,
(3.4) 2.=0, 7,=0, p,=0, 2,=0.
PROOF. We set
(3.5) wh=Aj0’+ Alw™
(3.6) witi=Cp0’ + Cra™ .

Taking the exterior derivative of the first equation o (3.1) and using (3.2),
(3.5), (3.1) and (3.6), we get

Ad(20®) = (20" + 2,0™) N 0®+ 20° N 0} F Ao™ N Abw?® ,
dwi =20 N0 — 240" N 0" +7C0° A’ +7C0° A o™ .

This implies that
ﬂb—l—TCDZO »

/211 + Z'Cn "—"’O .

Similarly taking the exterior derivative of the other equations of (3.1),
we obtain
lb—}—pcb:O 3

rb—ZCbZO 3
2008+ (r — ) AF— 2C,33=0,

Since r#p and r#0, we obtain
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An

2

Cb:(), 2,,20, fb:O, Cn:_

T

A= g Ty

T—p T—p
Therefore

a Adpt7TTh o Oa
—_ — w?® —
z(z—p) T—p

",

ZUZO » Tb:O .
On the other hand, by (3.1), we get

1
n= )\en+1+%{(n— 1)2' +‘0}en+2 s

where 7 is the mean curvature vector. The condition that the mean
curvature vector » is parallel implies

Lt {(n—D)e+p)Ca=0,
1
_Zac+%{(n_l)ftx—|—(oa} =0 »
1
1
— 2Cutrn—D)z, 40} =0.

Using the fact that
A.=0, C,=0, 7,=0,

. /2n+7v'cn:0;
we obtain
=0, C,=0, 2,=0
Therefore
T a
wi= — w?
T—p
w3 12=0,
2.=0, 7,=0, p,=—(m—1)z,. Q. E.D.
We set
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Apr=Pra®" + 020" .
‘Because of d’=0, we obtain
(37) | Tna=0, pna:O .

By (3.3), we get
—(t—ploy=1,0".

By taking the exterior derivative of the above, we get
(3.8) Tan(t—0) =70(22,— ) + (t —0)*(X+7p) -
Let 9 be the distribution on U defined by |

| Dig)={Xe T, (M) : w"(X)=0}
for each point g U. Since
do"=w* Nw;=0,

9 is completely integrable. Therefore at each point ¢ of M there exists

a local coodinate (y', ----,%"™ such that each slice y"=constant, say ¢, is
an integral manifold of 4. We denote by N(¢) this slice. Restricting
the orthonormal frame field ey, ---, €, €,41, €nes to the slice N(?),

{a}a=1...n-1 can Dbe regarded as C*= orthonormal vector fields tangent to
N(t) and e,, .41, €42 Can be also regarded as C orthonormal normal vector
fields on N(f) in E™*. Furthermore, restricting the dual frame w* and
the connection form wi to the slice N(t), we denote them by the same
notation ®°, 0%, @}, ---- as those of the submanifold M in E"*%. Then by
(3.1) and Lemma 3.2, we see

T
n a)a,
T—p

n__
Wq— y

o= 0",

(UZ+2:T(£)0',
which mean that N(¢) is totally umbilic in E"*% Hence there exists an
n-dimensional plane L(t) in E™*? such that N(¢) is a part of an (n—1)-
dimensional sphere in L(t).

We denote by X the position vector of E"** and by H the mean
curvature vector of N(t) in E"*% It is then seen that the vector field

H

X EE

where we take X an arbitrary point of N(¢), is a constant vector- in E"*?
and lies in L(t), so it is called the center of N(f). Moreover the tangent
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space of L(t) is spanned by e, ---,e,.; and And the tané;ent space

_H
1H|*
of N(t) is spanned by e, ---+,e,.,. Precisely describing, the mean curva-
ture vector H is expressed as

H= p— ent A1 t7T€n,s.
Hence
+ 22 2 _— 2
I[H“2 ( +7 )(ZT 10)
(z—p)
Since ¢+#0 and r—p+#0, we have
I1H|>0.
We set
F=z4+(2+)(z—p).
Then

“111{“2 :%;{(T_p)rne”+2(7_p)2en+l+f(f_p)zen+2}

Next we study the curve consisting of the centers of the slices. This
curve is parametrized by t. We denote by ¢é(¢) this curve.

