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Introduction. This is a continuation of our series of papers [1] to
[4]. We shall be concerned with originating, for functions of one real
variable, an integration method which generalizes that of Denjoy and
which will be given the name of powerwise integration. By con-
structing concrete functions powerwise integrable without being Denjoy
integrable, it will be shown that the new integration is actually wider
than that of Denjoy.

We have hitherto introduced three kinds of integration: the quasi-
Denjoy, the Luzin, and the (M) integration. As concerns the relation of
the powerwise integration to these three, no more is known at present
than the fact that the Luzin integration does not include the powerwise
integratioh.

§1. Dirichlet continuous functions.

Throughout this section, the letter p will denote a real number >1.
If « is a real number, the symbol «[]? will mean a® or —|al?, accord-
ing as a=0 or a<0, respectively. Thus «[]? is short for |a|? sgn a.

The sets considered in this paper will usually be linear, i.e. contained
in the real line R. We shall, on occasion, make use of the terminology,
notation, and results of the papers mentioned above. Thus, by a CT set
we shall mean any linear compact set consisting of two points at least.
Again, a function, by itself, will always signify one defined on the whole
real line and assuming finite real values, unless another meaning is obvious
from the context.

Let @ be a compact nonconnected set, i.e. a CT set which is not an
interval. We shall denote generically by H an open interval contiguous
to this set. A function ¢(x) will be termed to fulfil the Dirichlet condi-
tton on the set @, if the following three items are fulfilled :

(i) We have X |p(H)|P<+ oo for every p (subject, of course, to the
limitation p>1 mentioned above), where the summation extends over all
the intervals H considered above and where ¢(H) means the increment
of ¢(x) over the closure of H;
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(i) lim (p—1) Slp(HDP=0, i.e. Slp()fr=o( 11) as p—1,

where o is the Landau symbol;

(iii) if the end points of a closed interval A belong to the set @,
while A itself is not contained in @, then

lim X o(H)[P=¢(A4), i.e. H§A¢(H)DP:¢(A)+0(1) as p—1.

p~1 HCA

REMARKS. (a) The series which appears in item (iii) is absolutely
convergent on account of item (i). (b) As we find easily, the two series
appearing in the above items can be interpreted as Dirichlet series with
p for the variable; this explains our term “Dirichlet condition”. (¢) A
function which fulfils the Dirichlet condition on the set @ is necessarily
a constant on each closed interval (if existent) contained in Q.

LEMMA 1. For any two real numbers a and B, we have
1) JatplP=27""(|al?+|8?),
(i) [a+p)P—alP—plP|=27"(p—1)(la|?+]|B]?).

PROOF. We may clearly suppose that a«f+0. As we find easily,
QPP (1—t)P<1  if 0=<t<1.
It follows that if «>0 and >0, then
2 (a+B)YP=aP+ P =(a+p)?,
or what amounts to the same thing,
al+ P ={a+p)P=22"(a?+£7).
From this the assertion is deduced as follows.
%e (i) : Noting that |a|>0 and |B|>0, we have
la+BlP=(la|+|B)?=27"Y(|a]?+|B]%, .
re (ii): Since 277'—1<27"(p—1) by the mean value theorem, we get
(a+p)P—a?—p?| =27 (p—1)(a®?+B?)  for a>0 and $>0.
The inequality (ii) follows from this in the case in which af>0.

- We pass on to the case <0, where we assume, as we plainly may,
that a>0>p. Writing y=-—8>0, we distinguish two cases according as
az=7 or not. If a=y, it follows from what we proved already that

la? =P —(a—=p)?[ =27 (p—D{7*+(a—p)"} =27 (p—1)a?;

hence [(a+ B P —alP— BRI <27 (p—1)]a]?,
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which is stronger than (ii). If <y, we have similarly

ly?—a?—(r—a)?| =2 (p—1)7",

ie. |(a+pB) 07 —all?—p07 =22 (p—1)|BI7.
LEMMA 2. If the sum of four real nmumbers &, &, &, & is 0, then
% 07| 280—1) max (&1, -+, |&f7)

PROOF. It is readily verified that if w, v, w=0 and u-+v-+w=1, then
P yuP+vP+w?<1. From this we find at once that

o+ BP 1P = (a+ f+7)P <377 (o + BP+17)

whenever «, 8, y are nonnegative real numbers.
This being permised, let us write for short

S=& [+ - +&07 and p=max(|&% - -, [&]7).

To prove the asserted inequality, it clearly suffices to consider the follow-
ing two cases, where a, 8, 7,0 are nonnegative.

(a) & =a+B+y, &=—a, §&=—p, &&=—7. In this case, it follows from
what we premised above that
0=S=(a-+p+7)P—ar—pr—1? < (37" —1)(a?+§7+7?)
=@ =Dla+p+7)"=3"(p—1p,
since we have 3?7'—1<3?'(p—1) log 3<3?(p—1).
(b) &i=a, &=8, &=—7, &=—40. In this case we have
a+B=yr+0, S=aP+pP—yP—0o".

Lemma 1 and the obvious inequalities a?-+p?=(a+p)?, 7P+ d°=(y-+9)?
show together that

0=(a+p)yf—a?—pr =2 (p—1)(a?+ B?),
0= (74 0)7— P — 82 = 27 (p—1)(37+57) .
Hence [SI=22(p—1)p=32(p—1)p.

THEOREM 1. If two functions o(x) and (x) fulfil the Dirichlet con-
dition on a compact nonconnected set Q, so does also any linear combina-
tion, with constant coefficients, of these functions. :

PROOF. We may restrict ourselves to the sum 0(x)=¢(x)-+(x). Let
us denote by H a generic open interval contiguous to the set Q. Noting
that both series X |@(H)|? and X |y(H)|® are convergent, we obtain, by
part (i) of Lemma 1, the appraisal :
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S10H)P =27 S (oD [W(H)P) <00

But S e+ pnin =o L)oo L) =o(-15).

Hence %}]0(H)Ip20<pil>.

This being so, let A be any closed interval such that the set @ con-
tains the end points of A without containing the whole of A. For sim-
plicity, we agree to denote by X’ a summation extended over the intervals
HC A. Using part (ii) of Lemma 1, we deduce that N

13 0(H) 1P —0(A)| |2 0(H)[?— X'o(H)0P— = (H) 7|
2 p(H) 07— p(A) |+ [y () [P = (A))
= >V|0(H) 1P — o(H) 07— (H) 07|+ 0(1) +0(1)
<27 (p—1) ' {| (H) |7+ |y (H)|7} +0(1)

=2%(p—1)- o< 1 7 >+ o(1)=0(1).

Hence X'0(H)[J?=60(A)+0(1), which completes the proof.

Given a compact nonconnected set @, let R denote generically a com-
pact nonconnected set contained in Q. A function will be called Dirichlet
continuwous on @, if it is continuous on @ and if it fulfils the Dirichlet
condition on all the sets R. When this is the case, the function is plainly
Dirichlet continuous on each R.

It is easy to see that, in the above definition, we may restrict the
sets R to those which span the same closed interval as the set @ does.
This remark will be useful in § 4.

It follows at once from Theorem 1 that if two functions are Dirichlet
continuous on a compact nonconnected set, the same is true of any linear
combination of these functions. .

Given a compact nonconnected set @, let us write H for a generic
open interval contiguous to @, and let A be an arbitrary closed interval
such that the set @ contains the end points of A without containing the
whole of A. A function ¢(z) will be said to fulfil the condition (B) on
Q, if Zle(H)|<-+oo and if we have Hago(H):gp(A) for every A.

THEOREM 2. Given a compact nonconnected set Q, let H denote a
generic open interval contiguous to this set. Suppose that there corre-
sponds to each H a real number p(H) in such a way that X |p(H)| <+ co.
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(i) Let f(x) be the function defined on the real line R as follows: if
z belongs to an H, then f(x)=|H|'-p(H); otherwise we set simply f(x)=0.
This function f(x) is summable on R, and any indefinite integral, say
0(x), of f(x) fulfils the condition (B) on Q. Moreover, the function 0(x)
s AC on Q as well as derivable to zero at almost all points of Q, and we
have O(H)=p(H) for every H.

(i) If ¢(x) is a function fulfilling the condition (B) on Q and if we
have o(H)=p(H) for every H, then the difference ¢(x)—0(x) is a con-
stant over Q.

PROOF. 7e (i): The function f(x) is summabe on the union D of all
the intervals H, since evidently

|7 @do=lp(D] and | |7()ldo=Slp(H)|< +oo.

But f(x)=0 on the set R D, and it follows that f(x) is summable on R.
Consequently, its indefinite integral #(x) is AC on R, and hence on Q.
Moreover, 6(z) is derivable to f(z) almost everywhere on R, so that we
have 6'(x)=0 at almost all points of @. Obviously 6(H):S Sf(x)dx =p(H)
for every H. "

We shall show that 6 (x) fulfils the condition (B) on Q. We have in
the first place Z|0(H)|=X|p(H)|<+oo. If A is a closed interval such
that @ contains the end points of A without containitg A itself, then

0(A)=SA 7 (@) dm=sm F (@) da+ SM F@) de
= E), @ to= B ou.
This completes the proof of part (i).

re (i1) : Write Y (x)=¢(x)—0(x) and let A be any interval considered
above. We then have

V(A = ()~ 0(4)= 2 o(H)— 2 0(H)= T (o(H)—p(H)}=0.
This plainly implies that (x) is a constant over the set Q.

We introduced in our paper [4] the notion of approximate equideriva-
bility. However, we feel at present that the notion cannot be regarded
as quite adequate. We now want to replace it with one simpler and less
restrictive : two functions will be termed approximatély’equiderivable, or
briefly AED, at a point of R if at this point the functions are both AD
(approximately derivable) and have coinciding approximate derivatives.
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LEMMA 3. If two functions of a real variable coincide on o measur-
able set and 1f one of them is AD at almost all points of this set, then
the functions are AED at almost all points of the same set.

