On Conformally Flat Submanifolds of Codimension 2 with Parallel Mean Curvature Vector in a Euclidean Space

Tazuko Kitamura

Ochanomizu University, Tokyo (Received April 10, 1985)

0. Introduction. A Riemannian manifold (M, g) is said to be conformally flat, if it is locally conformally equivalent to a Euclidean space.

The study of conformally flat hypersurfaces in a conformally flat space arose from Schouten [12], who showed that an $n(\ge 4)$ -dimensional hypersurface M in a Euclidean space is conformally flat if and only if M is quasi-umbilic. Afterward this subject has been investigated by many authors, for example, [3], [4], and [10]. However, Cecil and Ryan [1] showed the counter example against [10].

Conformally flat submanifolds of codimension 2 is treated by Chen and Yano [5]. On the other hand, Moore [8] and Moore and Morvan [9] studied conformally flat submanifolds whose codimension is greater than 2. Especially, the latter studied the second fundamental form of such submanifold. And Kitagawa [7] studied the shape of such submanifolds.

The purpose of this paper is to study locally the shape of a conformally flat manifold M^n $(n \ge 5)$ which is isometrically immersed into a Euclidean space with parallel mean curvature vector. Then we obtain the next theorem:

THEOREM. Let M^n $(n \ge 5)$ be a conformally flat manifold which is isometrically immersed into an (n+2)-dimensional Euclidean space E^{n+2} . Assume that the mean curvature vector is parallel and it is non-trivial on M. Then if we take off points of constant sectional curvature and a certain subset of measure 0 from M, the rest satisfies locally one of the following two conditions, where (x^1, \dots, x^{n+2}) denotes the natural coodinate of E^{n+2} :

(1) There exist a curve $(x^1(t), x^2(t), 0, \dots, 0)$ in E^{n+2} and a C^{∞} -function $\gamma(t)$ (>0) such that M is denoted by

$$(x^{1}(t), x^{2}(t), x^{3}, \cdots, x^{n+2})$$

^{*} Present Address: Department of Mathematics, Tsukuba University.

where

$$(x^3)^2 + \cdots + (x^{n+2})^2 = \gamma(t)^2$$
.

(2) There exist a surface $(x^1(u, v), x^2(u, v), x^3(u, v), 0, \dots, 0)$ in E^{n+2} and a C^{∞} -function $\gamma(u, v)$ (>0) such that M is denoted by

$$(x^{1}(u, v), x^{2}(u, v), x^{3}(u, v), x^{4}, \cdots, x^{n+2}),$$

where

$$(x^4)^2 + \cdots + (x^{n+2})^2 = \gamma(u, v)^2$$
.

In Section 1, the notations are explained and some properties of the manifold M which we will seek are prepared for. Section 2 is devoted to the study of the situation of the second fundamental form of M, which is devided into different three cases (Theorem 2.1). In particular, M is totally umbilic in a Euclidean space in the case of III in Theorem 2.1. In Section 3, we study the shape of M in the case of II in Theorem 2.1 and obtain that it becomes as the statement (1). In Section 4, we study the shape of M in the case of I in Theorem 2.1 and obtain that it becomes as the statement (2).

The author is grateful to Professor Y. Ogawa for his many valuable suggestions.

1. Preliminaries. Let M be an $n(\geq 2)$ -dimensional connected Riemannian manifold with the Riemannian metric g. Let f be an isometric immersion of M into an (n+p)-dimensional Euclidean space E^{n+p} . Since the argument is only considered in the local version, M needs not to be distinguished from f(M). So, in order to simplify the discussion, we identify a point q in M with the point f(q) and a tangent vector X at q with the tangent vector df_qX .

Now, we choose an orthonormal local frame field $\{e_1, \dots, e_n, e_{n+1}, \dots, e_{n+p}\}$ on E^{n+p} in such a way that, restricted to M, the vectors e_1, \dots, e_n are tangent to M, and hence the others are normal to M. With respect to the fields of frame of E^{n+p} , let $\{\tilde{\omega}^1, \dots, \tilde{\omega}^{n+p}\}$ be the dual forms. Here and in the sequel, the following convention on the range of the indices is adopted, unless otherwise stated:

$$A, B, \dots = 1, \dots, n, n+1, \dots, n+p,$$
 $i, j, \dots = 1, \dots, n,$
 $\alpha, \beta, \dots = n+1, \dots, n+p.$

Then, associated to the frame field $\{e_A\}$, there exist 1-forms $\tilde{\omega}_B^A$ on E^{n+p} so that they satisfy the following structure equations on E^{n+p} :

$$\begin{split} d\tilde{\omega}^{A} + \tilde{\omega}^{A}_{B} \wedge \tilde{\omega}^{B} &= 0 \; , \\ \tilde{\omega}^{A}_{B} + \tilde{\omega}^{B}_{A} &= 0 \; , \\ d\tilde{\omega}^{A}_{B} + \tilde{\omega}^{C}_{C} \wedge \tilde{\omega}^{C}_{B} &= 0 \; , \end{split}$$

where the Einstein convention for the summation is adopted. Let D denote the connection on E^{n+p} . Then we have

$$D_X e_A = \tilde{\omega}_A^B(X) e_B$$

for any tangent vector X on E^{n+p} . And $\{\tilde{\omega}_B^A\}$ are called *connection forms* on E^{n+p} .

Restricting $\{\tilde{\omega}^A\}$ and $\{\tilde{\omega}_B^A\}$ on E^{n+p} to the submanifold M, we denote them by ω^A and ω_B^A respectively, that is,

$$\tilde{\omega}^A|_M = \omega^A$$
,

$$\tilde{\omega}_B^A|_M = \omega_B^A$$
.

It then yields

$$\omega^{\alpha} = 0.$$

Let ∇ denote the connection of M. Then $\nabla_X Y$ is equal to the tangential component of $D_X Y$ to M, where X and Y are any tangent vector fields on M. The metric g in M induced from the standard metric in the ambient space E^{n+p} is given by

$$g = \sum_{i=1}^{n} \omega^{i} \otimes \omega^{i}$$

in other words,

$$g = \sum_{i=1}^n (\omega^i)^2$$
.

Then $\{e_1, \dots, e_n\}$ are also the orthonormal frame field with respect to g, and $\{\omega^1, \dots, \omega^n\}$ are the dual fields with respect to $\{e_1, \dots, e_n\}$. It follows from (1.1) and the Cartan's lemma that

(1.3)
$$\omega_i^{\alpha} = h_{ij}^{\alpha} \omega^j,$$

$$h_{ij}^{\alpha} = h_{ij}^{\alpha}.$$

The quadratic form $h_{ij}^{\alpha}\omega^{i}\otimes\omega^{j}$ is called the second fundamental form of the immersion f on M in the direction of e_{α} . The second fundamental form α of M can be written as

(1.4)
$$\alpha(X, Y) = h_{ij}^{\beta} \omega^{i}(X) \omega^{j}(Y) e_{\beta}$$

for any tangent vectors X and Y on M.

From the structure equations (1.1) of the ambient space the following structure equations on the submanifold M are given:

$$d\omega^{i} + \omega^{i}_{j} \wedge \omega^{j} = 0 ,$$

$$d\omega^{i}_{j} + \omega^{i}_{k} \wedge \omega^{k}_{j} = \Omega^{i}_{j} ,$$

$$\Omega^{i}_{j} = -\frac{1}{2} R^{i}_{jkh} \omega^{k} \wedge \omega^{h} ,$$

where ω_j^i and Ω_j^i denote the connection form and the curvature form on the submanifold M, respectively. Moreover they yield

$$d\omega_{\beta}^{\alpha} + \omega_{7}^{\alpha} \wedge \omega_{\beta}^{r} = \Omega_{\beta}^{\alpha}$$

$$\Omega_{\beta}^{\alpha} = -\frac{1}{2} R^{N_{\alpha}}{}_{\beta kh} \omega^{k} \wedge \omega^{h},$$

where ω_{β}^{α} defines the connection form induced in the normal bundle N(M) of M and Ω_{β}^{α} is called the *normal curvature form* of M and R^{N} is called the *normal curvature*. If $\Omega_{\beta}^{\alpha}=0$ for any α,β , the normal connection is said to be flat.