H

LEMMA 3.3. ¢(f) is orthogonal to e, -+, e,_,, THF

PROOF. Fix an arbitrary point ¢ of M. Let é&(s) be the integral
curve of e, with the initial point ¢q. We have only to show that

H < o H >
XtygE e 88 g,
. H
is orthogonal to e, ----,e,_; and THE when X moves on &(s), because ¢(t)
is the same curve as E(S)JFTII;”—ZJ” if we do not care the difference of
c(8)

the parameter.

Let (', ----,2""") denote the natural coordinate of E"*. We set
&(s)=(8'(s), -+ -+, ¢""(s)) ,
T sy =8, =2 1)),
in E*** Then,
(C( I H > < d(c'(s)+h'(s) e d(€""*(s)+h""(s)) )
IH? ¢ ds ds
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H
A TEE

where D denotes the connection of E™*2 It is sufficient to show that

H . H
Den<X—i—ml—2> is orthogonal to e, ----,e,_; and TH

Calculating straightforwardly, we get

DenF: 2T unTat 27:7-'71(7 - P)2 =+ 2(22 + 72) (T - P) (Tn - Pn) ’
where
F=z;+ 2+ (—p).
By (3.8) we obtain

(3.9) (c—0)De,(F)=2F 2z, —p,) .

Using (3.8) and (3.9), we get

(3.10) ch—g”—ﬁ ——;—{rﬁeﬁl(r—p)rnen+1+(r,— £)TTnln o) -
Therefore

THF) (1a7)
e g =€y De
Dn(“ 1aE) =T Pl e

A+ — e,

- '2(7 —p)fnen+1

—(z—p)TTrlns1} -

(2 ) )=

<Den<X+‘||—II;|"z>: ea>:0 .

for a=1, ----,n—1. Q.E.D.

This implies

LEMMA 3.4. Let 9 be the distribution spanned by e, ----,en_{ and

‘——“5”2. Then 9 is parallel on M.

PROOF. By the straightforward computation, we obtain

_F_, _H__
(z—p)* " IH|?

Den(eb) - wg(en)ec = gj ’

Dea(eb):a)g(ea)ec'*— gj >

H ) < H ) =~
e\ —51=D, | X+—75)—D, X=—e, 9,
Y “(.”ﬁ )= D Xty )Pk = s D
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H Ta H ~ :
D)=+ T =D Q.E.D.

PROPOSITION 3.5. Let the same assumption as Theorem 2.1 be satis-
fied. Suppose the condition II in Theorem 2.1 s satisfied on U and U
has mo point of constant sectional curvature. Then the shape of U be-
comes locally as follows :

Let (x*, ----,2""?) denote the natural coordinate of E"*%. There exist
a curve (x'(t), 2%(t),0,----,0) in E™? and a C*-function y(t)>0 such that
U is represented locally by

(x'(@), 2*(t), &°, -+ - -, 2™,
where
(903)2+ . +(90n+2)2———7’(t)2 .

PROOF. Lemma 3.3 implies that the curve é(t), which consists of

the centers of the slices, is orthogonal to e, ----,¢,_; and Further-

_H
IHI*
more, Lemma 3.4 implies that the distribution ¢), which spanned by

€1, """ ,€n 1 and“T%—, is parallel on M. From these two facts, it follows

that ¢(f) must be a plane curve. Let this plane be z'z’-plane, and let
(x*(t), *(t), 0, - - - -, 0) denote the curve é&(t). On the other hand, each slice
N(t) is a part of (n—1)-dimensional sphere of an n-dimensional plane L(%)
in E"*’  Moreover the tangent space of L(t) is spanned by ej, -:-, e,

||II;I|2' Therefore each L(t) is parallel mutually since 9D is parallel

on U. Clearly the z'xz’-plane and L(t) are orthogonal. Therefore we may
take «? ---- x"*%-space to be parallel with each L(¢). Then U is represented
as the situation mentioned above. Q.E.D.

and

4. The case of I in Theorem 2.1. In this section we shall study
the shape of U on which the condition I in Theorem 2.1 is satisfied.
In this case there exist C* orthonormal normal vector fields e,.s, €40

and a C= orthonormal frame field ¢,----,e, on U such that
o= 10", wt=7rw’,

4.1) wptl=po™ ™, wrti=re" ™!,
o™= " , a)ZH:pa}n ,

where 1,7z, ¢ and p are C”-functions on U and 1+ g,t#p on U.
In this section indices A, B, ---- run over the range {1, ----,n+2} and
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s,t,-+-+ move from 1 to n—2. For indices s,t,----, the Einstein’s
convention is used.