This follows directly from Theorem (8.3) on p. 220 of Saks [5].

THEOREM 3. Let Q be a compact nonconnected set.

(i) If, on the set Q, a function ¢(x) is BV and fulfils the Dirichlet
condition, then it fulfils the condition (B) on this set.

(i) If o function ¢(x) fulfils the condition (B) on Q, then it does so
on every compact nonconnected set contained n Q, and the function 1is
both AC and Dirichlet continuous, on this set Q. Moreover, the function
18 AD to zero at almost every point of Q.

PROOF. 7re (i): Let H Dbe a generic open interval contiguous to @
and let A be any closed interval such that @ contains the end points of
A without containing A itself. The function ¢(x) being BV on @, we
evidently have X |p(H)|[<+co. From this we can deduce that

lim 3 gD(H)Dp:HasD(H) :

p-1 HCA

In fact, this is obvious if A contains only a finite number of the intervals
H. 1In the opposite case, we arrange all the HC A in an infinite sequence
{H,, Hy, ---+>. Given any positive number ¢<1, let us take a positive
integer N so as to fulfil the inequality

2z lo(Hn)|<e, so that | 3 o(H)[?|= T |o(H,)|" <.
n>N ﬂ>N n>N‘
This being so, we choose a >0 such that
N
| 2 oD~ S o(H)|<e if 1<p<l+d.
n= n=1
It follows that, for the same values of p,
N N
p__ < p__ )
| 3 )P~ 3 o(H) || 3 p(H)I?—~ 3 o(H,)]
+| 2 o(H) 07 +] 2 o(H,)| <3¢,
n>N n>N

which establishes the stated result.
Since ¢(x) fulfils the Dirichlet condition on Q, we have on the othet
hand lir?HZ)Ago(H)[]p-:go(A). This, together with what we have proved
- C

above, shows that Hg(p(H):go(A). The function ¢(x) thus fulfils the con-
dition (B) on the set Q.
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re (ii) : Suppose that a function ¢(x) fulfils the condition (B) on Q.
Then X |¢(H)|<+ oo, where H has the same meaning as above. Hence
we can take the number p(H) of Theorem 2 to be ¢(H), and it follows
directly from that theorem and Lemma 3 that the function ¢(x) is AC
on @ as well as AD to zero at almost all points of Q.

We go on to show that ¢(x) fulfils the Dirichlet condition on Q.
Since X |p(H)|<+ oo, we have |p(H)|<1 for all the H except perhaps a
finite number of them. Accordingly X |¢(H)|?<+co for every p>1.

To show further that (p—1)XZ|p(H)|?P—0 as p—1, we may plainly
assume that there are an infinity of the intervals H. Arranging all the
H in a sequence {H;, H,, ----)> as above, we take a positive integer N such .
that |o(Hy.)|+]@(Hyw)|+ ---- <1. Then

lim(p—1) 3 Jo(H)P=0 and 3 |p(H)P<1,
-1 n=1 n>N

whence lim (p—1) 3 |o(H,) [P=0.
p-1 n=1

We already saw in the above that the condition X |p(H)|<+co implies
the relation lim ¥ o(H)[]?= Z}Ago(H), where the right-hand side coincides
HC

p-—1 HCA

with ¢(A4), since ¢(x) fulfils the condition (B) on Q. Thus the function
¢(x) fulfils the Dirichlet condition on Q.

Let R be any compact nonconnected set contained in Q. we proceed
to show that the function ¢(x) fulfils the condition (B) on R. Writing G
for a generic open interval contiguous to R, we have

lo(@]=| S oI X (],

where a possible void sum means zero. It follows that

Slp@I= 5 T eSS lp(H)] < +eo.

If, further, C is any closed interval such that the set R contains the end
points of C without containing C itself, then we have HCC when and
only when there is a G such that HCGCC. Consequently

0(C)= H%ch(H) = G%C H%GGD(H) - GZC)CQD @).

The function ¢(x), which thus fulfils the condition (B) on R, fulfils
the Dirichlet condition on R by what was already proved in the above.
We conclude that ¢(x) is Dirichlet continuous on @, and the proof is
complete.
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- THEOREM 4. Given a compact nonconnected set @ and given a func-
tion @(x) which is AC on this set, let A(x) be the linear modification of
o(x) with respect to Q and let H be a generic open interval contiguous to
Q. Then

(i) the function A(x) s AC on the closed interval spanned by Q;
(i) we have Z]o(H)| < +co;
(iil) the function @(x) fulfils the condition (B) on Q, provided that
it 18 AD to zero at almost every point of Q.

PROOF. re (i) and (ii): The absolute continuity of the function A(x)
is the assertion of Theorem 15 of [4]; the absolute convergence of > ¢(H)
is incidentally shown in the proof of the mentioned theorem.

re (iii): Let I be the closed interval spanned by the set Q. The
function A(x), which is AC on I, is derivable almost everywhere on I.
For definiteness, let us set A’(x) =0 for each point x=R at which A(x) is
not derivable. Since A(x) =¢(x) on @ and since ¢(x) is AD to 0 at almost
all points of @, Lemma 3 shows that A(x) is derivable to 0 at almost all
points of Q. It follows that

o(I) = A(I) = Slz’(w) dx:§§ 2(w) da -+ SQZ’(w) do=2(H) =2 p(H).

 H

This being so, let A be any closed interval such that the set @ con-
tains the end points of A without containing the whole interval A. Writ-
ing R=ANQ, we find at once that R is a compact nonconnected set and
that the open intervals contiguous to R are precisely those intervals H
which are contained in the interval A. On the other hand, the function
o(x) is AC on @ and AD to zero at almost all points of @, and we may
replace here the set @ by its subset R. By what was already established,
it follows that I%)Ago(H) = ¢(A), which completes the proof.

LEMMA 4. A function which is GAC on a set necessarily fulfils the
condition (N) of Luzin on this set (see Saks [5], p. 225).

LEMMA 5. Let F(x) be a function which is continuous on & closed
anterval I and let £(y) denote for each y< R the number (finite or infinite)
of the interior points of I at which the function F(x) assumes the value
y. Then the function &(y) is Borel measurable on R and, denoting by
W(F';I) the absolute wariation of F(x) over I, we have the relation (see
Saks [5], p. 280)

SRS(y) dy=W(F;1I).
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THEOREM 5. Given a compact nonconnected set Q, the following four
conditions on a function o(x) are equivalent to one another:
(1) The function fulfils the condition (B) on the set Q.
(i) The function is both AC and Dirichlet continuous, on Q.
(iii) The fumnction is AC on @ and AD to zero at almost all points
of Q.
(iv) The function is AC on @ and the image ¢[Q] is a null set.

PROOF. It is obvious by Theorem 3 and Theorem 4 that the condi-
tions (i), (ii), and (iii) are equivalent. We shall show in what follows that
the same is true of (iii) and (iv).

(a) Condition (iii) implies condition (iv). To prove this, let
us consider the set M of all the points of @ at which the function A(x)
of Theorem 4 is derivable to 0, so that |Q\JM|=0 as in the proof of that
theorem. It is known that if a function F(x) is derivable at every point
of a measurable set S, then

]F[S]IéSSlF’(x)Idaz (see Saks [5], p. 227).

‘We therefore have |A[M]}]=0. On the other hand, the function A(x), which
is AC on @, fulfils the condition (N) on @ by Lemma 4. But | \M|=0
as mentioned above, and it follows that |2[@~M]=0. Since we have
o[Q1=2A[Q]=2[M]1UA[Q\M], we conclude that |[Q]/=0.

(b) Condition (iv) implies condition (iii). Let I be the closed
interval spanned by the set @ and let () be the same function as con-
sidered above. If D is an open interval contained in I, we shall denote for
each y€R by N(y;D) the number (finite or infinite) of the points of D
at which the function 2(x) assumes the value y. We find by Lemma 5
that N(y;D), as function of ¥, is Borel measurable on R and that

\ N D)dy=Wx; D),
where D is the closure of D. But A(z) is AC on I, and hence
WD) =\ [#@lds,

where we set 2'(z) =0 for each xR at which A(x) is not derivable.
When D is especially the interior I° of I, we shall write simply
N(y) for N(y;I°). |
Given an open set GC R, let 27'[G] be the inverse image of G under
the mapping A(x). If we write for short S=1"![G]NI°, then S is an open
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set contained in I. Suppose that S is nonvoid and let us arrange all the
component open intervals of S in a sequence <D, D, ---->. We then
plainly have

N(y) = Zn N(y; D,) for y=G .

Noting that N(y; D,)=0 unless y=(G, we find that
\ ¥@ dy= = Nw;p)ay =5\ NwiD)ay
==\ 1r@ide=\ 1@
n JDp e S

This being so, we go on to show that A’(x) =0 at almost all points of
the set Q. We may evidently assume that @ is an infinite set. Let G be
any open set containing the null set A[Q]=¢[Q] and let us write S=
A'GINI° as above. Then S is a nonvoid open set containing the inter-
section T'=QNI° and we have

| J@ido = #@laz=( j1@)de={ Nw .

But the function N(y) is summable over R on account of W(A; I) <-co.
Consequently, given any ¢>0 there is a >0 such that

SGN(y) dy<e whenever |G|<d,

where G has the same meaning as above. Since |A[Q]|=0, we can choose
G s0 as to satisfy [G|<d. We thus have

SQIZ’(x)[dw<s for every ¢>0.

It follows that this last integral vanishes and that, therefore, A'(x)=0 at
almost all points of Q. By Lemma 3, the function ¢(x), which coincides
with A(z) on @, must then be AD to zero at almost all points of Q. This
completes the proof.

REMARK. We do not know whether the following assertion is true:
If a function o(x) is Dirichlet comtinuous on a compact nonconnected set
Q, then |o[Q]|=0 and the function is AD to 0 at almost all points of Q.

THEOREM 6. If a function ¢(x) which is Dirichlet continuous on @
compact nonconnected set Q, is GBV on this set, then the function is
GAC on Q.