Taking the exterior derivative of (1.3), we have

$$(1.7) \qquad (dh_{ij}^{\alpha} - h_{ik}^{\alpha}\omega_j^k - h_{kj}^{\alpha}\omega_i^k + h_{ij}^{\beta}\omega_\beta^{\alpha}) \wedge \omega^j = 0.$$

So, we define the covariant derivative h_{ijk}^{α} of h_{ij}^{α} by

$$(1.8) h_{ijk}^{\alpha}\omega^{k} = dh_{ij}^{\alpha} - h_{ik}^{\alpha}\omega_{j}^{k} - h_{kj}^{\alpha}\omega_{i}^{k} + h_{ij}^{\beta}\omega_{\beta}^{\alpha}.$$

It turns out that (1.7) says that

$$h_{ijk}^{\alpha}\omega^{j}\wedge\omega^{k}=0$$

which is equivalent to

$$h_{iik}^{\alpha} = h_{iki}^{\alpha}$$
.

The mean curvature vector η on the submanifold M is defined by

$$\eta\!=\!rac{1}{n}\sum_i lpha(e_i,e_i)\!=\!rac{1}{n}\sum_i h_{ii}^eta e_eta$$
 ,

which is independent of the choice of the orthonormal frame field $\{e_i\}$. The mean curvature vector η is said to be *parallel* if $D_X\eta$ is tangent to M for any tangent vector X on M. It is equivalent that

$$\sum_{i} h_{iik}^{\alpha} = 0$$

for all indices k and α .

For each normal vector ξ at x, a linear transformation A_{ξ} on the tangent space $T_x(M)$ is defined by

$$g(A_{\xi}X, Y) = g(\alpha(X, Y), \xi)$$

for any X and $Y \in T_x(M)$. A_{ξ} is symmetric with respect to the metric g and it is called the *shape operator* or the *second fundamental tensor* with respect to the normal vector ξ . In particular if $\xi = e_{\beta}$, then

$$g(A_{\beta}X, Y) = h_{ij}^{\beta}\omega^{i}(X)\omega^{j}(Y)$$
,

where $A_{\beta} = A_{e_{\beta}}$.

Now, a Riemannian manifold is said to be conformally flat if each point of M has a neighborhood where there exists a conformal diffeomorphism onto a subset in a Euclidean space.

For a conformally flat submanifold immersed into a Euclidean space, Moore and Morvan [9] proved the following property:

LEMMA 1.1. Let M be an n-dimensional conformally flat submanifold in E^{n+p} . If $p \le 4$ and $p \le n-3$, then at each point x of M there exists a normal vector ξ such that

$$\langle \beta(X, Y), \beta(Z, W) \rangle = \langle \beta(X, W), \beta(Z, Y) \rangle$$

for any vectors X, Y, Z and W at x, where

$$\beta(X, Y) = \alpha(X, Y) - \langle X, Y \rangle \xi$$

and α is the second fundamental form of the submanifold and \langle , \rangle is the metric of E^{n+p} , and hence of M.

DEFINITION 1.2. M is said to be quasi-umbilic in the sence of Moore and Morvan if at each point of M there exist orthonormal normal vectors e_{α} $(\alpha=n+1,\cdots,n+p)$ such that the second fundamental tensor A_{α} with respect to each normal vector e_{α} has only two distinct eigenvalues with multiplicity n-1 and 1 or n and 0.

THEOREM 1.3. (Moore and Morvan [9]) Let M be an n-dimensional submanifold in E^{n+p} . If $p \le 4$ and $p \le n-3$ and if M is conformally flat, then M is quasi-umbilic in the sence of Moore and Morvan.

We must remark that in Lemma 1.1. it is not proved for the normal vector ξ to be smooth and in Theorem 1.3. it is also not proved for e_{α} ($\alpha = n+1, \dots, n+p$) to be smooth. For the smoothness of ξ Kitagawa [7] asserted the followings:

LEMMA 1.4. (Kitagawa [7]) If the same assumption as Lemma 1.1. is satisfied, then there exists an open dense set M^* of M on which ξ is smooth.

THEOREM 1.5. (Kitagawa [7]) Suppose \mathcal{D} be a distribution on M^* defined by

$$\mathcal{Q}(q) = \{X \in T_q(M) : \alpha(X, Y) - \langle X, Y \rangle \xi = 0 \text{ for all } Y \in T_q(M)\}.$$

Then \mathcal{D} is completely integrable and its integral manifold is umbilic in E^{n+p} .

From now on, we study M^* in place of M. Lemma 1.4. implies that the complement of M^* in M is of measure 0.

2. Conformally flat submanifolds of codimension 2 with parallel mean curvature vector in a Euclidean space.

From now on, we assume M^n is isometrically immersed into (n+2)-dimensional Euclidean space E^{n+2} . Let η be the mean curvature vector on the submanifold.

THEOREM 2.1. Let M be a conformally flat submanifold in E^{n+2} . If the mean curvature vector η is parallel and non-trivial on M, then there exists an open dense subset M^* in M as follows:

At each point p of M^* , there are a neighborhood U of p, a C^{∞} orthonormal frame field e_1, \dots, e_n and C^{∞} orthonormal normal vector fields e_{n+1}, e_{n+2} such that the connection form with respect to e_1, \dots, e_n , e_{n+1}, e_{n+2} satisfies one of the following three conditions I, II, III on U:

$$I \begin{cases} \omega_{s}^{n+1} = \lambda \omega^{s}, & \omega_{s}^{n+2} = \tau \omega^{s}, \\ \omega_{n-1}^{n+1} = \mu \omega^{n-1}, & \omega_{n-1}^{n+1} = \tau \omega^{n-1}, \\ \omega_{n}^{n+1} = \lambda \omega^{n}, & \omega_{n}^{n+2} = \rho \omega^{n}, \\ where & \lambda \neq \mu, \tau \neq \rho \ and \ s = 1, \cdots, n-2. \end{cases}$$

$$II \begin{cases} \omega_{a}^{n+1} = \lambda \omega^{a}, & \omega_{a}^{n+2} = \tau \omega^{a}, \\ \omega_{n}^{n+1} = \lambda \omega^{n}, & \omega_{n}^{n+2} = \rho \omega^{n}, \\ where & \tau \neq \rho \ and \ a = 1, \cdots, n-1. \end{cases}$$

$$III \begin{cases} \omega_{i}^{n+1} = \lambda \omega^{i}, & \omega_{i}^{n+2} = \tau \omega^{i}, \\ where & i = 1, \cdots, n. \end{cases}$$

PROOF. Choose arbitrary C^{∞} orthonormal normal vector fields \tilde{e}_{n+1} , \tilde{e}_{n+2} . Since the codimension is 2 and the mean curvature vector η is parallel and non-trivial, which implies $\eta/\|\eta\|$ is parallel, it turned out that the unit normal vector which is orthonormal to η must be also parallel.

This yields that the normal connection is flat. It follows from the flatness of the normal connection that the second fundamental tensors of \tilde{e}_{n+1} and \tilde{e}_{n+2} are simultaneously diagonalizable. Therefore, at each point p of M there exist a neighborhood V of p and an orthonormal C^{∞} frame e_1, \dots, e_n on V such that the second fundamental tensors \tilde{A}_{n+1} , \tilde{A}_{n+2} with respect to \tilde{e}_{n+1} , \tilde{e}_{n+2} are represented as follows:

$$(\langle ilde{A}_{n+1}(e_i), e_j
angle) = \left(egin{array}{c}
u_1 \\

u_2 \\
\ddots \\

u_n
\end{array}
ight)$$

where ν_i, π_i $(i=1, \dots, n)$ are C^{∞} -functions on V. Let α be the second fundamental form. Then,

$$lpha(e_i,e_j) = \langle \tilde{A}_{n+1}(e_i),e_j \rangle e_{n+1} + \langle \tilde{A}_{n+2}(e_i),e_j \rangle e_{n+2}$$

$$= \nu_i \delta_{ij} e_{n+1} + \pi_i \delta_{ij} e_{n+2}.$$

Therefore

$$\beta(e_i, e_j) = \nu_i \delta_{ij} e_{n+1} + \pi_i \delta_{ij} e_{n+2} - \delta_{ij} \xi$$

where β and ξ are those defined in Lemma 1.1. Clearly,

(2.1)
$$\beta(e_i, e_j) = 0 \quad \text{if } i \neq j.$$

Replacing the indices if necessary, we may consider

(2.2)
$$\beta(e_{1}, e_{1}) = 0, \dots, \beta(e_{l}, e_{l}) = 0,$$

$$\beta(e_{l+1}, e_{l+1}) \neq 0, \dots, \beta(e_{n}, e_{n}) \neq 0$$

at each point of V. We set r=n-l, and consider r as a function on V. If r(q)>0 for a point $q \in V$, then there exists a neighborhood $U(\subset V)$ of q where r is equal to r(q).