LEMMA 4.1. A point q inm M 1is of constant sectional curvature if
and only 1f 2=0 and =0 at q.

Using the same method as Lemma 3.1, we will soon prove Lemma
4.1.
Since we have assumed that U has no point of constant sectional
curvature, we may set A#0 or t#0 on U. Now we assume z+0.
We set
AA=2;0°+ 2p_ 10"+ 20",

dr=10°+7, 0" '+r0",
dp= p;0°+ ty_10" '+ 10",
do=p;0°+ pp_10" '+ p,0" .

Using the same method getting Lemma 3.2, we obtain Lemma 4.2.

LEMMA 4.2.
s /qn—l—i_TCn»I s
Wy =—" W,
A—p
s A tTTh
n— T, N W,
@9 w0
w?bi%:cn—lwn_l— Zn wn,
T
o= —/Zn—l_&_wn_]_’_ Tn-1""Pn-1 ",
A—p T—p
(44) =0, 7,=0, ,USZO, ;0320)
(4.5) ACp—7n1=0,

where we set

wpis(en-)=Ch_y.

Now, we set
dzn—lzZn-l,twt"]_Zn-l,n—lwn_l'—*_zn—l,nwn ’

dzn:/zn,zwt—l_ Zn,n—lwn_l_}_zn.nwn ’
— — A -1
d‘n—l_fn-l,tw "}—'z'n—l,n—lw72 +Tn—1,nwn,
—_— t -
A7 =T, @ +Tp,n 10" '+ Ty ,00",

— t -1
Aptn-1= -1, @+ 1,01 @™ T 00",
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Aptn= pn, @'+ 5 1@" T+ pln n 0",

AP -1=Pn-1,,0" + 0n-1,0-10" "+ P 100",

don=Pn, 10"+ Prn-10" " 0" .
Because of d’=0, we obtain

2n—1,c:0; zn,tzoy Tn—l,::ZO, Tn,L‘ZO}
(4.7)

#n—l.t:Oy ﬂn,t:O) Pn—l,t:O; Pn‘t:()-
We set
an—l(es):Cn-l,s .

By taking the exterior derivative of (4.3), we get
(4.8) Crp-15=0,
4.9) (A= ez —p){en-1(An-1+7Cu-))}
=7(c=p)(An-1— pta-) (An-1+7C5-)
—(A—= ) (= At ) (220 +1770)
+(A— )z (c—p)(Ap+7?
+7(t—p)(An-1+7C,0)’,
(4.10) (A—p)r(c —p){en(An-1+7Cn-)}
=2(c—=0)" (2= ) (An-1F+7Cs-)
— (A= )2 +7T0) (Tn-1— Pr-1)
+@A—p)z—0) A1t 7C,)(AAn+174) ,
@.11) (=) A— fenas(ie + o2}
== ) A+t {tn-1(t—p) +7(ta-1—pn-1)}
+2%(c =) (= 2ut ptn)(An-1+7Co )
+7(z =)A= p) (A2 +770) (A1 +7Ch-))
(4.12) t(c—p)(A— p){e.(A2n +17,)}
=(A— ) (A2 +rra){valc — ) +7(za—pa);
+7(c =) (n-1—Pn-1) (An-1+7Cry)
7% — ) (A— ) (A +p7)
+ Q2+ 7T.)(A— 1)
Let 9, be the distribution on U defined by

NSR. 0.U., Vol. 36
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DQ={XET (M) : 0" (X)=0, 0" (X)=0} .

Since do" '=w"Awr ™ and do"=o"" 'Awi_;, 9, is completely integrable.
On the other hand, let 9, be the distribution on U defined by

Dy@={XET(M) : &*(X)=0 (s=1,---+,n—2)}.

(4.3) implies that 9, is completely integrable.

From above two facts it is obtained that at each point q¢ on M there
exists a local coordinate (y! ----,%") such that the slice y" '=constant,
y"=constant is an integral manifold of 9, and the slice y*=constant
(s=1,----,n—2) is an integral manifold of 4, Now, we denote by
N(u,v) the slice y" '=constant=u and y"=constant=v, and denote by S
the slice ¥*=0 (s=1,----,n—2).