PROOF. By hypothesis the set @ is expressible as the union of a
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sequence of closed subsets on each of which the function ¢(x) is BV.
Let E be any one of these subsets. It is enough to verify that the func-
tion is AC on this set.

We may clearly suppose E to be an infinite set. If E if an interval,
then -p(x) is a constant on E, and hence it is AC on E. Otherwise E is
a compact nonconnected set, and by hypothesis the function fulfils the
Dirichlet condition on E. Then the function must be AC on E in virtue

of Theorem 3.

REMARK. The contents of this section will be used subsequently only
in the case in which the underlying set @ is null. However, we thought
it better not to restrict the basic notions too narrowly from the beginning.

§ 2. Powerwise continuous functions.

A fnnction will be said to fulfil the condition (P) on a linear set E,
if either the function is AC on E, or else if there exists a CT null set
which contains E and on which the function is Dirichlet continuous. When
this is the case, the function is necessarily continuous on E. Further, the
multiple, by any comstant, of a function which fulfils the condition (P)
on a set, itself does so on this set.

LEMMA 6. A function which 1s continuous on « set M and which is
AC on a subset of M everywhere dense tn M, is necessarily AC on the
whole set M (see Saks [5], p. 224).

THEOREM 7. A function which fulfils the condition (P) on a set E,
does so also om every subset of E. If, in particular, this function is
continuous on the closure of K, then the function fulfils the condition
(P) on the whole of this closure.

PROOF. The first half of the assertion is evident, while the second
half is an immediate consequence of the preceding lemma.

THEOREM 8. The sum, or more generally, any linear combination
with comstant coefficients, of two function ¢(x) and (x) which fulfil the
condition (P) on a closed set E, itself does so on this set.

PROOF. It suffices to deal with the case of the sum &(x) =¢(x) + ().
Let us suppose first that one at least, say ¢(x), of the two functions ¢(x)
and y(x) is AC on . We distinguish two cases according as (x) is also
AC on E, or not. In the former case, the sum &(x) is plainly AC on E,
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and hence fulfils the condition (P) on E. In the latter case, the set E is
infinite and there is a CT null set M which contains £ and on which the
function +(x) is Dirichlet continuous. It follows that E, which is closed
by hypothesis, is also a CT null set and that +(x) is Dirichlet continuous
on E. But the function ¢(x), being AC on E, must be Dirichlet continuous
on E on account of Theorem 5, parts (ii) and (iii). Then &(x) fulfils the
condition (P) on E, since it is Dirichlet continuous on E together with
o(x) and ().

It remains to treat the case in which none of ¢(x) and (x) is AC
on E. By what was shown in the above, the function +-(x) is Dirichlet
continuous on E which must now be a CT null set. The same is of course
true of ¢(x), and hence of &(x) also. Thus &(x) fulfils the condition (P)
on E. This completes the proof.

A function will be called powerwise continuous on a linear set K, if
it is continuous on E and if this set is expressible as the wunicn of a
sequence (finite or enumerable) of sets £, on each of which the function
fulfils the condition (P). Plainly, a function which is GAC on a set s
necessarily powerwise continuous on this set. Again, a function which is
powerwise continuous on a set, is so also on every subset of this set, as
we see at once from Theorem 7.

THEOREM 9. Ewvery function which 1is powerwise continuous on a
measurable set E 1s AD at almost all points of this set.

PROOF. By definition of the powerwise continuity, the set E contains
a subset on which the function is GAC and which consists of almost all
points of E. But any function which 1s GAC on a measurable set is AD
at almost all points of this set (see Saks [5], p. 223). Hence the result.

THEOREM 10. Any linear combination, with constant coefficients, of
two functions o(x) and (x) which are powerwise continuous on a closed
set K, 1is itself powerwise continuous on this set.

PROOF. By definition of the powerwise continuity, the set E is the
union of a sequence of sets A; on each of which the function ¢(x) fulfils
the condition (P). Since E is a closed set, these sets A; may be supposed
closed, on account of Theorem 7. Similarly we can express £ as the union
of a sequence of closed sets B; on each of which the function (x) fulfils
the condition (P). Then, by Theorem 7 and Theorem 8, each linear com-
bination of ¢(x) and +(x) fulfils the condition (P) on all the intersections
A;NB;, which are closed sets. But E is evidently the union of these
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intersections, and this completes the proof.

THEOREM 11. In order that a function which is continuous on a
nonvoid closed set E, be powerwise continuous on K, it is mecessary and
sufficient that each monvoid closed subset of E contain a portion on which
the function fulfils the condition (P).

REMARK. This may be established in the same way as for Theorem
(9.1) of Saks [5], p. 233. We shall, however, give a full account of the
proof, since this theorem is important to our theory.

PROOF. (i) Necessity. Let ¢(x) be a function which is power-
wise continuous on E. The set E is the union of a sequence of sets E,
on each of which ¢(x) fulfils the condition (P). By the continuity of ¢(x)
on E and by Thorem 7, these sets E, may be supposed closed. Then, by
Baire’s Theorem, every nonvoid closed subset of £ has a portion contained
wholly in one of the sets £,. The function ¢(x), which fulfils the condi-
tion (P) on each of these sets, certainly does so also on this portion.

(ii) Sufficiency. Suppose that a function ¢(x) which is continuous
on a nonvoid closed set E, fulfils the condition of the theorem. Let
I, I, --+-> be the sequence of all the open intervals I with rational end
points and such that ¢(x) is powerwise continuous on the intersection
ENI By hypothesis, there certainly exist such intervals I. TLet S be the
union of all the sets ENI, and write K=F~S. The function ¢(x) is plainly
powerwise continuous on S, and we need only show that the set K is void.

Suppose, if possible, that K is nonvoid. Since K is clearly closed,
there exists, by hypothesis, an open interval J such that KNJ is nonvoid
and that the function ¢(x) fulfils the condition (P) on KnJ. We may
evidently assume that the end points of the interval J are rational. Thus
o(x), which is powerwise continuous on the set S, is so also on the set
EnJc (KNnJ)\US. This requires J to be one of the intervals I, and we
have a contradiction, since the set K, by definition, is disjoint with each
of the intervals 7,. This completes the proof.

LEMMA 7. If a function which s both continuous and BV on a
compact set, fulfils the condition (N) on this set, them the function 1is
necessarily AC on the same set (see Saks [5], p. 227).

THEOREM 12. If two functions are powerwise continuous on a closed
wnterval I and 1f they are AED at almost all points of I, then the func-
tions differ on I only by an additive constant.
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This follows directly from the following theorem.

THEOREM 13. Given two functions ¢(x) and (x) powerwise con-
tinuwous on a closed interval I, if ¢L(x) <va(x) at almost every point x
of I at which both the functions are AD, then the difference (x) —o(x)
1s both AC and mondecreasing, on the interval I.

PROOF. The difierence &(x) =+r(x) —¢(x) is powerwise continuous on
I by Theorem 10. Since — oo <@l (1) <hap(x) <+ oo almost everywhere on
I, the function &(x) has a finite nonnegative approximate derivative at
almost every point of I. From these two facts it will be deduced, in
what follows, that &(x) is AC and nondecreasing over I.

Let us define a subset S of [ as follows: a point of I belongs to S if
and only if there exists no open interval G containing this point and such
that the function &(x) is GAC on the interval InG. We find at once that
the set S is closed.

We shall begin by showing that if a finite interval D (closed, open,
or half open) contained in I is disjoint with the set S, then &(x) is GAC
and nondecreasing on D). For this purpose, let K be any closed interval
contained in the interior of D. It is enough to verify that &(z) is GAC
and nondecreasing on K. Let us enclose, as we plainly can, each point of
K in an open interval contained in D and on which &(x) is GAC. Then
K is covered by a finite number of such intervals, and it follows at once
that &(x) is GAC on the whole interval K. But we know that 4f the
approximate derivative of a function which 1s GAC on an wnterval s
nonnegative almost everywhere on this interval, then the function is non-
decreasing over the same interval (see Saks [5], p. 225). Hence &(x) is
not only GAC, but also nondecreasing, on the interval K, as required.

This result implies that the closed set S is perfect. To see this, let
us assume, to the contrary, that S contains an isolated point ¢. If ¢ is an
interior point of I, there are two points a, b of I such that a<c¢<b and
that the open intervals (a,c¢) and (¢, b) are disjoint with S. Then &(x) is
GAC on each of these two intervals, and it follows, in view of the con-
tinuity of &(x) on I, that £(x) is GAC on the whole interval (a,b). But
this contradicts the fact that ¢ is a point of S. If, on the other hand, ¢
is an end point of I, we likewise arrive at a contradiction by an argu-
ment similar to the above.

If the set S is void, the function &(x) is GAC and nondecreasing on
the whole interval I, by what was already proved. It then follows from
Lemma 4 and Lemma 7 that &(x) is AC on I. The proof therefore reduces
to obtaining a contradiction from the assumption that S is nonvoid.
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Suppose therefore, if possible, that S is nonvoid. There exists, by
Theorem 11, an open interval H such that the intersection M=SNH is
nonvoid and that &(x) fulfils the condition (P) on the set M. Then, either
E(x) is AC on M, or else there is a CT null set @ which contains M and
on which &(z) is Dirichlet continuous. We shall deal with these alter-
natives separately. We observe in passing that M is an infinite set; for
otherwise each point of M would be an isolated point of S.

Supposing that £(z) is AC on M, let U be the union of all the open
intervals that are contiguous to the set M and let us write T=U\UM.
We find without difficulty that 7 is a finite interval contained in I and
that &(x) is GAC on 7. This contradicts the definition of the set S, since
M is an infinite subset of 7 and hence intersects the interior of 7.