For each t $(t=l+1, \dots, n)$ we define a real-valued function c_t and a normal vector field ζ_t by

$$\beta(e_t,e_t)\!=\!c_t\zeta_t\;,$$
 (2.3)
$$\langle\zeta_t,\zeta_t\rangle\!=\!1\;.$$

From (2.2), we find

(2.4)
$$c_t \neq 0 \text{ for } t = l+1, \dots, n$$
:

Making use of (2.3), (2.4) and Lemma 1.1., we get

$$\langle \zeta_u, \zeta_t
angle = rac{1}{c_u c_t} \langle eta(e_u, e_t), eta(e_u, e_t)
angle$$

for $u, t=l+1, \dots, n$. Therefore

$$\langle \zeta_u, \zeta_t \rangle = 0 \quad \text{if} \quad u \neq t$$

because of (2.1). By (2.3) and (2.5), we find ζ_t ($t=l+1, \dots, n$) are orthonormal normal vector fields.

From definition,

$$\zeta_t = \frac{\beta(e_t, e_t)}{\|\beta(e_t, e_t)\|},$$

where $\|$ $\|$ denotes the norm with respect to the metric \langle , \rangle . Since e_t is a C^{∞} unit vector field on $U \subset V$, ζ_t is a C^{∞} vector field on U. By the assumption that the codimension is 2, r = (n-1) is at most 2.

First we consider the case when r=2 on U. Using (2.1), (2.2) and (2.3), we get

$$(eta(e_i,e_j))_{i,j=1,\cdots,n} = \left(egin{array}{ccc} 0 & & & & & \ & 0 & & & & \ & & c_{n-1}\zeta_{n-1} & & \ & & & c_n\zeta_n \end{array}
ight)$$

where $c_{n-1} \neq 0$ and $c_n \neq 0$. By the definition of β in Lemma 1.1., we find

$$\alpha(e_i, e_j) = \beta(e_i, e_j) + \langle e_i, e_j \rangle \xi$$
.

Considering ζ_{n-1} , ζ_n as e_{n+1} , e_{n+2} , we have

$$egin{aligned} \omega_s^{n+1} &= \langle \xi, \zeta_{n-1}
angle \omega^s \;, \ &\omega_{n-1}^{n+1} &= (c_{n-1} + \langle \xi, \zeta_{n-1}
angle) \omega^{n-1} \;, \ &\omega_n^{n+1} &= \langle \xi, \zeta_{n-1}
angle \omega^n \;, \ &\omega_s^{n+2} &= \langle \xi, \zeta_n
angle \omega^s \;, \ &\omega_{n-1}^{n+1} &= \langle \xi, \zeta_n
angle \omega^{n-1} \;, \ &\omega_n^{n+2} &= (c_n + \langle \xi, \zeta_n
angle) \omega^n \;. \end{aligned}$$

where $s=1, \dots, n-2$. Therefore, we find the condition I is satisfied on U.

Next, we study the case where r=1 on U. Since ζ_n only exists, we define the unit normal vector ζ_{n-1} such that ζ_{n-1} is orthogonal to ζ_n . By (2.1), (2.2) and (2.3), we get

$$(eta(e_i,e_j))_{i,\,j=1\cdots,n} = \left(egin{array}{ccc} 0 & & & & & \\ & \ddots & & & & \\ & & & 0 & & \\ & & & c_n\zeta_n \end{array}
ight),$$

where $c_n \neq 0$. By definition of β , we find

$$\alpha(e_i, e_j) = \beta(e_i, e_j) + \langle e_i, e_j \rangle \xi$$
.

Considering ζ_{n-1} , ζ_n as e_{n+1} , e_{n+2} respectively, we have

$$egin{align} oldsymbol{\omega}_n^{n+1} &= \langle \xi, \zeta_{n-1}
angle oldsymbol{\omega}^a \;, \ oldsymbol{\omega}_n^{n+1} &= \langle \xi, \zeta_{n-1}
angle oldsymbol{\omega}^n \;, \ oldsymbol{\omega}_n^{n+2} &= \langle \xi, \zeta_n
angle oldsymbol{\omega}^a \;, \ oldsymbol{\omega}_n^{n+2} &= (c_n + \langle \xi, \zeta_n
angle) oldsymbol{\omega}^n \;, \end{aligned}$$

where $a=1, \dots, n-1$. Therefore we find the condition II is satisfied on U.

Now, we define a subset \tilde{V} in V by

$$\tilde{V} = \{q \in V : r(q) = 0\}^o$$
,

where A^o denote the set of all inner points of a set A. On $ilde{V}$

$$\beta(e_i, e_j) = 0$$
.

Let e_{n+1} , e_{n+2} be arbitrary C^{∞} orthonormal normal vector fields. Then we get

on \tilde{V} . From which it follows that the condition III is satisfied, where we consider \tilde{V} as U. Q. E. D.

REMARK 2.2. In the case of III, U is totally umbilic in E^{n+2} . It is then known that this implies that there exists a totally geodesic (n+1)-dimensional plane L in E^{n+2} such that U is a part of n-dimensional sphere of L.

REMARK. 2.3. We call $p \in M$ a point of constant sectional curvature if all sectional curvatures at p have the same value. When we study the shape of U which satisfies I or II, we avoid the points of constant sectional curvature.

3. The case of II in Theorem 2.1.

In this section we study the shape of U on which the condition II in Theorem 2.1. is satisfied.

In this case there exist C^{∞} orthonormal normal vector fields e_{n+1} , e_{n+2} and a C^{∞} orthonormal frame e_1, \dots, e_n on U such that

$$\omega_a^{n+1} = \lambda \omega^a , \qquad \omega_a^{n+2} = \tau \omega^a ,$$

$$(3.1)$$

$$\omega_n^{n+1} = \lambda \omega^n , \qquad \omega_n^{n+2} = \rho \omega^n ,$$

where λ, τ and ρ are C^{∞} -functions on $U, \tau \neq \rho$ on U and $\alpha = 1, \dots, n-1$.

In this section indices A, B, \cdots run over the range $\{1, \cdots, n+2\}$ and a, b, \cdots move from 1 to n-1. For indices a, b, \cdots the Einstein's convention is used.

LEMMA 3.1. A point p in M is of constant sectional curvature if and only if $\tau = 0$ at p.

PROOF. Let K(X,Y) denote the sectional curvature of the plane spanned by $X,\,Y\!\in T_p(M).$ Then

$$K(e_a, e_b) = \lambda^2 + \tau^2$$
,
 $K(e_a, e_a) = \lambda^2 + \tau \rho$.

which imply that if p is a point of constant sectional curvature, then $\tau=0$. Conversely let $\tau=0$. Let X, Y be any unit vectors which are mutually orthogonal. If we set

$$X=\sum\limits_{i=1}^{n}X^{i}e_{i}$$
 ,

$$Y=\sum\limits_{j=1}^{n}\,Y^{j}e_{j}$$
 ,

then

$$\sum_{i=1}^{n} (X^{i})^{2} = 1$$
 ,

$$\sum_{j=1}^{n} (Y^{j})^{2} = 1$$
 ,

$$\sum_{i=1}^n X^i Y^i = 0$$
,

Therefore

$$K(X, Y) = \lambda^2$$
.

Q. E. D.

Since we have assumed that U has no point of constant sectional curvature, we may consider $\tau \neq 0$ on U.

We set

$$d\lambda = \lambda_a \omega^a + \lambda_n \omega^n$$
.

$$(3.2) d\tau = \tau_a \omega^a + \tau_n \omega^n \, ,$$

$$d\rho = \rho_a \omega^a + \rho_n \omega^n$$
.