Restricting the orthogonal frame field e, --- -, e,, €,,; and e,,, to the
slice N(u,v), {€s}s=1...n-2 can be regarded as C= orthogonal vector fields
tangent to N(u,v) and e,_y, €., .., €42 can be also regarded as C=-ortho-
normal normal vector fields on N(u,v) in E™*?. Furthermore, restricting
the dual frame * and the connection form % to the slice N(u,v), we
denote them by the same notation ?, ®*, w}, ---- as those of the submani-
fold M in E™**. By (4.1) and Lemma 4.2, we see

n-1 Rn—l"}_fcn—l s
Ws =T W,
A—p

n_ AhyTTTh

a)s - @ s
z(t—p)

@y =0,

w?+2='cws s

which mean that N(u,v) is totally umbilic in E™*% Hence there exists
(n—1)-dimensional plane L(u,v) in E™*? such that N(u,v) is a part of an
(n—2)-dimensional sphere in L(u,v). Let X denote the position vector of
E"*? and H denote the mean curvature vector of N(u,v) in K" It is
seen that the vector field

H

Xt mE

where we take X an arbitrary point of N(u,wv), is a constant vector in
E™*? and lies in L(u,v), so it is called the center of N(u,v). Moreover

the tangent space of L(u,v) is spanned by e, ----,e,-, and “—g“—z

LEMMA 4.3. Let 9; be the distribution spamned by e, ----,e,.o and
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H

H H
= Then Den_1<X+TH_”2—> and Den<X+“T”2> are orthogonal to D,.

PROOF. Precisely describing,

Ano1+7C,_4 A, t1Th
H= n-1
A—p (z—p)
Since z#0, t#p and 2+ y, we get

€n +23n+1+7—-en+2 .

1H{*>0.
We set
F= (/Zn—l_}_fcn—l)zrg(z “.0)2_]_ (/227,"]“7.'2'”)2(2_ #)2
LR YA ) — p)? .
Then

H 1 , \
kw:hﬁ‘,_{(z_ ﬂ)T“(T ~,0)‘(/zn—1+fcn—l)en—1

+(A— )z —p)( A+ 17,)e,
+ 22—y’ —p)enss

+(2— )’ (z —p)ensf
From (4.5), (4.9). and (4.11), we get

(4.13) (e —0)(A— ) D, F=2F{z(z — p)(Ap-1+7Cry)

+Tn-i(t—p)(A—p)
+T(Tn—1—,0n—1)('2_/1)

| 20— ) (a0}
By (4.13), (4.9) and (4.13), we get

H
(4.14) D, T

1., 2
= 7{74(7 _p)2(2n—1+’[cﬂ—l)den—1

+ A= wWrlc—p) (A2, +17,) (A1 FTT01)es
+2(A— p) 7t — 0)*(An-1+7Cr1)en 1

+ (2_ ﬂ)fa(r __,0)2(272—1—’_ z"C‘n—l)e'nﬁﬂ} .
Hence
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H

4.15 D, <X ————-)
(4.15) -\ T HE
H

=ent Dy e

= (= ) bt o)
+ (@) (A= p)e(c —p)Yen
— (= @)e(e—0) A+ 772) (o1 H7Cn e,
— 22— )7z — ) (An-1F+7Ch1)en s

— (/2 — ﬂ)fs(f Ap)g(ln—l_l’rcn—l)erud) .

(Pewel X 1) a07) ="

H _
(Do X)) =0

where s=1, ----,n—2. Therefore Den_1<X+

This implies

“11{-1”2) is orthogonal to 9.

By (4.10) and (4.12), we get
2(c—p)(A— ) D, F=2F (z,(z — p)(A— p2) + (£ — )7 (21— pr)

Therefore we get

H
Dn< SNVTE

=~ (1 ele =) s 2 Co) (2 T2 e

+ {TZ(T - P)g(lnq"f“fcn—l)z
+ (24— 1)’z —p) e
— 22— )t (c —p)(A2n+770)en 41

- (’2 - #)272(7 ""P) (/Z/zn_{"z'fn)en#z) .