We pass on to the remaining case. Let @ be a CT null set which
contains M and on which &(x) is Dirichlet continuous. Then the closure
M is a CT null set contained in @ and hence &(x) is Dirichlet continuous
on M. Since M=SNH, where H is an open interval, M is contained in S
and each open interval G contiguous to M is at the same time contiguous
to S. Hence &(x) is GAC and nondecreasing on each G. This, together
with the continuity of &(x) on I, shows that &(x) is further nondecreasing
on G and that, in particular, £(G)=0. Consequently &(x), which we saw
to be Dirichlet continuous on M, is nondecreasing on /. We then find by
Theorem 3 that &(z) is AC on M. It thus follows that the function &(x)
is GAC on the closed interval spanned by M. This contradicts the defini-
tion of the set S, since M is an infinite subset of S.

THEOREM 14. If a function ¢(x) which is powerwise continuous on
a closed set E, 1s GBV on this set, then the fumnction is necessarily GAC
on E. If, in particular, the set E is compact and the function is BV on
K, then it 1s AC on E.

PROOF. To prove the first half of the theorem, we express the set
E as the union of a sequence of sets M on each of which the function ¢(x)
fulfils the condition (P). In view of Theorem 7, we may assume the sets
M closed. It suffices to verify that the function is GAC on each M.

Suppose, if possible, that ¢(x) is non-GAC on some M. Then M must
be an infinite set. Moreover, by definition of the condition (P), M is con-
tained in a CT null set on which ¢(x) is Dirichlet continuous. It follows
that M, which is originally closed, is itself a CT null set and that ¢(z) is
Dirichlet continuous on M. But ¢(x) is GBV on M, since MCE. Theorem
6 then shows that ¢(x) is GAC on M, which is a contradiction.

The second half of the theorem follows directly from Lemma 4,
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Lemma 7, and the first half.

REMARK. We do_ not know whether the following assertion is true:
A function which 1s Dirichlet continuous on a compact nonconnected set
Q, 1s mecessarily powerwise continuous on this set. This is obvious if the
set @ is of measure zero.

§ 3. Powerwise integration.

We shall define the powerwise integration in two ways, descriptive
and constructive. Let us begin with the descriptive definition.

A function f(x) will be termed powerwise integrable on a closed
interval I, if there exists a function ¢(x) which is powerwise continuous
on I and which has f(x) for its approximate derivative at almost all
points of I. The function ¢(x) is then called indefinite powerwise integral
of f(x) on I. By the definite powerwise integral of f (x) over I we shall
mean the increment ¢(I) of its indefinite integral over the interval I.
This definite integral will be denoted by P(f; I).

It is known that the extreme approximate derivates of any finite
measurable function of one real variable are themselves measurable func-
tions (see Saks [5], p. 299). Consequently, any function f(x) which 1is
powerwise integrable on a closed interval I 1s nmecessarily measurable on
I. Furthermore, the powerwise tntegral over I of such o function f(x)
15 uniquely determined, since its indefinite integral is determined on I
except for an additive constant on account of Theorem 12. More generally,
of two functions coincide almost everywhere on a closed interval I and if
the ome is powerwise integrable on I, then so is the other and the two
functions have the same definite integral over I.

The following three theorems are easily derived from the properties,
established in the preceding section, of powerwise continuous functions.

THEOREM 15. Ewery function f(x) which s Denjoy integrable on a
closed interval I vs powerwise integrable on I and the powerwise integral
P(f;I) coincides with the Denjoy integral D(f;I).

THEOREM 16. Any function f(x) which is powerwise integrable on a
closed wnterval I is mecessarily so also on every closed subinterval J of I,
and its definite integral P(f;J), regarded as function of J, 1s an addi-
tive interval function on I.

THEOREM 17. If two functions f(x) and g(x) are powerwise inte-
grable on a closed interval I, the same is true of any linear combination
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af(x) +bg(x) of these fumnctions, and we have
Plaf+bg;I) =aP(f;1)+bP(g;I);

wn brief, the definite powerwise integral is a limear functional of the
integrand function.

THEOREM 18. If a function f(x) which s powerwise integrable on a
closed interval I s almost everywhere nonnegative on I, then the function
18 mecessarily summable over I.

PROOF. Let ¢(x) be an indefinite integral of f(x) on I, so that ¢(x)
is powerwise continuous on I and has f(x) for its approximate derivative
almost everywhere on I. It follows from Theorem 13 that the function
o(x) is AC on I. Consequently, ¢(x) is derivable almost everywhere on
I and its derivative ¢’(x) is summable over I, it being agreed that we set
¢'(2)=0 for each xR at which ¢(x) is not derivable. But f(x) equals
¢'(x) almost everywhere on I, and hence f(x) is summable over I.

THEOREM 19. If a function f(x) is powerwise integrable on a closed
wnterval I, then every mnonvoid closed subset of I contains a portion for
which we have the following alternatives:

either (i) the jfunction f(x) is summable on the closure Q of this por-
tion and the series of the definite powerwise integrals of f(x) over the
closed intervals (if existent) conmtiguous to Q s absolutely convergent;

or else (ii) the closure Q 1s o CT null set and each indefinite power-
wise wntegral of f(x) on the interval I vs Dirichlet continuous on Q.

PROOF. Let ¢(x) be an indefinite powerwise integral of f(z) on the
interval I, i.e. let ¢(x) be a function which is powerwise continuous on I
and which has f(x) for its approximate derivative almost everywhere on
I. By Theorem 11, each nonvoid closed subset of I contains a portion on
which the function ¢(x) fulfils the condition (P). It follows from Theorem
7 that o(x) fulfils the same condition on the closure @ of this portion.

Suppose first that ¢(x) is AC on Q. If @ is a closed interval or a
singletonic set, then ¢(x) must have f(x) for its derivative almost every-
where on @, and it follows that the function f(x) is summable over Q.
If, on the other hand, the closure @ is a compact nonconnected set, then
writing K for a generic closed interval contiguous to @, we find by part
(ii) of Theorem 4 that X |P(f;K)|=XZ|p(K)|<+oco. Moreover, if we
denote by A(x) the linear modification of ¢(x) with respect to @, then part
(i) of Theorem 4 shows that A(x) is AC on the interval spanned by @.
On the other hand, since ¢(x) and A(x) coincide on @, we find by Lemma
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3 that these two functions are AED at almost all points of Q. It thus
follows that f(x) is the derivative of A(x) at almost all points of Q. We
conclude that f(x) is summable over Q.

It remains to consider the case in which the function ¢(x) is not AC
on @, so that @ is an infinite set. There exists a CT null set which con-
tains @ and on which ¢(x) is Dirichlet continuous. Then ¢(x) must be so
also on @ which is itself a CT null set. This completes the proof, since
each indefinite powerwise integral of f(x) on the interval I differs on I
from ¢(xz) only by an additive constant.

We shall now proceed to the constructive definition of the powerwise
integration. Our treatment of this subject will be modelled after that of
Saks [5], pp. 254-259. '

The general notion of integration stated in Saks [5] reads essentially
as follows, where an interval, by itself, means a finite closed one, the
void set and the singletonic sets not being counted among intervals.

Let ¥ be a functional operation by which there corresponds to each
interval I=[a, b] a nonvoid class of functions, and to each function f(x) of
this class a finite real number depending on both the function and the
interval I. This class of functions will be written A(¥;I) and called Z-
domain on the interval I, while the number associated with f(x) will be
denoted by Z(f;I). As it stands to reason, we require that given two
functions f(x) and g(x) coinciding on an interval I, if one of them belongs
to A(Z;I), then so does the other also and we have ZI(f;I) =%(g;I).

An operation ¥ of the above kind will be termed an integration, if
the following three conditions are fulfilled :

(i) If a function f(x) belongs to the Z-domain on an interval I, the
function belongs also to the Z-domain on any interval IC I, and S(f;I)
is a continuous additive function of the interval ICI,.

(ii) If a function belongs to the ¥-domain on each of two abutting
intervals I, and I, the function belongs also to A(Z; [\JVL).

(iii) A function f(x) which vanishes identically on an interval I
belongs to A(Z;I), and we have Z(f;I)=0.

Saks then introduces the notions of T-integrability and Z-integral on
an interval, as well as the corresponding notions on a set, as follows:

(a) If ¥ is an integration, a function f(x) which belongs to the Z-
domain on an interval I will be called Z-integrable on I and the number
T(f ;/I) will be termed definite E-integral of the function f(x) on I.

(b) We shall say that a function f(x) is ZT-integrable on a bounded
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set £, if the function g(x) which coincides with f(x) on E and vanishes
outside F, is Z-integrable on every interval IDE. The number <(g;I)
is then independent of the choice of the interval IDFE; we shall call this
number definite E-integral of the function f(x) on the set E and we shall
denote it by I(f; E).

The two definitions (a) and (b) ought, needless to say, to be compati-
ble in the special case in which the set E is an interval. Seeing that
Saks mentions nothing as to this compatibility, it seems that he has no
doubts about it. The fact of the matter is that the two definitions are
inconsistent, as will be manifested by the following simple example.

EXAMPLE. Let us define a functional operation ¥ as follows. The
‘¥-domain on an interval I consists of all those functions eéch of which is
a constant over I. If a function f(x) belongs to A(Z;I), we mean by
X(f; I) the product ¢|I|, where ¢ is the value of f(x) on I.

It is readily seen that this operation ¥ is an integration in the Saks
sense. However, the function which is identically equal to 1 on the real
line, is T-integrable on each interval according to definition (a), W1thout
being so also according to (b).

This defect of the Saks notion of géneral integration can be saved if
we replace the above condition (iii) with the following one which is some-
what stronger, and we agree to adopt this replacement.

(iv) A function f(x) which vanishes identically on the interior of an
interval I belongs to A(¥;I) and we have Z(f;1)=0

As to general integration and related definitions, we shall conform to
the Saks treatment, excepting the one amendment put forward just now.
In order to prevent any misunderstanding, we observe here again that an
wnterval, by itself, will always mean a closed interval, so far as we are
concerned with the constructive definition of the powerwise integration.
This last agreement will not apply to §4, neither to §5.