LEMMA 3.2.

$$\omega_n^a = -\frac{\tau_n}{\tau - \rho} \omega^a ,$$

$$\omega_{n+2}^{n+1}=0$$
,

$$\lambda_a = 0 , \quad \tau_a = 0 , \quad \rho_a = 0 , \quad \lambda_n = 0 .$$

PROOF. We set

$$\omega_n^a = A_b^a \omega^b + A_n^a \omega^n,$$

$$\omega_{n+2}^{n+1} = C_b \omega^b + C_n \omega^n.$$

Taking the exterior derivative of the first equation o (3.1) and using (3.2), (3.5), (3.1) and (3.6), we get

$$d(\lambda\omega^a) = (\lambda_b\omega^b + \lambda_n\omega^n) \wedge \omega^a + \lambda\omega^b \wedge \omega_b^a + \lambda\omega^n \wedge A_b^a\omega^b$$
,
 $d\omega_a^{n+1} = \lambda\omega^b \wedge \omega_b^a - \lambda A_b^a\omega^b \wedge \omega^n + \tau C_b\omega^a \wedge \omega^b + \tau C_n\omega^a \wedge \omega^n$.

This implies that

$$\lambda_b + \tau C_b = 0$$
,

$$\lambda_n + \tau C_n = 0.$$

Similarly taking the exterior derivative of the other equations of (3.1), we obtain

$$egin{align} &\lambda_b\!+\!
ho C_b\!=\!0 \;, \ & au_b\!-\!\lambda C_b\!=\!0 \;, \ & au_n\delta^a_b\!+\!(au\!-\!
ho)A^a_b\!-\!\lambda C_n\delta^a_b\!=\!0 \;, \ & au_b\!+\!(
ho\!-\! au)A^b_n\!+\!
ho C_b\!=\!0 \;. \end{split}$$

Since $\tau \neq \rho$ and $\tau \neq 0$, we obtain

$$C_b=0$$
 , $\lambda_b=0$, $au_b=0$, $C_n=-rac{\lambda_n}{ au}$, $A_n^b=-rac{
ho_b}{ au-
ho}$, $A_b^a=rac{\lambda C_n- au_n}{ au-
ho}\delta_b^a$.

Therefore

$$egin{aligned} \omega_n^a &= -rac{\lambda \lambda_n + au au_n}{ au(au -
ho)} \omega^a - rac{
ho_a}{ au -
ho} \omega^n \ , \ \ \omega_{n+2}^{n+1} &= -rac{\lambda_n}{ au} \omega^n \ , \ \ \lambda_b &= 0 \ , \qquad au_b = 0 \ . \end{aligned}$$

On the other hand, by (3.1), we get

$$\eta = \lambda e_{n+1} + \frac{1}{n} \{ (n-1)\tau + \rho \} e_{n+2} ,$$

where η is the mean curvature vector. The condition that the mean curvature vector η is parallel implies

$$\begin{split} &\lambda_a + \frac{1}{n} \{ (n-1)\tau + \rho \} C_a = 0 \; , \\ &- \lambda_a C + \frac{1}{n} \{ (n-1)\tau_a + \rho_a \} = 0 \; , \\ &\lambda_n + \frac{1}{n} \{ (n-1)\tau + \rho \} C_n = 0 \; , \\ &- \lambda C_n + \frac{1}{n} \{ (n-1)\tau_n + \rho_n \} = 0 \; . \end{split}$$

Using the fact that

$$\lambda_a\!=\!0$$
 , $C_a\!=\!0$, $au_a\!=\!0$, $\lambda_n\!+\! au C_n\!=\!0$,

we obtain

$$\rho_a = 0$$
 , $C_n = 0$, $\lambda_n = 0$.

Therefore

$$\begin{split} &\omega_n^a = -\frac{\tau}{\tau-\rho}\omega^a\;,\\ &\omega_{n+2}^{n+1} = 0\;,\\ &\lambda_a = 0\;,\quad \tau_a = 0\;,\quad \rho_n = -(n-1)\tau_n\;. \end{split}$$
 Q. E. D.

We set

$$d\tau_n = \tau_{nn}\omega^n + \tau_{nn}\omega^n$$
.

$$d\rho_n = \rho_{na}\omega^a + \rho_{nn}\omega^n$$
.

Because of $d^2=0$, we obtain

$$\tau_{na}=0, \qquad \rho_{na}=0.$$

By (3.3), we get

$$-(\tau-\rho)\omega_n^a=\tau_n\omega^a$$
.

By taking the exterior derivative of the above, we get

(3.8)
$$\tau_{nn}(\tau - \rho) = \tau_{n}(2\tau_{n} - \rho_{n}) + (\tau - \rho)^{2}(\lambda^{2} + \tau \rho).$$

Let \mathcal{D} be the distribution on U defined by

$$\mathcal{Q}(q) = \{ X \in T_q(M) : \omega^n(X) = 0 \}$$

for each point $q \in U$. Since

$$d\omega^n = \omega^a \wedge \omega_a^n = 0$$
,

 \mathcal{D} is completely integrable. Therefore at each point q of M there exists a local coordinate (y^1, \dots, y^n) such that each slice $y^n = \text{constant}$, say t, is an integral manifold of \mathcal{D} . We denote by N(t) this slice. Restricting the orthonormal frame field $e_1, \dots, e_n, e_{n+1}, e_{n+2}$ to the slice N(t), $\{e_a\}_{a=1,\dots,n-1}$ can be regarded as C^{∞} orthonormal vector fields tangent to N(t) and e_n, e_{n+1}, e_{n+2} can be also regarded as C^{∞} orthonormal normal vector fields on N(t) in E^{n+1} . Furthermore, restricting the dual frame ω^A and the connection form ω_B^A to the slice N(t), we denote them by the same notation $\omega^i, \omega^\alpha, \omega^i_j, \cdots$ as those of the submanifold M in E^{n+2} . Then by (3.1) and Lemma 3.2, we see

$$\omega_a^n = \frac{\tau_n}{\tau - \rho} \omega^a$$
, $\omega_a^{n+1} = \lambda \omega^a$, $\omega_a^{n+2} = \tau \omega^a$,

which mean that N(t) is totally umbilic in E^{n+2} . Hence there exists an n-dimensional plane L(t) in E^{n+2} such that N(t) is a part of an (n-1)-dimensional sphere in L(t).

We denote by X the position vector of E^{n+2} and by H the mean curvature vector of N(t) in E^{n+2} . It is then seen that the vector field

$$X+rac{H}{\|H\|^2}$$
 ,

where we take X an arbitrary point of N(t), is a constant vector in E^{n+2} and lies in L(t), so it is called the *center* of N(t). Moreover the tangent

space of L(t) is spanned by e_1, \dots, e_{n-1} and $\frac{H}{\|H\|^2}$. And the tangent space of N(t) is spanned by e_1, \dots, e_{n-1} . Precisely describing, the mean curvature vector H is expressed as

$$H = \frac{\tau_n}{\tau - \rho} e_n + \lambda e_{n+1} + \tau e_{n+2}.$$

Hence

$$||H||^2 = \frac{\tau_n^2 + (\lambda^2 + \tau^2)(\tau - \rho)^2}{(\tau - \rho)^2}.$$

Since $\tau \neq 0$ and $\tau - \rho \neq 0$, we have

$$||H|| > 0$$
.

We set

$$F = \tau_n^2 + (\lambda^2 + \tau^2)(\tau - \rho)^2$$
.

Then

$$\frac{H}{\|H\|^2} = \frac{1}{F} \{ (\tau - \rho) \tau_n e_n + \lambda (\tau - \rho)^2 e_{n+1} + \tau (\tau - \rho)^2 e_{n+2} \}$$

Next we study the curve consisting of the centers of the slices. This curve is parametrized by t. We denote by $\bar{c}(t)$ this curve.

LEMMA 3.3. $\bar{c}(t)$ is orthogonal to $e_1, \dots, e_{n-1}, \frac{H}{\|H\|^2}$.

PROOF. Fix an arbitrary point q of M. Let $\tilde{c}(s)$ be the integral curve of e_n with the initial point q. We have only to show that

$$X + \frac{H}{\|H\|^2}$$
 (i. e. $\tilde{c}(s) + \frac{H}{\|H\|^2}\Big|_{\tilde{c}(s)}$)

is orthogonal to e_1, \dots, e_{n-1} and $\frac{H}{\|H\|^2}$ when X moves on $\tilde{c}(s)$, because $\bar{c}(t)$

is the same curve as $\tilde{c}(s) + \frac{H}{\|H\|^2}\Big|_{\tilde{c}(s)}$ if we do not care the difference of the parameter.

