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The systematic formulation to calculate adiabatically the energies and
wave functions of two electron two nucleus systems with any nuclear charge
by the James-Coolidge method is given. This formulation can be applied,
in principle, to any state of the hydrogen-like molecule at any internuclear
distance. The computer program to perform the numerical work based on
this formulation is constructed and named “MADAM”.

§1. Introduction

In the previous report®, the computer program to obtain the energies
and wave functions in the singlet or the triplet X% states of the two
electron diatomic molecules with any nuclear charge by the James-Coolidge
method® was elaborated. This article pursues the extension of the previous
work to any state of the hydrogen-like molecule. The reasons to undertake
this research in spite of a series of excellent works by Kotos, Wolniewicz,
and their collaborators® are i) to make the James-Coolidge type wave
functions available at our disposal, ii) to confirm the accuracy of the
results obtained by the above mentioned authors, and iii) to investigate
the applicability of the method for a wide range of the value of the in-
ternuclear distance in various states. '

§ 2. Formulation

Using the atomic units, the adiabatic Hamiltonian is given by
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H=T+U,
T=—(d;+45)/2, (1)
U= “Za/7"a1—Zb/7"b1_Za/7"a2*Zb/7”b2+ 1/7”12+ZaZb/R;

where the notations are self-explanatory®.

Using the elliptical coordinates 2, u, ¢, and p=2r,/R, the Hamiltonian
(1) is expressed as

H=T+Z,+Z,) U2+ (Z,— Z,)U®|24+U®+Z,Z,/R.
where

T: T//Rz’ U(l)____. U’(l)/R) U(2): U/(2)/R’ ' U(3): U/(3)/R,
and

T'"=—R(4:+4)/2,

U= —42)(2t— p}) — 44l (3= 1h) , ()
UP=4p[(2i— pd)+4p/ (25— 1),
U'®=2/p.

In order to be applicable to any state and any R, the basis functions
of the James-Coolidge type wave function should be generalized to have
sufficient flexibility and proper symmetry. In the first place, we introduce
the functions

p(m,m, 5, k, 0,1, 1 5 ay, a0 By, B)=¢=(m, m, 5, k, p, L, by 5 s, a, B, o)
=(1/27)(2/ R)® exp[ — a;A; — as s — Bupt1— Bo o] AT A3 1 g2 07
X MM M2 exp il +ilags], (3)
where
M;=[(2—1)(1—pd)]”", (1=1,2).

Next, we define the functions ¢(m, n, 5, k, p, 1, by ; ai, as, B, B:)=¢ as follows :

¢=(¢+§)2,  for X* state,
¢=(p—¢)/(21), for X~ state, (4)
=9, ~ otherwise,

where ¢ is the complex conjugate of ¢.
In the homopolar case, the symmetry adapted basis functions @(m, n,
5k, 0,1, ; a, a, B, B:) are constructed by using '
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9[}-4:9&(7/”’: n, j} k; D, ll) ZZ y Ay, Oy ﬁl} ﬁz) b
¢B:¢(m) n, j) k; p, ll; l2 ; Oy, (g, —181; _ﬁ‘z) J)

(5)
9/)0:9[)(%’ m) k; j; p; l‘l; ll ; g, Ay, 182; ,Bl) )

¢D:¢(7L; m; k; j) p; lZ; ll ; (g, Oy, -—132; Aﬁl))
as follows
D=[(}p 4+ o)+ (—1)7HFF*le (o) ], for singlet g state,

O=[(ps+de)—(— 1)t (o4 ¢p)], for singlet w state,
(6)
O=[(s— o)+ (—1)/Trrlarle(g,— )], for triplet g state,

O=[(¢p,—Po)—(—1)***u*ie(p, — )],  for triplet u state,

where normalization factors are omitted for simplicity.

In the heteropolar case, since ¢, u symmetry is missing, merely the
combinations ¢,+¢. or ¢p+¢p is sufficient. It is to be noted that four
parameters a;, a,, B, and B, are introduced in the exponent of @. Moreover,
not only p but also ¢, and ¢, can be involved even in the X states and
so the basis functions are more flexible than the original ones adopted by
James and Coolidge.

The matrix elements of the Hamiltonian A and the unity S with
respect to the basis function @’s can be obtained easily by those with
respect to the function ¢’s. The latter matrix elements can be expressed
by the auxiliary function X’s as shown in Appendix A. The derivation
of the auxiliary function X’s by using Kotani, Amemiya, and Simose’s
auxiliary functions” is shown in Appendix B.