We find easily that the powerwise integration fulfils the conditions
(i), (ii), (iv) and hence is a general integration.

Given an integration £, a function f(«), and an interval I, we shall
say after Saks that a point ¢ of I is a E-singular point of f(x) in I, if
there exist in I arbitrarily small intervals containing ¢ and on each of
which the function is not Z-integrable. We find at once that the set .S of
all such points ¢ is closed and that the function f(x) is Z- 1ntegrab1e on
every interval contained in the set I\S.

With each integration & we now associate three generahzed” inte-
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grations €, T and IF. The respective definition of T€ and of IM is the
same as stated on p. 255 of Saks [5], and ZF is defined as follows.

Given any interval I, the ZF-domain on I is the class of all the func-
tions f(x) which fulfil the following two conditions :

(p") The set S of all Z-singular points of f(x) in I is of measure
zero, and the function f(z) is Z-integrable on each of the intervals I, con-
tiguous to the compact set @ consisting of the points of S and of the end
points of I. ’

(p) There is a function ¢(x) which is continuous over I, Dirichlet
continuous on the set @, and further such that ¢(K)=Z(f; K) whenever
K is a subinterval of any one of the above intervals I,. (It is evident that
the function ¢(x) is uniquely determined over the interval I to within
an additive constant.)

For any such function f(z), we define I¥(f;I) to mean ¢(I).

As we verify without especial difficulty, the operations €, ¥, and E°
all fulfil the conditions (i), (ii), (iv) for an operation to be an integration,
though the verification is somewhat toilful. These operations are there-
fore integrations, and each of them plainly includes the integration <.

The powerwise integration, when regarded as a general integration,
will be denoted by PT. To denote the definite powerwise integral, how-
ever, we shall write P(f;I) as before, instead of writing B(f;I). We
see at once that for each integration TCPB, we have also T°CP and
IFCP. It is not quite so obvious that the relation TCYP implies THCP.
This last assertion is a consequence of the following theorem.

THEOREM 20. Given a compact nonconnected set Q, write {I.> for the
sequence of the intervals contiguous to the set Q; and suppose that f(x) 1s
a function powerwise integrable on Q@ as well as on each of the intervals
I, and that (in the case in which the sequence {I,> is infinite)

%lP(f;Ik)l<+°o and lim O(B; f;1,)=0.

Then the function f(x) is powerwise integrable on the interval I
spanmned by the set Q@ and we have

P(f;I):P(f;Q)+Zk)P(f;Ik)-

PROOF. By Theorem 2 there exists a function 6(x) which is AC on
Q, derivable to zero at almost all points of @, subject to the condition (B)
on @, and such that 6([,)=P(f;I,) for every interval I,.

Altering the values of the function #(x) suitably on the set D=I\@Q,
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we now construct a function ¢(x) coinciding with #(x) on the set @ and
such that ¢(K)=P(f;K) whenever K is a subinterval of any one of the
intervals I,. This function ¢(x) is AC on Q and powerwise continuous on
every interval I,, The hypothesis lim O(B;f;I,)=0 ensures further the
continuity of ¢(x) on I. We thus find that ¢(x) is powerwise continuous
on the whole interval I.

Now Lemma 3 shows that the function ¢(x) is AD to zero at almost
all points of @; on the other hand, we have ¢, (2)=f(x) at almost all
points of the set I\Q. Hence, noting the powerwise continuity of ¢(x) on
1, we see that the function equal to f(x) on R\Q and to 0 on @ has ¢(z)
for an indefinite powerwise integral on I. Again, the function equal to
Sf(xz) on @ and to 0 on R\Q is, by hypothesis, powerwise integrable on I.
It ensues that the function f(x) is itself powerwise integrable on I and
that P(f;I)=¢(I)-+P(f;Q), where we have

e(D)=0(D)=20I)=2P(f; 1),

since the function #(x) fulfils the condition (B) on . This completes the
proof.

We are now in a position to state the constructive definition of the
powerwise integration. Let <(&%) be a transfinite sequence of integrations
which is defined, by an induction starting with the Lebesgue integration

g, as follows:
=2, 8p:(¥ QEYCHP for o>0.
0

Writing £ for the smallest ordinal of the third class, we shall show
that '
P=LY=M,  where M= L.

<R

Since P, we find at once by induction that P for every ordinal
number & and that especially 82cC®P. Since ML, the assertion will fol-
low if we show that PCIM, or in other words, that each function f(x)
which is powerwise integrable on an interval I is ¥‘-integrable on I for
some index £<£2. Using Theorem 19, we can prove this in almost the
same way as on pp. 258-259 of Saks [5]. The details may be omitted.

§4. Existence of functions which are powerwise integrable
without being Denjoy integrable.

Let us begin by recalling the notion of elementary figure, or simply
figure, defined on p. 58 of Saks [5]. We shall only consider linear figures
in what follows. By a component interval, or briefly component, of a
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nonvoid elementary figure E, we mean any maximal closed interval con-
tained in E. Plainly, E is the union of a finite number of components
which are mutually disjoint.

We shall denote by IV and M the set of the positive integers and
that of the nonnegative integers, respectively.

Given a closed interval I=[a, b] and given an integer k=M, we write

_ b—a
2k+1

and c¢;=a-+14, where 1=0,1, ----,2k+1.

We denote by I(k+1) the elementary figure whose components are the
k-+1 closed intervals [cy;, €sj41], Where 7=0,1, ----, k. We shall call rama-
fication of size k-1 the operation that makes correspond to I the figure
I(k-+1). The components of I(k+1) will be termed successors to I under
this ramification. It may be observed that I(1) coincides with I itself.

Now let E be a nonvoid figure with the components A, ----, 4,. We
can, for each m<N, associate with FE another figure, written E(n) and
defined by E(n)=A,(n)\J----JA.(n). In other words, E(n) is obtained
from E by ramifying each component of E to size n. We agree that also
this operation on E be called ramification of size n. When me N and
ne N, the figure which is the result of ramifying the figure E(m) to
size » will be denoted by E (m;n).

Given any closed interval I, we attach to I an infinite sequence of
figures <{K,, E|, -+ defined inductively as follows:

Ey=I, E,.=E(3;3%  for keM.
The sequence thus constructed, is clearly monotone descending. If we
denote by N, the number of the components of E,, then we have N,=1

and N, =3%*'N,. It follows that N,=3** for each k=M. Furthermore,
we find at once that |E,|=<(3/5)|E,|, whence we derive

{Ek]§<‘§‘>kl” for ke M.

From the above sequence (K, E, :---> we obtain two sets I and 4
which we define as follows:

F:FI:—EQmElm"" and A:AIZI\F.
It is obvious that I" is a CT null set spanning the interval I and that 4
is an open set with measure equal to |I|. Since E,DE,D----, we can
express 4 also in the form A4=\U(FE,_.\E,), where nN. From this ex-
pression we find easily that the closed intervals contiguous to I” are

mutually disjoint and all contained in the interior of I. Accordingly I’
is a closed set with no isolated points; in other wards, I' is a perfect set.
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Besides ' and 4, we consider the set of all the end points of the
closed intervals contiguous to I and we denote this countable set by @
or ©;. We see at once that I" is the closure of 6.

This being so, let J be an arbitrary closed interval and let us write
J=[s,s+5l]. We define a function @(x)=%(x;J;h), where h>0, by the
following three conditions.

i) @(x)=0 for x=<s+1 and for x=s-+41,
(ii) o(x)=h for xe[s+21, s+31],
(iii) @(x) is linear on [s+!, s+2I] and on [s+38l, s+4l].

Thus defined, @(x) is a continuous function on R with values belonging
to the interval [0, 2].

Let us return to the interval I and the sequence {(E\, E\, ----)>. Given
a positive number 6<1, we define for each me M a function

O (2)=0n(@;1;0) by On(z)=30(z; K; ™,

where K ranges over all the components of the figure E,. This function
is clearly continuous and we have 0=<®,(x)<™*<o™ for all xz=R. Con-
sequently, writing

U(a)=V(w;1;0)= X Onla;133),

we find that this series is uniformly convergent over R and that ¥(x) is
therefore a continuous function. We have also 0= (2)=<(1—0)"}, and T(x)
is evidently linear on each closed interval contiguous to the set I'.

Let {ay, ai, -+ -+ be any infinite sequence such that a,<{0, 1} for “e’very
me M, where {0, 1} is the set of the two numbers 0 and 1. We write A
for the class of all such sequences. For brevity we shall signify by an
A-sequence any member of the class 2.

LEMMA 8. Given a closed interval I, let ¢ be a fixed point of the set
I'y. If we write y(0)=¥(c;I;5), where 0<d<1, then +(J) 18 a con-
tinuous function of 0.

PROOF. Since I'=E,NE;N---- by definition, the point ¢ belongs, for
each me M, to a component interval, say I, of the fiigure F,. The figure
I,(3), which is obtained from I, by ramification of size 3, is the union of
three successors to [I,. Since ce E,..=F,(3;3™), we find that ¢ belongs
to one, say S,, of these successors. We now define a,, to be 1 or 0 accord-
ing as S, is the middle successor or not, respectively. We have thus
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attached to ¢ an U-sequence o=0(c)=<{an; meM).
This being so, let us recall the definition of the function @,(x;I;0):

Q)m(x;Igé):%(D(x;K;Bmz) for xR,

where K ranges over the components of E,. Now the function @(x;K;h),
where >0, vanishes by definition unless x = K. Consequently, in view of
the above choice of a,, we have

D,.(c; I;0)=0(c; L 0™) =y 0™ .
This, combined with the definition of ¥(x;I;d), namely

U(x;1:0)= Eio(pm(x;fﬁ),

leads to the expression +(d)= Zm) amémz, which clearly implies the asserted
m=0
continuity of +-(d).

REMARK. The lemma holds true as well for the points ¢ of the set
Ad=I~\I". We omit the proof, since we shall not require this fact later on.