Let (x^1, \dots, x^{n+2}) denote the natural coordinate of E^{n+2} . We set

$$\widetilde{c}(s) = (\widetilde{c}^1(s), \cdots, \widetilde{c}^{n+2}(s))$$
,

$$\frac{H}{\|H\|^2}\Big|_{\tilde{c}(s)} = (h^1(s), \cdots, h^{n+2}(s)),$$

in E^{n+2} . Then,

$$\frac{d}{ds}\left(\widetilde{c}(s)+\frac{H}{\|H\|^2}\Big|_{\widetilde{c}(s)}\right)=\left(\frac{d(\widetilde{c}^1(s)+h^1(s))}{ds},\cdots,\frac{d(\widetilde{c}^{n+2}(s)+h^{n+2}(s))}{ds}\right)$$

$$=D_{e_n}\left(X+rac{H}{\|H\|^2}
ight)$$
 ,

where D denotes the connection of E^{n+2} . It is sufficient to show that $D_{e_n}\left(X+\frac{H}{\|H\|^2}\right)$ is orthogonal to e_1, \dots, e_{n-1} and $\frac{H}{\|H\|^2}$.

Calculating straightforwardly, we get

$$D_{e_n}F = 2\tau_{nn}\tau_n + 2\tau\tau_n(\tau - \rho)^2 + 2(\lambda^2 + \tau^2)(\tau - \rho)(\tau_n - \rho_n)$$

where

$$F = \tau_x^2 + (\lambda^2 + \tau^2)(\tau - \rho)^2$$
.

By (3.8) we obtain

(3.9)
$$(\tau - \rho) D_{e_n}(F) = 2F(2\tau_n - \rho_n) .$$

Using (3.8) and (3.9), we get

(3.10)
$$D_{c_n} \frac{H}{\|H\|^2} = -\frac{1}{F} \{ \tau_n^2 e_n + \lambda (\tau - \rho) \tau_n e_{n+1} + (\tau - \rho) \tau \tau_n e_{n+2} \}.$$

Therefore

$$\begin{split} D_{e_n}\!\!\left(X\!+\!\frac{H}{\|H\|^2}\right) &\!=\! e_n\!+\!D_{e_n}\!\!\left(\frac{H}{\|H\|^2}\right) \\ &\!=\!\frac{1}{F}\{(\lambda^2\!+\!\tau^2)(\tau\!-\!\rho)^2e_n \\ &\!-\!\lambda(\tau\!-\!\rho)\tau_ne_{n+1} \\ &\!-\!(\tau\!-\!\rho)\tau\tau_ne_{n+1}\}\,. \end{split}$$

This implies

$$\left\langle D_{e_n}\left(X + \frac{H}{\|H\|^2}\right), \frac{H}{\|H\|^2} \right\rangle = 0$$
, $\left\langle D_{e_n}\left(X + \frac{H}{\|H\|^2}\right), e_a \right\rangle = 0$.

for $a=1, \dots, n-1$.

Q. E. D.

LEMMA 3.4. Let $\widetilde{\mathcal{D}}$ be the distribution spanned by e_1, \dots, e_{n-1} and $\frac{H}{\|H\|^2}$. Then $\widetilde{\mathcal{D}}$ is parallel on M.

PROOF. By the straightforward computation, we obtain

$$\begin{split} &D_{e_a}(e_b) = \omega_b^c(e_a)e_c + \frac{F}{(\tau - \rho)^2} \delta_{ab} \frac{H}{\|H\|^2} \in \widetilde{\mathcal{D}} \ , \\ &D_{e_n}(e_b) = \omega_b^c(e_n)e_c \in \widetilde{\mathcal{D}} \ , \\ &D_{e_a} \left(\frac{H}{\|H\|^2}\right) = D_{e_a} \left(X + \frac{H}{\|H\|^2}\right) - D_{e_a} X = -e_a \in \widetilde{\mathcal{D}} \ , \end{split}$$

$$D_{e_n}\!\!\left(\frac{H}{\|H\|^2}\right) = -\frac{\tau_n}{\tau - \rho} \, \frac{H}{\|H\|^2} \in \widetilde{\mathcal{D}} \; . \tag{Q. E. D.}$$

PROPOSITION 3.5. Let the same assumption as Theorem 2.1 be satisfied. Suppose the condition II in Theorem 2.1 is satisfied on U and U has no point of constant sectional curvature. Then the shape of U becomes locally as follows:

Let (x^1, \dots, x^{n+2}) denote the natural coordinate of E^{n+2} . There exist a curve $(x^1(t), x^2(t), 0, \dots, 0)$ in E^{n+2} and a C^{∞} -function $\gamma(t) > 0$ such that U is represented locally by

$$(x^{1}(t), x^{2}(t), x^{3}, \cdots, x^{n+2})$$
,

where

$$(x^3)^2 + \cdots + (x^{n+2})^2 = \gamma(t)^2$$
.

PROOF. Lemma 3.3 implies that the curve $\bar{c}(t)$, which consists of the centers of the slices, is orthogonal to e_1, \dots, e_{n-1} and $\frac{H}{\|H\|^2}$. Furthermore, Lemma 3.4 implies that the distribution $\widetilde{\mathcal{D}}$, which spanned by e_1, \dots, e_{n-1} and $\frac{H}{\|H\|^2}$, is parallel on M. From these two facts, it follows that $\bar{c}(t)$ must be a plane curve. Let this plane be x^1x^2 -plane, and let $(x^1(t), x^2(t), 0, \dots, 0)$ denote the curve $\bar{c}(t)$. On the other hand, each slice N(t) is a part of (n-1)-dimensional sphere of an n-dimensional plane L(t) in E^{n+2} . Moreover the tangent space of L(t) is spanned by e_1, \dots, e_{n-1} and $\frac{H}{\|H\|^2}$. Therefore each L(t) is parallel mutually since $\widetilde{\mathcal{D}}$ is parallel on U. Clearly the x^1x^2 -plane and L(t) are orthogonal. Therefore we may take $x^3 \dots x^{n+2}$ -space to be parallel with each L(t). Then U is represented as the situation mentioned above. Q. E. D.

4. The case of I in Theorem 2.1. In this section we shall study the shape of U on which the condition I in Theorem 2.1 is satisfied.

In this case there exist C^{∞} orthonormal normal vector fields e_{n+1} , e_{n+2} and a C^{∞} orthonormal frame field $e_1 \cdots e_n$ on U such that

$$\omega_s^{n+1} = \lambda \omega^s , \qquad \omega_s^{n+2} = \tau \omega^s ,$$

$$\omega_{n-1}^{n+1} = \mu \omega^{n-1} , \qquad \omega_{n-1}^{n+2} = \tau \omega^{n-1} ,$$

$$\omega_n^{n+1} = \lambda \omega^n , \qquad \omega_n^{n+2} = \rho \omega^n ,$$

where λ, τ, μ and ρ are C^{∞} -functions on U and $\lambda \neq \mu, \tau \neq \rho$ on U.

In this section indices A, B, \cdots run over the range $\{1, \cdots, n+2\}$ and

 s, t, \cdots move from 1 to n-2. For indices s, t, \cdots , the Einstein's convention is used.

LEMMA 4.1. A point q in M is of constant sectional curvature if and only if $\lambda=0$ and $\tau=0$ at q.

Using the same method as Lemma 3.1, we will soon prove Lemma 4.1.

Since we have assumed that U has no point of constant sectional curvature, we may set $\lambda \neq 0$ or $\tau \neq 0$ on U. Now we assume $\tau \neq 0$.

We set

$$d\lambda = \lambda_s \omega^s + \lambda_{n-1} \omega^{n-1} + \lambda_n \omega^n$$
,
 $d\tau = \tau_s \omega^s + \tau_{n-1} \omega^{n-1} + \tau_n \omega^n$,
 $d\mu = \mu_s \omega^s + \mu_{n-1} \omega^{n-1} + \mu_n \omega^n$,
 $d\rho = \rho_s \omega^s + \rho_{n-1} \omega^{n-1} + \rho_n \omega^n$.

Using the same method getting Lemma 3.2, we obtain Lemma 4.2.