4 » 2 :O b
<D n<X YVHE) THTE

(D (42 0=,

This implies

61
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where s=1, ----,n—2. Therefore Den<X+H—§IF> is orthogonal to 9,.
Q.E.D.
LEMMA 4.4. D;which is spanned by e, -+, e,-5 and THP 18 parallel
on M.
PROOF. Straightforwardly computing, we get
. r 533F H
Deset—wt(es)er+ (2_#)272(1__{))2 ”H”2 6@3:
Den_let:wi(en—l)ese-@37
Denezzwi(en)es €D, ’
A H H
petlop, (x+H) e,
SJHP T T\ TP )T ST T e
H An1t+7Chy H
D, =— —c49),.
» | HY? A—p IH? ?
H AT H
D, =" & eD,. .E.D.
|| H|? (t—p) IH|? ’ @

LEMMA 4.5. Let ¥ be a map from S to E™? defined by ¥(q)=
Xq+HTHH2 Jor q<8, where S is the slice defined by y*=0 (s=1, ---+, n—2).
q
Then U 1s an tmmersion.

PROOF. We have only to show that d¥(e,.,) and d¥(e,) are linearly
independent. Now,

dW(en_1)=Den-1<X+|l—IIjll—"">

= (W oo (2= o)

+(2+7)A— 1)’ (z —p)}en-s

— (A= (c— ) A2+ 772) An-1+7Cr1)en
— 22— 1)t — 0)*(An-1+7Cr-1)enss

— (A=) (c—0)*(An-1F7Cn-1)enss) -

0V (60) = (— (A 2 =) RysF2Co ) R H 220000

+{e(c—0)(An-1+7Ci)’
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+(XP+H(A— )t —p) e,
— A= ) (e — p)(AAn+7Tn)enss
— (21— ﬂ)zfz(f _-P) (/2/271 + TTn>en+2) .

Since 1# y, t#p and ¢#0, it is clear that d¥(e,-,) and d¥(e,) are linearly
independent. Q.E.D.

_H
| HJ®
the centers, becomes a 2-dimensional submanifold of E™*2.

Lemma 4.5 implies that W(S):{XJr . XeS|, which consists of

PROPOSITION 4.6. Let the same assumpsion as Theorem 2.1 be satis-
fied. Suppose the condition I in Theorem 2.1 is satisfied on U and U
has mo point of constant sectional curvature. Then the shape of U be-
comes as follows:

Let (x', ----, x"*% denote the natural coordinate of E™**. There exist
a surface (x'(u,v), *(u, v), 2*(u, v), 0, --- -, 0) in 'x*x*-space in E™* and a
C=-function y(u,v) (>0) such that U is locally represented by ‘

(xl(u, ’U), 962(7,{,’ 'l)), x3(u, 1)), 904, e, xn+2) ,
where
(964)2"]“ ce e +(xn+2)2:T(u; v)g ]

PROOF. The tangent space of ¥(S) is spanned by Den_1<X+”TH”2>
H

and Den<X~l—W>. On the other hand, Lemma 4.3 shows that both

Den_1<X+ )and Den<X+i> are orthogonal to e, ----,e,-» and

H
IH ] 15|

H

W’ Moreover Lemma 4.4 implies that the distribution spanned by

ilz is parallel on M. Therefore Den_1<X+i> and

ey ey s aNd T IHI?

Den(X+ >are contained in a fixed 3-dimensional space. Let this

H
I H|*
space be z'z’x’-space and let (x'(u,v), x*(u,v), 2*(u,v), 0, -+ -+, 0) represent
the surface ¥'(S). It has been shown that each slice N(u,v) is a part of
an (n—2)-dimensional sphere in L(u,v), which is an (n—1)-dimensional
plane in E™*, Since the tangent space of L(u,v) is spanned by e, -« -, €,-3,

I HI® > HY

parallel on M, each L(u,v) is parallel. Clearly the x'x’x*-space is ortho
¢ x"*-gpace to be paralle

and the distribution which is spanned by ey, - is

gonal to L(u,v). Therefore we may choose z*----
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with L{(u,v). Then U is represented as the situation mentioned above.

tion

(1]

[2]
(3]

(4]
L5]
[6]
L7]
£8]
[9]
(10]
[11]
[12]

(13]

Q.E.D.

It is easy to show that the Th-eorem' 2.1, Proposition 3.5 and Proposi-
4.6 lead the Theorem in the introduction.
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