Supposing as hitherto that 0<d<1, we now define
W(U):W(o"a): %amBm fOI‘ 0:<CL0, as, "">EQI)
m=0
and we denote by S(d) the set of all the values W(o).

LEMMA 9. If especially 0<0<27, the set S(0) defined just now 1s of
measure zero.

_ PROOF. For each meM let us denote by U, the class of the 2A-
sequences {ao, di, *-*+» such that a;=0 for all +>m. Each sequence o of
the class 2, is of the form o=<aq -+, am, 0,0, ---->, and hence 2, con-
sists of exactly 2™*! sequences of UA. If we write o'=<a¢,- ", @m, 1, 1,- -+,
then we have

W' )—Wi(e)= > 6'=210™*", where Z:—}—.
iSm 1—0o
Now let L, be the figure which is the union of all the closed intervals
I,.(0)=[W(s), W(o’)], where o ranges over the class U,. Since |I,(c)|=210™"",
we have

\Ln| = 2| In(0)| = Z 20™=2(20)""" .

But 20<1 by hypothesis, and hence [L,|—0 as m—-+oco. Consequently,
writing L(6)=LoN\L,N-:--, we find that L() is a null set. It therefore
suffices to show that S(d)C L(J).



July 1984 On the Powerwise Integration 25

Given any U-sequence z=<a;;1€ M), consider the sequences
Um:<a/0,"",am,0,0,""> and 0;:<ao,----,am,l,l,---->,
where me M. Then o,U,, and we have
Won) =W(e)< Wler), whence W(z)E In(om) C Ly .

It follows that W(z)e L(8)=LN\L;N----. Since the A-sequence r is arbi-
trary, we conclude that S(6)C L(d), which completes the proof.

REMARKS. (i) We can strengthen the inclusion S(8)CL(d) to the
equality S(8)=L(d). The proof is not difficult. (ii) When =271, the
lemma ceases to be valid, since S(27%)=[0, 2] as is readily seen. In the
special case in which 6=3"", we have

ECO)

S(g-l)z{—g—t;teco}, or briefly S(37)=->

where C, stands for the Cantor perfect set. This follows directly from
Co={ S 20,3 ™5 Lag, ay, -+ > EUAY,
m=0
which is the well-known ternary scale expression of C,.

LEMMA 10. If 0<6<27Y the function U(x;I;0) fulfils the condition
(N) on the wnterval I.

PROOF. As we saw in the proof of Lemma 8, there corresponds to
each point ¢ of the set I'=I"; an A-sequence o(c)=<a,, a4, - -+ such that

Ule; I;0)= ioamé"‘z.

From this sequence we derive another U-sequence z(c)=<by, by, ---->, by
determining b, for each k=M as follows:

(a) if k is a square number, then we set b,=a,, where m=+/f ;
(b) otherwise we set simply b,=0.

‘We then have ¥(c;I;6)=>b,0"=S(6). Since this is true for every cerl,
we find that Z[I"]CS(5). But [S(6)|=0 by Lemma 9, and hence [¥[["]|=0.

On the other hand, the function ¥(x;I;6), which is linear on each
closed interval contiguous to I°, fulfils the condition (N) on the set 4=
INI'. This, together with |7 [I']|=0, completes the proof.

Given a closed interval I and given a positive number <1, we write

Tm(x;l;é):,i@k(x;ﬁﬁ) for meM,
so that S
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U(x;1;0)= é}o@k(x;I;ﬁ):lim U,.(x;I;0).

We shall consider the absolute variation of the function 7,(x)=
U, (x;1;0) over the interval I and the weak wvariation of the function
 U(x)="(x;I;6) over the set I';. With the notation of Saks [5], p. 221,
these quantities will be written V(¥ ;1) and V(¥';[;), respectively, in
what follows.

LEMMA 11. Suppose that 0<6=3"' and that meM. If §<37', we
have the relations

V(wm;1)=2k§(35)k2 and V(W;F,):2’§)O(35)k2;
=0 =

while if 6=37", the corresponding relations are
V7,;)=2(m-+1) and V(¥;[;)=-+c.

Moreover, if 6=3" and if K 1s any component of the figure E,, we
have V(¥; 'y NK)=+ oo,

PROOF. Let 0<§<87! and write for short
V=V D), V=V(T;I,), Cv*:zéjo (36)"".

The assertion concerning €I/, and €[/ then amounts to
V=23 (30)" and CP=CP*,
k=0

inclusive of the case §=3"!. But this expression for <{/, is readily ob-
tained by an inspection of the graph of the function ¥, (x).

We proceed to the proof of C/=C{* Since the function ¥(z) is
continuous and since the set I'; is the closure of the set @, (see p. 23),
we have CV=V(¥ ; 0,;). Consequently

V=sup % [¥(w)—¥(@;-)| (=),

where <{x, i, - ---, ,> is any increasing sequence of n-+1 points of @, and
where 7 is short for this sequence.

Let us keep 7 fixed for a while. We find at once the existence of an
integer m=0 such that for each 7=0,1,----,n the point x; is an end
point of some component of the figure E,. It follows that

V()= 3 Oulwsi [;0)= 33 0u(w,3 10)=Tn ()3

k=0

in fact, @,(x;I;0) vanishes for k>m. We thus have
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B (W @)~ (@50 =] D V@)~V nlw-)| S VsV

J=1

We now make vary the sequence y=<{x, %y, ----,%,> kept fixed hitherto,
and we obtain

V=sup 3 [¥(w)~¥(w,-)| V>

The equality CUV*=C{/ will therefore follow if we verify further that
CY,<CY for every k=M. For this purpose, it is enough to verify the
inequality

E ()=, =CV  (neN)

for every increasing sequence <ty t, :---,t,> of points of the interval I.
Examining the graph of the function ¥,(x), however, we see without
difficulty that each of these points may be assumed to be an end point of
some component of the figure E,(3) obtained from FE, by 3-sized ramifica-
tion. We then have ¥, (¢;,)=¥(t,) for 7=0,1, ----, n. But this implies that

jé [T (t)—T ;- )I=VT; 9,)=C1, Q.E.D.

Finally, in the case in which §=3"", the relation V(¥ ; I''NK)=+co
is an immediate consequence of <{/=-oco just established. In fact, the
figure E, has precisely 3*° components K of the same length, and the
weak variation V(¥ ; I';K) is evidently independent of K. Accordingly,
denoting by v this variation and by G generically any of the 3*—1 open
intervals contiguous to E,, we find easily that if v <+ oo, then

W= v+ |=8"v+ DT (F)| < + oo .
K G G

From this contradiction we deduce that v=+co. This completes the proof
of the lemma.

LEMMA 12. Let us write ¥(x)=%(x;I;6) as hitherto.

(1) If 0<6<87Y the function ¥(x) is AC on I and Dirichlet continuous
on the set I';;

(il) +f 6=37% then ¥(x) is mot GBV on the set I';. More minutely,
Jor each ke M, this function s not GBV on the intersection I'y K, where
K is any component of the figure E,.

PROOF. 7e (i): In this case, ¥(x) is BV on I by the foregoing
lemma. It then follows from Lemma 10 and Lemma 7 that ¥(x) is AC
on this set. But ¥(x) is linear on each closed interval contiguous to 7.
Hence ¥ (x) is AC on the whole interval I, on account of part (i) of Theo-
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rem 4. We find further by Theorem 5, parts (ii) and (iii), that ¥'(x) is
Dirichlet continuous on [7;.

re (ii): Supposing that =3 let ¢ be a point of ;K and let us
take any open interval G containing ¢. Since I';=FE,NE,N----, the point
¢ belongs, for each me M, to the figure E,, and hence to a component, say
I, of this figure. Since |I,/=|E. =(3/5)™|I|, we can choose an integer
m >k such that I,CG. Noting the evident inclusion I,C KNG, we then
have V(¥ ; I',N"NKNG)=- oo, since a stronger relation V(¥ ;I'7NI,)=-+ o0
is valid by the foregoing lemma. Thus Z(x) is not BV on any portion of
I''NK.

On the other hand, it is well-known that if a function which s con-
tinuous on a monvoid closed set, 1s GBV on this set, then the same set
contains a portion on which the fumnction is BV (see Saks [5], p. 233).
We thus conclude that '(x) is not GBV on I, K.

By a lattice point in the plane R® we mean, as usual, any point {7, s>
with integer coordinates 7, s. We make correspond to this point a plane
interval [r, »+1)X[s, s+1) open on the right, which will be denoted by I,
and called lattice square with leading vertex <{r,s)>. This correspondene is
biunique, for to different leading vertices there evidently correspond dis-
joint lattice sequares. Again, each point of the plane belongs to one and
only one of the lattice squares. In other words, the family of the lattice
sqares is disjoint and covers the whole plane.

LEMMA 13. Gwen a real number a=0, let us denote by v(a) the
number of the lattice points contained in the following set:

D(a)={x, v ; 2*+y’=a’, x=0, y=0},
which 1s a closed quarter disc of radius a. We then have

0=v(a)—4 '7a’<3a+2.

PROOF. Writing M(a) for the union of all the lattice squares I, such
that {r, s> D(a), let us prove first the relation

D(a)C M(a)CD(a+~'2),

from which the assertion can easily be derived, as we shall show below.
Let <z,y)> be any point of the set D(a), and let I,, be that lattice
square to which this point belongs. Since 0=<r=<« and 0=s=<y, we have
s’ <a’+y*<a’. Consequently {(r,s)>eD(a), and hence I, ,CM(a), which
implies that {z,y><M(a). We have thus proved the inclusion D(a)C M(a).
Suppose next that {zx,y) is any point of M(a), and let I, be that
lattice square to which this point belongs, so that {(r,sd>< D(a). Then
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r?*+s?=q’, 0=Zr=zx<r+l, 0=<s=<y<s+1.

Accordingly, by the triangle inequality,

NEFYPE VIS V(@ —r)PF(y—s)<a+Vv 2,

and hence we get <z,y>D(a++ 2). This establishes the second inclusion
M(a)cD(a++'2).