LEMMA 4.2.

$$\omega_{n-1}^{s} = -\frac{\lambda_{n-1} + \tau C_{n-1}}{\lambda - \mu} \omega^{s} ,$$

$$\omega_{n}^{s} = -\frac{\lambda \lambda_{n} + \tau \tau_{n}}{\tau (\tau - \rho)} \omega^{s} ,$$

$$\omega_{n+2}^{n+1} = C_{n-1} \omega^{n-1} - \frac{\lambda_{n}}{\tau} \omega^{n} ,$$

$$\omega_{n}^{n-1} = \frac{-\lambda_{n} + \mu_{n}}{\lambda - \mu} \omega^{n-1} + \frac{\tau_{n-1} - \rho_{n-1}}{\tau - \rho} \omega^{n} ,$$

$$\lambda_{s} = 0 , \quad \tau_{s} = 0 , \quad \mu_{s} = 0 , \quad \rho_{s} = 0 ,$$

$$\lambda C_{n-1} - \tau_{n-1} = 0 ,$$
where we set

Now, we set

$$d\lambda_{n-1} = \lambda_{n-1,t}\omega^t + \lambda_{n-1,n-1}\omega^{n-1} + \lambda_{n-1,n}\omega^n$$
,
 $d\lambda_n = \lambda_{n,t}\omega^t + \lambda_{n,n-1}\omega^{n-1} + \lambda_{n,n}\omega^n$,
 $d\tau_{n-1} = \tau_{n-1,t}\omega^t + \tau_{n-1,n-1}\omega^{n-1} + \tau_{n-1,n}\omega^n$,
 $d\tau_n = \tau_{n,t}\omega^t + \tau_{n,n-1}\omega^{n-1} + \tau_{n,n}\omega^n$,
 $d\mu_{n-1} = \mu_{n-1,t}\omega^t + \mu_{n-1,n-1}\omega^{n-1} + \mu_{n-1,n}\omega^n$,

 $\omega_{n+2}^{n+1}(e_{n-1}) = C_{n-1}$.

$$d\mu_n = \mu_{n,t}\omega^t + \mu_{n,n-1}\omega^{n-1} + \mu_{n,n}\omega^n$$
 , $d
ho_{n-1} =
ho_{n-1,t}\omega^t +
ho_{n-1,n-1}\omega^{n-1} +
ho_{n-1,n}\omega^n$, $d
ho_n =
ho_{n,t}\omega^t +
ho_{n,n-1}\omega^{n-1} +
ho_{n,n}\omega^n$.

Because of $d^2=0$, we obtain

$$\lambda_{n-1,t}=0\;,\quad \lambda_{n,t}=0\;,\quad \tau_{n-1,t}=0\;,\quad \tau_{n,t}=0\;,$$

$$\mu_{n-1,t}=0\;,\quad \mu_{n,t}=0\;,\quad \rho_{n-1,t}=0\;,\quad \rho_{n,t}=0\;.$$
 We set
$$dC_{n-1}(e_s)=C_{n-1,s}\;.$$

By taking the exterior derivative of (4.3), we get

$$(4.8) \qquad C_{n-1,s} = 0 ,$$

$$(4.9) \qquad (\lambda - \mu)\tau(\tau - \rho)\{e_{n-1}(\lambda_{n-1} + \tau C_{n-1})\}$$

$$= \tau(\tau - \rho)(\lambda_{n-1} - \mu_{n-1})(\lambda_{n-1} + \tau C_{n-1})$$

$$-(\lambda - \mu)(-\lambda_n + \mu_n)(\lambda \lambda_n + \tau \tau_n)$$

$$+(\lambda - \mu)^2\tau(\tau - \rho)(\lambda \mu + \tau^2)$$

$$+\tau(\tau - \rho)(\lambda_{n-1} + \tau C_{n-1})^2 ,$$

$$(4.10) \qquad (\lambda - \mu)\tau(\tau - \rho)^2\{e_n(\lambda_{n-1} + \tau C_{n-1})\}$$

$$= \tau(\tau - \rho)^2(\lambda_n - \mu_n)(\lambda_{n-1} + \tau C_{n-1})$$

$$-(\lambda - \mu)^2(\lambda \lambda_n + \tau \tau_n)(\tau_{n-1} - \rho_{n-1})$$

$$+(\lambda - \mu)(\tau - \rho)(\lambda_{n-1} + \tau C_{n-1})(\lambda \lambda_n + \tau \tau_n) ,$$

$$(4.11) \qquad \tau(\tau - \rho)(\lambda - \mu)^2\{e_{n-1}(\lambda \lambda_n + \tau \tau_n)\}$$

$$= (\lambda - \mu)^2(\lambda \lambda_n + \tau \tau_n)\{\tau_{n-1}(\tau - \rho) + \tau(\tau_{n-1} - \rho_{n-1})\}$$

$$+\tau^2(\tau - \rho)^2(-\lambda_n + \mu_n)(\lambda_{n-1} + \tau C_{n-1})$$

$$+\tau(\tau - \rho)(\lambda - \mu)(\lambda \lambda_n + \tau \tau_n)(\lambda_{n-1} + \tau C_{n-1}) ,$$

$$\tau(\tau - \rho)(\lambda - \mu)(e_n(\lambda \lambda_n + \tau \tau_n))$$

$$= (\lambda - \mu)(\lambda \lambda_n + \tau \tau_n)\{\tau_n(\tau - \rho) + \tau(\tau_n - \rho_n)\}$$

$$+\tau^2(\tau - \rho)^2(\lambda - \mu)(\lambda^2 + \rho \tau)$$

$$+(\lambda \lambda_n + \tau \tau_n)^2(\lambda - \mu) .$$

Let $\mathcal{Q}_{\scriptscriptstyle 1}$ be the distribution on U defined by

$$\mathcal{Q}_1(q) = \{X \in T_q(M) : \omega^{n-1}(X) = 0, \omega^n(X) = 0\}.$$

Since $d\omega^{n-1} = \omega^n \wedge \omega_n^{n-1}$ and $d\omega^n = \omega^{n-1} \wedge \omega_{n-1}^n$, \mathcal{D}_1 is completely integrable. On the other hand, let \mathcal{D}_2 be the distribution on U defined by

$$\mathcal{D}_{s}(q) = \{X \in T_{q}(M) : \omega^{s}(X) = 0 \ (s=1, \dots, n-2)\}.$$

(4.3) implies that \mathcal{Q}_2 is completely integrable.

From above two facts it is obtained that at each point q on M there exists a local coordinate (y^1, \dots, y^n) such that the slice $y^{n-1} = \text{constant}$, $y^n = \text{constant}$ is an integral manifold of \mathcal{D}_1 and the slice $y^s = \text{constant}$ $(s=1,\dots,n-2)$ is an integral manifold of \mathcal{D}_2 . Now, we denote by N(u,v) the slice $y^{n-1} = \text{constant} = u$ and $y^n = \text{constant} = v$, and denote by S the slice $y^s = 0$ $(s=1,\dots,n-2)$.

Restricting the orthogonal frame field e_1, \dots, e_n, e_{n+1} and e_{n+2} to the slice N(u, v), $\{e_s\}_{s=1,\dots,n-2}$ can be regarded as C^{∞} orthogonal vector fields tangent to N(u, v) and $e_{n-1}, e_n, e_{n+1}, e_{n+2}$ can be also regarded as C^{∞} -orthonormal normal vector fields on N(u, v) in E^{n+2} . Furthermore, restricting the dual frame ω^A and the connection form ω^B_A to the slice N(u, v), we denote them by the same notation $\omega^i, \omega^\alpha, \omega^i_j, \dots$ as those of the submanifold M in E^{n+2} . By (4.1) and Lemma 4.2, we see

$$egin{aligned} \omega_s^{n-1} &= rac{\lambda_{n-1} + au C_{n-1}}{\lambda - \mu} \omega^s \;, \ \ \omega_s^n &= rac{\lambda \lambda_n + au au_n}{ au (au -
ho)} \omega^s \;, \ \ \omega_s^{n+2} &= \lambda \omega^s \;, \ \ \omega_s^{n+2} &= au \omega^s \;, \end{aligned}$$

which mean that N(u, v) is totally umbilic in E^{n+2} . Hence there exists (n-1)-dimensional plane L(u, v) in E^{n+2} such that N(u, v) is a part of an (n-2)-dimensional sphere in L(u, v). Let X denote the position vector of E^{n+2} , and H denote the mean curvature vector of N(u, v) in E^{n+2} . It is seen that the vector field

$$X+rac{H}{\|H\|^2}$$
 ,

where we take X an arbitrary point of N(u, v), is a constant vector in E^{n+2} and lies in L(u, v), so it is called the *center* of N(u, v). Moreover the tangent space of L(u, v) is spanned by e_1, \dots, e_{n-2} and $\frac{H}{\|H\|^2}$.