§3. Computer program ‘“MADAM”

A package of computer programs named MADAM (the Most Accurate
DiAtomic Molecular calculation) is constructed by employing the method
explained in § 2 and Appendices A and B. MADAM consists of several job
steps ; calculation of the values of auxiliary functions, construction of the
matrix elements, and calculation of the energy and wave function. A lot
of machine time is required to optimize the non-linear parameters «a;, a,,
B: and B, and to find the best set of the basis functions. As a test run,
MADAM has been applied for a number of problems and good agreement
with the previous results® has been found. Besides the full application
of MADAM, we also undertake as a natural extension the calculation of
the polarizability of the H, like molecules in any state. The details’ of
the application will be published elsewhere.
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Appendix A. The matrix elements of 77, U, U'®, U'®, and S with
respect to the function ¢.

The matrices of 7, U, and S with respect to ¢,=d(m,n, 7, k, 1,1l ;

ay, as, By, Bo) and ¢g,=¢(m’,n', 7', k', ', 11,1, ; a1, ab, B, Bz) have nonzero ele-
ments only when

L=l +1;, (A1)

and these nonzero matrix elements can be expressed in terms of the auxi-
liary functions of the following form

X(M) M N’ J} K, P: Ll} L2; 7 Al) A?r Bl; B2)
=(1/2x) SeXp [—Al/zl_A2Z2_Blﬂl_B2#2]/211‘[2évﬂ{ﬂ§pP

X MlLleLz exp [7/7/(901_ 902)]d/21d/22d‘u1dﬂ2d901d§02 . (A.Z)

The method of calculation of these auxiliary functions is given in Appendix
B. In what follows, we shall adopt the usual abbreviation for the argu-
ments of the auxiliary functions' . For example,

Se=X(m~+m'+2, n+n"+2,5+7, k+k, p+p’, L1+, 11|+,

—UL+1; aytal, astag, BB, B+ )
—X(m+m'+2,n+n', j+75, k+E +2, p+p’, LI+, L]+,
UL+ actal, astag, Bt B Bat5)
—X(m+m', nt+n"+2,5+75 +2, k+k, p+p’, 1L, 1L 6]
—L+l; atal, astas, Bt B, Bt Bo)
+X(m+m', n+n', j47 42, k+E +2, p+0, 1L+ 1L+ 16

UL et autad ot Bl BB |

= X(22000,000) — X(20020,000) — X(02200,000) - X(00220,000).  (A3)

Further, when the last three arguments of X .in Eq. (A3) are equal to
zero, these arguments are omitted, e. g., X(22000,000)= X(22000). Then,
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U = —4{X(12000) — X(10020) + X(21000) — X(01200)}, (A4)
UP =4{X(02100) — X(00120)+ X(20010) — X(00210)}, (A5)
U =2{X(2200—1)— X(2002—1) — X(0220 — 1)+ X(0022—1)}. (AS6)
For the kinetic energy operator, we have
T'=Ti+Ts,
Ti;=—R4,/2, (1=1, 2). (A7)

The matrix elements of 7'; consists of four parts,
Tlfg 2 T;(fqg) 1) (8:1) 2; 3) 4) . (A8)

After a somewhat lengthy calculation, we have

T19=—[(a;—a1)*{X(22000) — X(20020)}
—(8,— 81*{X(02200) — X(00220)}
— 2(e+ )+ (s —a)@(m—m') + (p—p") +2(1L[ — [}
> {X(12000) — X(10020)}
+ {2084 80+ (B:— )2 —5) + (p— ") +2(1LI — [1i)}
< {X(02100) — X(00120)}
+2(a;—aj)(m—m’){X(—12000) — X(—10020)}
—2(8,— £)(J—5'){X(02—100) — X(00 — 120)}

—{(m—m')’— (m+m")}{X(—22000) — X(—20020)}

+{G =7 —(G+5)3{X(02—200) — X(00—220)}
+{—(ar—=a)’+E—p)+(m—m') = (G—75)+(m+m')—(G+7)
+(m—m’—j+3)(p—p"+2(ILI—[11))}{X(02000)
—X(00020)}]/2, (A9)

T =(p—p )N (a;—a){X(3200—2) — X(3002—2) — X(1400—2)
— X(1220—2)+ X(1022—2) + X(1004 —2) +2X(0311—2)
—2X(0118—2)} + (8, — B {X (2210 —2) — X(2012—2)
+ X(0410—2) — X (0230 —2) + X (0032 —2) — X (0014 —2)
—2X(1301—-2)+2X(1103—2)}
+(m—m'—7+75){X(0400—2) — X(0004—2);
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—2(m—m"){X(—1311—2) — X(—1113—-2)}