Taking plane measure, we deduce from D(a)C M(a)C D(a-++2) proved
already the inequalities

D@ =IM()|=[D(a+v2)],

where we plainly have

|D(a)|=4""za’, [M(a)|=v(a), |D(a+~2)|=4"2(a+v2).

The required inequalities follow now at once.

Using the lemma proved just now, we proced to appraise the magni-
tude of the following function:

T(q)= {quz, where 0<¢g<1.
m=0

_aiep 2 o
LEMMA 14. If p>1 and ¢q=3""?, then T(q)< \/1—q< Vo1

PROOF. Let us denote by p(m), where me M, the number of the non-

negative integral solutions <{z,%)> of the equation 2’-+y*=m. We then
find successively that

pn)=v(v/n)—v(vn—1) for neN,
@)= £0*)( £¢%)= 2 pma=1+ 3 (V) ~»a=Dla"
= 2 u(Vim)" - B UV m)g = (1—0) T V",

where the series X v(vm)¢™ (meM), which we shall denote by U(q), is
convergent since, by the foregoing lemma, we have v(v7)=0(n) for neN.

Writing p(m)=y(vm)—4"'rm, so that 0=<p(m)<3+vm-+2 by the same
lemma, we go on as follows:

oo

> g™+ mZ_?Op(’m)q"‘,

n=1

Ulg)= 3 {%er(m}q’":’ég

m=0

S o(m)q" <33 Vi q"E2 S qm <3¢ 3 ngm 2
m=0 m=0 m=0 nel 1._q

We therefore have successively
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< - 2 4q 2 4
Ulg)<dq X nqg* '+ = ' < .
R S T N e S e AN et
T =1—Ug)< 2, T(q)<—2—<2,/3",
1—q 1—q p—1

the last inequality being a consequence of 1—g=1—3'""?>3'""?(p—1). Since
24/3P71< 27 the proof is complete.

LEMMA 15. Given a closed interval I, the function E(x)=¥(x;I1;37")
SJulfils the Dirichlet condition on the set I';.

REMARK. This result is imperfect and may be skipped over. It will
be superseded later on by Theorem 21 which is decisive. We have inserted
this lemma in order to show, by way of contrast, how much we can say
about the function Z(x) at the present stage.

PROOF. Let us denote, as before, by H a generic open interval con-
tiguous to I'; and let us keep H fixed for the moment, writing H=(u, v).
The function ¥ (x)=%(x;I;5), where 0<§<1, was defined as follows:

V(w;1;6)= io@m(x;l;é): 230;2 O(x; K;0™),

where K ranges over all the components of the figure E,. As it follows
easily from this definition, we have the alternatives:

either (i) the increment ¥(H)=¥(v;I;6)—% (u;I;d) vanishes for all ¢
(of the interval 0<d<1, needless to say);

or else (ii) there exists an integer m <M, uniquely determined by H
and such that either ¥(H)=6™ for all §, or T (H)=—6™" for all o.

From now on, let us suppose that =377, where p>1. Making vary
arbitrarily the interval H kept fixed hitherto, we find at once, from what
was said in the above, that X |E(H)|?=X|¥(H)|. Here the series on the
right is convergent, since the function ¥ (x)=%(x; I;d) is BV on I'; by
Lemma 11 on account of §=3"7<3".,

The function ¥(x), which vanishes outside I and which is linear on
each interval H, is derivable at all points of the set R\[;. For definite-
ness, we shall set ¥’ (x)=0 for every point x at which the function is not
derivable. Since ¥(x) is AC on I by Lemma 12, its absolute variation
V(¥ ; I) is expressed as follows:

VI D=\ |7 do=\ [#@)]da,

where Ad=4;=I\I";. It follows, in view of the linearity of ¥(x) on the
closure of each H, that
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V@ D=3\ T@ldo=2 ().

On the other hand, the same linearity implies that V(¥';I) coincides with
the weak variation V(¥';I7). On account of Lemma 11, we conclude that

SIEH)P=Z ¥ (H)|=2 X (36)™".
H H m=0
Writing ¢=30=23""? and using Lemma 14, we thus obtain the estimation :
- 1 1
sp=21 =0 1 )=o 1), as po.
%3] (H)| (9) V1) 7\ as p—1
Suppose now that the end points of a closed interval A belong to the

set I;. Then A itself cannot be contained in [7;, since |I;|]=0. By the
same argument as used above to deduce X |E(H)|*=X|¥(H)|, we get

X HEH)P=2Z¥(H).

HCA HCA

But ¥ (x), which is AC on I as stated already, fulfils the condition (B) on
the null set I} in virtue of part (iii) of Theorem 4. It follows that

2 EH) =¥ (A)=¥B;1;3 )~V (a;1;377),

HCA

where we write A=[a, f]. Making p—1 here and using Lemma 8, we
obtain
lim X EH)?=¥(8;1;3)—¥(a; ;37 )=5(4),

p-1 HCA

which completes the proof.

Let @ be a compact nonconnected set and let G denote a generic open
interval contiguous to Q. Given any function ¢(x), we write by definition :

A(SD;Q;QO):%)IQD(G)IP for p>1.
In the case in which A(p;Q;p)<- oo, we define further
Y(so;Q;p):ngD(G)Dp for p>1,

the series on the right being absolutely convergent.
For each me M we shall henceforth denote by B, the boundary of the
figure E,, i.e. the set of the end points of the component intervals of F,.

LEMMA 16. Given a closed interval I, a positive number 6§37 q
number p>1, and a CT set Q contained in I, suppose that A(¥;Q;p)
1s finite, where ¥ (x)="(x;I;0). ‘

If B,.CQ for an integer m=0 and 1f we write Q*=Q\JIB,.,, then
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IY(Z:5Q;p)— Y (¥;Q*;p)| <2°(367)™ (p—1) .

If, further, a closed set RCI; fulfils the condition R\JB, ., ,=—QF, we
have '
Y (F;Q*;p)— =¥ (U)N*[<32(867)™,
U

where U ranges over the open intervals contiguous to R and contained in
the figure .., and where a possible void sum means zero.

REMARK. The fact of the matter is that the hypothesis A(?;Q;p)
< 4o of the lemma is always fulfilled. If 0<§<37!, this is immediate
from part (i) of Lemma 12. The case §=3""'is delicate and will be treated
only later on. Again, since B,.; is a finite set, the hypothesis A(?;Q;p)
<+ co implies that AY;Q*;p)<+ oo ; consequently the series Y (7 ;Q*;p)
is absolutely convergent.

PROOF. Let us consider any component open interval, say D=(«a, ),
of the open set E,\FE,.,,.. Then D is contained in a component K of the
figure K, Writing Q'=Q\U{«, B}, we proceed to appraise the difference

d="T(¥;Q;p)— Y (¥;Q; p).
For this purpose, we express d in the form
d=Y(¥;QNK;p)—T(¥;Q'NK;p),
which follows directly from the fact that the end points of the interval
K belong to @ on account of B,CQ. We denote by «’ the rightmost point
of the set @N\(—oo, a] and by B’ the leftmost point of @N[B, + o0), so that

we have a’'sa<f=p, o’ K, f'c K. By means of @’ and #/, the difference
d can now be written explicitly as follows:

d=¥(lo/, NP —¥ ([, a)IP—¥ ([, LD ([, £'DI7,

where [a/, @] is singletonic if a’=«a, and similarly for {3, f7]. It follows
from Lemma 2 that

|d|=37(p—1) max {|¥([«', F'DI?, | ([, a])|?, ¥ ([, BDI?, [T, BDIP}.

This being so, let us ramify to size 3 the interval K under considera-
tion and let the three successors to K, arranged in their natural ordering,
be K,, K,, K;., We now distinguish two cases for the interval D considered
in the above: D will be called, for the nonce, of the first or second kind
according as it is, respectively, contiguous to or contained in the figure
K(3)=K,VK, VK,

As is obvious from the construction of the function ¥(x), this function
is expressible on each of the intervals K, in the following form :
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W(x):c(K)+ci5m2+kE D, (x;1;0) for z€ K,
>m

where ¢;=c;=0, ¢c,=1 and where ¢(K) is a constant which depends on the
interval K. We find at once that

0 20, (x:1;0)= % GemHi+? < i 5(m+1)2+k315<m+132<_1_5m2
=& BT E 5 = i =2 5 ,

where we made use of the hypothesis 0<§=3""

We now return to the difference d and we shall deal first with the
case in which the interval D=(a, §) is of the first kind. To fix the ideas,
let us suppose that D is contiguous to the figure K,\VK,. Then « is the
right-hand end point of K; and f§ is the left-hand end point of K,, so that
U(a)=c(K) and ¥(B)=c(K)+6™. Furthermore, we have &’€ K, and g’
K, VK, We thus get

0S¥ (@)~ V(@)= 5™, —™SUE)~T(H= 5™,

—3
2

SSU(E) V()= 5 0™

Consequently the above inequality for |d| gives

d|<37(p—1) max{(-;—amz)p, (%57“2)1’, (5m2)p} . (%)papmz(p~1) .

Of course this appraisal is valid also when D is contiguous to K,V K.

We pass on to the case in which the interval D=(«, B) is of the second
kind. Then D must be contained in one of the intervals K, K, K; and
we have U(a)="(8)=c(K)+¢;0™ if DCK, But it will be shown below
that we may suppose the set Q to contain all the end points of the three
intervals K;. We see at once that, under this supposition, the points «”
and B both belong to the interval K; which contains D. We therefore
appraise |d| by Lemma 1 as follows:

ld|=27"(p—1) 2{-2—- 5<m“>2}p: 3PePm DY (p—1).

The figure E,, has 3™ components K and for each K the intersection
KNE,., is composed of 3?™*' components, so that the open set K \FE,,; has
precisely 3?™*'—1 components. It follows that the number, say N, of the
components D=(«, f) of the open set E,\E,.; is expressed by

N= 3m2(32m+1__~ 1): 3(m+1)2_ 3m2 .