LEMMA 4.3. Let \mathcal{Q}_3 be the distribution spanned by e, \dots, e_{n-2} and

 $\frac{H}{\|H\|^2}.\quad Then\ D_{e_{n-1}}\!\!\left(X+\frac{H}{\|H\|^2}\right)\ and\ D_{e_n}\!\!\left(X+\frac{H}{\|H\|^2}\right)\ are\ orthogonal\ to\ \mathcal{D}_3.$

PROOF. Precisely describing,

$$H = \frac{\lambda_{n-1} + \tau C_{n-1}}{\lambda - \mu} e_{n-1} + \frac{\lambda \lambda_n + \tau \tau_n}{\tau (\tau - \rho)} e_n + \lambda e_{n+1} + \tau e_{n+2}.$$

Since $\tau \neq 0$, $\tau \neq \rho$ and $\lambda \neq \mu$, we get

$$||H||^2 > 0$$
.

We set

$$\begin{split} F &= (\lambda_{n-1} + \tau C_{n-1})^2 \tau^2 (\tau - \rho)^2 + (\lambda \lambda_n + \tau \tau_n)^2 (\lambda - \mu)^2 \\ &+ (\lambda^2 + \tau^2) (\lambda - \mu)^2 \tau^2 (\tau - \rho)^2 \; . \end{split}$$

Then

$$egin{aligned} rac{H}{\|H\|^2} &= rac{1}{F} \{ (\lambda - \mu) au^2 (au -
ho)^2 (\lambda_{n-1} + au C_{n-1}) e_{n-1} \\ &+ (\lambda - \mu)^2 au (au -
ho) (\lambda \lambda_n + au au_n) e_n \\ &+ \lambda (\lambda - \mu)^2 au^2 (au -
ho)^2 e_{n+1} \\ &+ (\lambda - \mu)^2 au^3 (au -
ho)^2 e_{n+2} \} \;. \end{aligned}$$

From (4.5), (4.9) and (4.11), we get

(4.13)
$$\tau(\tau - \rho)(\lambda - \mu)D_{e_{n-1}}F = 2F\{\tau(\tau - \rho)(\lambda_{n-1} + \tau C_{n-1}) + \tau_{n-1}(\tau - \rho)(\lambda - \mu) + \tau(\tau_{n-1} - \rho_{n-1})(\lambda - \mu) + \tau(\tau - \rho)(\lambda_{n-1} - \mu_{n-1})\} .$$

By (4.13), (4.9) and (4.13), we get

(4.14)
$$D_{e_{n-1}} \frac{H}{\|H\|^{2}}$$

$$= -\frac{1}{F} \{ \tau^{2} (\tau - \rho)^{2} (\lambda_{n-1} + \tau C_{n-1})^{2} e_{n-1} + (\lambda - \mu) \tau (\tau - \rho) (\lambda \lambda_{n} + \tau \tau_{n}) (\lambda \lambda_{n-1} + \tau \tau_{n-1}) e_{n} + \lambda (\lambda - \mu) \tau^{2} (\tau - \rho)^{2} (\lambda_{n-1} + \tau C_{n-1}) e_{n+1} + (\lambda - \mu) \tau^{3} (\tau - \rho)^{2} (\lambda_{n-1} + \tau C_{n-1}) e_{n+2} \}.$$

Hence

$$(4.15) D_{e_{n-1}} \left(X + \frac{H}{\|H\|^2} \right)$$

$$= e_{n-1} + D_{e_{n-1}} \frac{H}{\|H\|^2}$$

$$= \frac{1}{F} \left(\left\{ (\lambda - \mu)^2 (\lambda \lambda_n + \tau \tau_n)^2 + (\lambda^2 + \tau^2) (\lambda - \mu)^2 \tau^2 (\tau - \rho)^2 \right\} e_{n-1} - (\lambda - \mu) \tau (\tau - \rho) (\lambda \lambda_n + \tau \tau_n) (\lambda_{n-1} + \tau C_{n-1}) e_n - \lambda (\lambda - \mu) \tau^2 (\tau - \rho)^2 (\lambda_{n-1} + \tau C_{n-1}) e_{n+1} - (\lambda - \mu) \tau^3 (\tau - \rho)^2 (\lambda_{n-1} + \tau C_{n-1}) e_{n+2} \right).$$

This implies

$$\left\langle D_{e_{n-1}}\!\left(X\!+\!\frac{H}{\|H\|^2}\right), \frac{H}{\|H\|^2}\right\rangle = 0$$
, $\left\langle D_{e_{n-1}}\!\left(X\!+\!\frac{H}{\|H\|^2}\right), e_s\right\rangle = 0$,

where $s=1,\cdots,n-2$. Therefore $D_{e_{n-1}}\!\!\left(X+\frac{H}{\|H\|^2}\right)$ is orthogonal to \mathcal{Q}_3 . By (4.10) and (4.12), we get

$$\begin{split} \tau(\tau-\rho)(\lambda-\mu)D_{e_n}F &= 2F\{\tau_n(\tau-\rho)(\lambda-\mu) + (\tau_n-\rho_n)\tau(\lambda-\mu) \\ &\quad + (\lambda_n-\mu_n)\tau(\tau-\rho) + (\lambda\lambda_n+\tau\tau_n)(\lambda-\mu)\}\;. \end{split}$$

Therefore we get

$$\begin{split} &D_{e_{n}}\!\!\left(X\!+\!\frac{H}{\|H\|^{2}}\right) \\ &=\!\frac{1}{F}(-(\lambda\!-\!\mu)\tau(\tau\!-\!\rho)(\lambda_{n-1}\!+\!\tau C_{n-1}\!)(\lambda\lambda_{n}\!+\!\tau\tau_{n})e_{n-1} \\ &\quad + \{\tau^{2}(\tau\!-\!\rho)^{2}(\lambda_{n-1}\!+\!\tau C_{n-1}\!)^{2} \\ &\quad + (\lambda^{2}\!+\!\tau^{2})(\lambda\!-\!\mu)^{2}\tau^{2}(\tau\!-\!\rho)^{2}\!\}e_{n} \\ &\quad - \lambda(\lambda\!-\!\mu)^{2}\tau(\tau\!-\!\rho)(\lambda\lambda_{n}\!+\!\tau\tau_{n})e_{n+1} \\ &\quad - (\lambda\!-\!\mu)^{2}\tau^{2}(\tau\!-\!\rho)(\lambda\lambda_{n}\!+\!\tau\tau_{n})e_{n+2})\;. \end{split}$$

This implies

$$\left\langle D_{e_n}\left(X + \frac{H}{\|H\|^2}\right), \frac{H}{\|H\|^2} \right\rangle = 0$$
, $\left\langle D_{e_n}\left(X + \frac{H}{\|H\|^2}\right), e_s \right\rangle = 0$,

where $s=1, \dots, n-2$. Therefore $D_{e_n}\!\!\left(X\!+\!\frac{H}{\|H\|^2}\right)$ is orthogonal to \mathcal{Q}_3 . Q. E. D.

LEMMA 4.4. \mathcal{Q}_3 , which is spanned by e_1, \dots, e_{n-2} and $\frac{H}{\|H\|^2}$ is parallel on M.