+2(j— N X(13—11—-2)— X(11—13—2)}]/2

—lp—p)Ym—m'+j—5)+®—p)+(+p")

+2(p—p") (1, — 111D} {X (2200 — 2) — X (2002 —2)

— X(0220—2)+ X(0022—2)} /2, (A10)
T{%=(p— (L] — [l +1+1D){X(2200—2, —111)

— X(2002—2, —111)— X(0220—2, —111)+ X(0022—2, —111)}

4 ()1 — 114 —1,— 1) {X(2200—2, —11—1) — X(2002—2, —11—1)

—X(0220—2, —11—1)+ X(0022—2, —11—1)}]/2, (A11)
T{%= {1, +1)*— (|1, — 111 {X(22000, —200) — X(20020, —200)

— X(02200, —200) + X (00220, —200)}/2. (A12)

The matrix elements of 7; can be obtained from the above equations,
mutatis mutandis.

Appendix B. Auxiliary function X (M, N, J, K, P, Ly, Ly, 1 ; Ay, As, By, By).

The auxiliary function X(M, N, J, K, P, L, Ly, 7 ; A, A,, By, By) is defined
by Eq. (A2). The four parameters A, A, B,, and B, are not shown ex-
plicitly in this appendix. Here, the arguments M, N,J, K, P, L,, L,, and r
are integers and

M, N,J, K, L,, L,=0, P=-—1, L, L,=|7y|.
Using the relation
P=RE B A 222 Attt
— M \M;exp[i(pi— @) — M Mexp[ —i(o;—@i)], (B1)
the following recurrence formula
X(M, N,J, K, P+2, Ly, Ly, 1)
— X(M+2, N, J, K, P, Ly, Lo, 1)+ X(M, N+2,J, K, P, Ly, L, 7)
+X(M, N,J+2, K, P, Ly, Ly, y)+X(M, N,J, K+2, P, L;, Ly, 1)
_9X(M,N,J, K, P, L, Lo, 1) —2X(M+1, N+1,J+1, K+1, P, L, Lo, 7)
—X(M, N,J, K, P, Li+1, L,+1,r+1)
—X(M, N,J,K, P, L,+1, L,+1,7y—1) (B2)
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is derived immediately. Therefore, the function X with P=1 can be ob-
tained from X’s with P=—1 and 0.

For P=—1, the Neumann expansion of 1/p* is substituted into Eq.
(A2), and the expression

XM, N, J, K, —1, Ly, Ly, 7)
=(=1" 5 @+ D=l + 1)
xw(z, rl, M, N, (Li—7D/2, (La—71)/2 ; Ay, A)
Xg(z, 7L J, La—1rD/2 ; By, 7], K, (Le—17D/2 ; By (B3)
is obtained, where

’LU(T, v, m, n, s, t y A, a2)
=\ exn [~ at— @t it Qx5 P22

X (A—=1)"*"(23—1)"7""td2,d2,, (B4)

0, v, d,5 5 B=\_expl—puluPrp(— ) +az, (85)

and 4. denotes the larger one of i, and 1,, 2. the smaller one. In Egs.
(B4) and (B5), s and t are nonnegative integers, and, therefore, the func-
tions w and ¢ can be easily expressed by the functions

Wiim,n ; ai, as)
- S 1 S  EXP [—a1d — @ A JAT 25Q%(25) P2 (A<)

X[(A—1)(A8—1)]"d2,d2,, (B6)
and

G: ; B)=\_expl—pulp'Pilp)(1— ) . (B7)

These functions are familiar in the literatures of molecular integrals and
the method of their calculation is given by Kotani et. al.

For P=0, the function X has nonzero value only when y=0, and hence
only the X’s with even L, and L, are required,

X(M: N,- J: K) 0: Ll; L2; 0)
=a(M, L,/2 ; A)a(N, L2 ; A)b(J, L,/2 ; B)b(K, L,/2 ; By), (B8)
where

alm, 1 ; a)= S:Oexp[—al]lm(ﬁ—l)ldl, (B9)
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and
1 X 0
b, 15 B)=\ expl—pulul—p)dp. (B10)

Again, the functions ¢ and b can be expressed easily by the familiar
functions®

Am(a):S:oeXp[—aZ]Zde, (B11)
and

B,(8)=\_expl—pplpdp. (B12)