PROOF. Straightforwardly computing, we get

$$\begin{split} &D_{e_{s}}e_{t}=\omega_{t}^{r}(e_{s})e_{r}+\frac{\delta_{st}F}{(\lambda-\mu)^{2}\tau^{2}(\tau-\rho)^{2}}\frac{H}{\|H\|^{2}}\in\mathcal{D}_{3}\,,\\ &D_{e_{n-1}}e_{t}=\omega_{t}^{s}(e_{n-1})e_{s}\in\mathcal{D}_{3}\,,\\ &D_{e_{n}}e_{t}=\omega_{t}^{s}(e_{n})e_{s}\in\mathcal{D}_{3}\,,\\ &D_{e_{s}}\frac{H}{\|H\|^{2}}=D_{e_{s}}\Big(X+\frac{H}{\|H\|^{2}}\Big)-e_{s}=-e_{s}\in\mathcal{D}_{3}\,.\\ &D_{e_{n-1}}\frac{H}{\|H\|^{2}}=-\frac{\lambda_{n-1}+\tau C_{n-1}}{\lambda-\mu}\frac{H}{\|H\|^{2}}\in\mathcal{D}_{3}\,.\\ &D_{e_{n}}\frac{H}{\|H\|^{2}}=-\frac{\lambda\lambda_{n}+\tau\tau_{n}}{\tau(\tau-\rho)}\frac{H}{\|H\|^{2}}\in\mathcal{D}_{3}\,. \end{split} \tag{Q. E. D.}$$

LEMMA 4.5. Let Ψ be a map from S to E^{n+2} defined by $\Psi(q) = X_q + \frac{H}{\|H\|^2}\Big|_q$ for $q \in S$, where S is the slice defined by $y^s = 0$ $(s = 1, \dots, n-2)$. Then Ψ is an immersion.

PROOF. We have only to show that $d\Psi(e_{n-1})$ and $d\Psi(e_n)$ are linearly independent. Now,

$$\begin{split} d\varPsi(e_{n-1}) &= D_{e_{n-1}} \Big(X + \frac{H}{\|H\|^2} \Big) \\ &= \frac{1}{F} (\{\lambda \lambda_n + \tau \tau_n)^2 (\lambda - \mu)^2 \\ &\quad + (\lambda^2 + \tau^2) (\lambda - \mu)^2 \tau^2 (\tau - \rho)^2 \} e_{n-1} \\ &\quad - (\lambda - \mu) \tau (\tau - \rho) (\lambda \lambda_n + \tau \tau_n) (\lambda_{n-1} + \tau C_{n-1}) e_n \\ &\quad - \lambda (\lambda - \mu) \tau^2 (\tau - \rho)^2 (\lambda_{n-1} + \tau C_{n-1}) e_{n+1} \\ &\quad - (\lambda - \mu) \tau^3 (\tau - \rho)^2 (\lambda_{n-1} + \tau C_{n-1}) e_{n+2} \Big) \; . \\ d\varPsi(e_n) &= \frac{1}{F} (-(\lambda - \mu) \tau (\tau - \rho) (\lambda_{n-1} + \tau C_{n-1}) (\lambda \lambda_n + \tau \tau_n) e_{n-1} \\ &\quad + \{\tau^2 (\tau - \rho)^2 (\lambda_{n-1} + \tau C_{n-1})^2 \} \end{split}$$

where

$$egin{aligned} &+(\lambda^2+ au^2)(\lambda-\mu)^2 au^2(au-
ho)^2\}e_n \ &-\lambda(\lambda-\mu)^2 au(au-
ho)(\lambda\lambda_n+ au au_n)e_{n+1} \ &-(\lambda-\mu)^2 au^2(au-
ho)(\lambda\lambda_n+ au au_n)e_{n+2}) \;. \end{aligned}$$

Since $\lambda \neq \mu$, $\tau \neq \rho$ and $\tau \neq 0$, it is clear that $d\Psi(e_{n-1})$ and $d\Psi(e_n)$ are linearly independent. Q. E. D.

Lemma 4.5 implies that $\Psi(S) = \left\{ X + \frac{H}{\|H\|^2} : X \in S \right\}$, which consists of the centers, becomes a 2-dimensional submanifold of E^{n+2} .

PROPOSITION 4.6. Let the same assumpsion as Theorem 2.1 be satisfied. Suppose the condition I in Theorem 2.1 is satisfied on U and U has no point of constant sectional curvature. Then the shape of U becomes as follows:

Let (x^1, \dots, x^{n+2}) denote the natural coordinate of E^{n+2} . There exist a surface $(x^1(u, v), x^2(u, v), x^3(u, v), 0, \dots, 0)$ in $x^1x^2x^3$ -space in E^{n+2} and a C^{∞} -function $\gamma(u, v)$ (>0) such that U is locally represented by

 $(x^1(u, v), x^2(u, v), x^3(u, v), x^4, \cdots, x^{n+2}),$ $(x^4)^2 + \cdots + (x^{n+2})^2 = r(u, v)^2.$

PROOF. The tangent space of $\Psi(S)$ is spanned by $D_{e_{n-1}}\left(X+\frac{H}{\|H\|^2}\right)$ and $D_{e_n}\left(X+\frac{H}{\|H\|^2}\right)$. On the other hand, Lemma 4.3 shows that both $D_{e_{n-1}}\left(X+\frac{H}{\|H\|^2}\right)$ and $D_{e_n}\left(X+\frac{H}{\|H\|^2}\right)$ are orthogonal to e_1, \cdots, e_{n-2} and $\frac{H}{\|H\|^2}$. Moreover Lemma 4.4 implies that the distribution spanned by e_1, \cdots, e_{n-2} and $\frac{H}{\|H\|^2}$ is parallel on M. Therefore $D_{e_{n-1}}\left(X+\frac{H}{\|H\|^2}\right)$ and $D_{e_n}\left(X+\frac{H}{\|H\|^2}\right)$ are contained in a fixed 3-dimensional space. Let this space be $x^1x^2x^3$ -space and let $(x^1(u,v),x^2(u,v),x^3(u,v),0,\cdots,0)$ represent the surface $\Psi(S)$. It has been shown that each slice N(u,v) is a part of an (n-2)-dimensional sphere in L(u,v), which is an (n-1)-dimensional plane in E^{n+2} . Since the tangent space of L(u,v) is spanned by $e_1,\cdots,e_{n-2},\frac{H}{\|H\|^2}$ and the distribution which is spanned by $e_1,\cdots,e_{n-2},\frac{H}{\|H\|^2}$ is parallel on M, each L(u,v) is parallel. Clearly the $x^1x^2x^3$ -space is orthogonal to L(u,v). Therefore we may choose $x^4\cdots x^{n+2}$ -space to be parallel

with L(u, v). Then U is represented as the situation mentioned above. Q. E. D.

64

It is easy to show that the Theorem 2.1, Proposition 3.5 and Proposition 4.6 lead the Theorem in the introduction.

References

- [1] Cecil, T. and Ryan, P.: Taut embeddings of conformally flat manifolds in codimension one, preprint.
- [2] Chen, B.-Y.: Geometry of Submanifolds, Marcel-Dekker, Inc., New York, 1973.
- [3] Chen, B.-Y. and Yano, K.: Hypersurfaces of a conformally flat spaces, Tensor, 26 (1972), 318-322.
- [4] Chen, B.-Y. and Yano, K.: Special conformally flat spaces and Canal hypersurfaces, Tôhoku Math. J., 25 (1973), 177-184.
- [5] Chen, B.-Y. and Yano, K.: Conformally flat spaces of codimension 2 in an euclidean space, Canada J. Math., 15 (1973), 1170-1113.
- [6] Erbacher, J.: Isometric immersions of constant mean curvature and triviality of the normal connection, Nagoya Math. J., 45 (1971), 139-165.
- [7] Kitagawa, Y.: Umbilics of conformally flat submanifolds, Tôhoku Math. J., 32 (1980), 433-438.
- [8] Moore, J.-D.: Conformally flat submanifolds of Euclidean space, Math. Ann., 225 (1977), 89-97.
- [9] Moore, J.-D. and Morvan, J.-M.: Sous-variétés conformément plates de codimension quatre, C.R. Acad. Sci. Paris, 287 (1978), 655-657.
- [10] Nishikawa, S. and Maeda, Y.: Conformally flat hypersurfaces in a conformally flat Riemannian manifold, Tôhoku Math. J., 26 (1974), 159-168.
- [11] Ogawa, Y.: On conformally flat spaces with warped product Riemannian metric, Nat. Sci. Rep. Ochanomizu Univ., 28 (1978), 117-127.
- [12] Schouten, J.-A.: Uber die konforme Abbildung n-dimensionaler Manigfaltigkeiten mit quadratischer Massbestimmung auf eine Mannigfaltigkeit mit euklidischer Massbestimmung, Math. Z., 11 (1921), 58-88.
- [13] Tachibana, S.: Riemannian Geometry (in Japanese), Tokyo, 1967.