Each interval K contains exactly two intervals of the first kind and hence
there are 2-3™ intervals of the first kind, in all. Let us write M=2.3™".

We now arrange all the intervals D in a sequence <D, ----, Dy>, in
such a manner that the first M intervals D, ----, D, are of the first kind
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and the remaining N—M intervals Dy, -+ -+, Dy are of the second kind.
We then define a sequence of N-+1 sets <Q, -+, Qy> inductively as fol-
lows, where we write D,=(ay, () :

QOZ Q; Qn: Qn—lu{an) ﬁn} for In/:l) Tt N.

By what was already proved we have

Y (¥ Quer; p)— Y (¥ Qi )| =2%87™ (p—1)
for n=1, ----, M and it follows at once that

Y (T;Q;0)— Y (¥;Qu; »)=22(357)™(p—1) .

On the other hand, for each component K of the figure E,, the set Qy
contains all the end points of the three successors to K. We thus have

1Y (¥;Qu;0)— Y (¥; Qu; p)| = 82(367) ™" (p—1) = 87(367)™ (p—1) .
Noting that the set @y coincides with the set Q*=Q\JUB,;;, we obtain
Y (T;Q;p)— Y (¥;Q%; )| <27(357)™ (p—1) .
This establishes the first of the asserted inequalies.
To prove the second inequality, let L denote a generic component of

the figure E,.;,. By the symmetry of the graph of ¥(x) and by the in-
clusion B,..CQ*, we have

Y(W;Q*;p)=ZL)Y(W;Q*mL;p).
Fixing an L and writing L=[u, v], so that
Q*NL=(RYBp.)NL=(RNL)\I{u, v},
we find that if the set RN L is CT, then the interval spanned by RNL is
a subinterval, say [/, v], of the interval L. In this case we have

T(&*NLip)= 2 ¥ DI+ ([w, w' DOP+¥ ([, v DD7,

where U means a generic open interval contiguous to B and contained in
E.... But L is contained in some component K of E, and, if as above
we denote by K;, K, K; the successors to K under 3-sized ramification of
K, then necessarily one of these contains the whole of L. Accordingly we
have the inequality O(¥;L)<27'-35™*>" which implies that

IT(T;,Q*N\L;p)— X T(U)? < gpgpm+Dn?
UcL

Again, if the set RN\L is not CT, so that L contains none of the intervals
U, we have similarly

Y (¥;Q* N\ L; p)| < 3057m+D?,

Since E,.. has exactly 3™*°* components I, we conclude that



July 1984 On the Powerwise Integration 35
1Y (¥ Q*; p)— S ¥ (U)IP|=87(307) ™" < 37(367)™,
U
on account of 36?=3'"?<1. This completes the proof.

LEMMA 17. Given a closed interval I, a positive number 6=37', and
a number p>1, suppose that a closed set RCI'; contains the end points
of I and that AW ;R;p)<-+ oo, where ¥(x)=¥(x;I1;0). If we write 6=38°
{(so that s=1), then

IY(¥; R;p)|<2% - vVp—1

PROOF. Let us write R,=R\JUB,, for each me M, where B, denotes
as before the boundary of FE,. Since B, is a finite set, the hypothesis
AW ; R;p)<+oco clearly implies that A(¥;R,;p)<+co. We may there-
fore specialize the set @ of the preceding lemma to R,. Noting the rela-
tion Q*=QYUB,,;=R,.;, we have

Y (T Rp; p)— V(5 Rppir; p)| <2°7(867)™ (p—1)

for every meM. But 36?=3(3"%)?=3'"7<1 on account of ps=p>1, and it
follows at once that

IY(V; R )~ Y (¥ Rar; 2| <272 (p—1) T (377),
Wwhere T(Q):é g¥ for 0<g<1l as before. Since RUBni1=Rn\'Bn:i,
Lemma 16 gives further
Y (¥ ; Ry p)| <823 2)™+ DT (U)|?,
U

where U ranges over the open intervals contiguous to R and contained in
K. The last two inequalities together lead to

[Y(¥; Ry p) <27 (p—1) T (3" 7)+87(8" 7)™+ 3 A

We nowimake m—+co here. On account of 3'"#*<1 and A(¥;R;p)
< 400, we have™lim 37(3!"7*)™*=0 and hm F‘W(U)lp—o consequently

m—rco

Y5 R pl =27 (p— 1T (377).

Inserting here the appraisal of Lemma 14, we obtain

[Y(¥; R; p)[ <2 (p—1) <26p5 vVp—1.

¢

LEMMA 18. Suppose given a closed interval I, a positive number
0<3™ a number p>1, and a CT set Q contained in I';.
If B,CQ for an integer m=0 and tf we write Q*=Q\JB,.,, then

AT ;Q;p)— AV ;Q*; p)<2°2(357)™ (p—1) ,
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where U(x)="(x;I;0).
If, further, a closed set RCI; fulfils the condition R\IB,. =Q%, we
have the tnequality

AT Q¥ p)<2 3 (307" 37337 ™ + 2 X (D)),

where U ranges over the open intervals contiguous to R and contained
wm En., and where a possible void sum means zero.

REMARK. Both A(?;Q;p) and A(¥;Q*;p) are finite, since ¥(x) is
Dirichlet continuous on I'; by part (i) of Lemma 12.

PROOF. This can be established by the same means as used for
Lemma 16 and we need only give an outline of the proof.

' Let D be any component of the open set E,\FE,.,;.. Then D is con-

tained in some component K of E,. Writing D=(«, B) and Q'=Q\J{«, B},

we shall appraise the difference

d=AT;Q;0)—AT;Q;p)=AYV;QNK;p)— AT ;QNK;p) .

For this purpose, we consider the minimal closed interval [«/, 5] such
that [«, flIC[a/, B1CK, a’'=Q, f/'=Q. Then

d=¥([a’, FDIP =¥ ([, a])|? =¥ ([a, LDI* =¥ ([, BDI” .

We begin with the case in which the interval D is of the first kind.
We may suppose that D is contiguous to K;\JK, where K,, K, K, are the
three successors to K under 3-sized ramification of K, arranged in their
natural ordering. Then

U([a, fl)=0", V(=¥ (@)=¥P), T()=¥(F).

Consequently, if T()<¥(p), we have |¥([a, F'DI=¥([a, p]), whence d=0.
On the other hand, if ¥(B)<¥(#'), then 0=V ([a’, B'1) =¥ ([a, B']), and we find
that ,

d=¥([e, 1PV ([a, BHN*—=¥([B, B']?,
where Z([8, #1)=27%6™". It follows from Lemma 1 that

d =277 (p—1)(57™ 427 25P™*) < 2P57™m% (1 —1)

Suppose next that the interval D is of the second kind. We may
suppose that the set @ contains all the end points of the three intervals
K,;. Then

V() z¥ (=¥ (P=¥ (),
whence we have either [¥([«/, BDIZ|T ([, )|, or [T ([, FDIST([B, B']).
It thus follows that d=0.
Using the above results and arguing as in the proof of Lemma 16, we
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arrive at the first inequlity of the assertion:
AT ;Q;p)— AT ;Q%;p)<2%(367)™ (p—1) .

The proof of the second inequality is quite similar to that of the cor-
responding inequality of Lemma 16. We omit the details.

LEMMA 19. Given a closed interval I, suppose that a closed set RCI’;
contains the end points of I. If s>1 and 6=37°, then

23psp
s R;p)< 2 >
AP R;p) Vo1 Jor p>1,

where U (x)=¥(x;I;0).

PROOF. We shall only outline the proof, since it resembles that of
Lemma 17. We may specialize the set @ of Lemma 18 to R,=RYUB,,
where me M. Noting that Q*=Q\UB,.;—=R.,.;, we have

AT Ry )= AT Ret; ) <277 (367)™ (p—1)
for every meM. But 3§?=38'"7°<1, and it follows that

AT R;p)— MV Ry p) <272 (p—1)T(3777) .
Since RVUB, . =R,\YBn,::, Lemma 18 shows further that

A5 R p)<2 35 (3770 3237 2)* + S (D)
The last two inequalities together yield
AT R;p)<2%p- T (3%) + 3(372)™+ ST (V).

Making m— -+co here, we obtain A(¥:R;:p)<2%p.T(3"7). TUsing the
appraisal of Lemma 14, we find that

AW Ryp)<2p 20 < 27D
R p) <2 p\/ps_1<\/p_1, Q.E.D.

LEMMA 20. Given a closed interval I, suppose that a closed set RCI';
contains the end points of I. Writing as before E(x)=¥(x;I;37), we
have

A(E;R;p)<72iﬁc Jor p>1, so that A(E;R;p):o<—1~>.
p—1 p—1

PROOF. The proof will be based on approximating the function &(x)
by the manageable function ¥ (x)=¥(x;I;d), where 0<d<3". In fact, if
we fix a point x of I';, then ¥(x) tends to SZ(x) as 6—37!, in virtue of
Lemma 8.

Let <G, ---+,G,> be any finite distinct sequence of open intervals
contiguous to the set R and let us write for short
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g:<G1) cetty, Gn>; /-lg: ’ié I‘E"(Gz)lp; Ag(a):lé Iw(Gz)Jp’
so that 4,(0)=A(¥;R;p).

Writing 6=3"°%, where s>1, and using the foregoing lemma, we have

A,3-9< 27D por p>1
= £ T .
g Vp—1 or p
Hence, if we keep the sequence ¢ fixed and make s—1, we get

. s 23p
A=1im 4,(37) = \/fo—il'

We now make the sequence ¢ vary and we have

o 2% 24
Al:'/y ) == A é <
(55 R;p)=sup 4, Vo1 Vp—1’

which completes the proof.

LEMMA 21. Under the same hypothesis as in Lemma 20, we have
IT(5;R;p)|<2%-vp—1  for p>1,
so that lim Y(&;R;p)=0=5(I).

-1
PrROOP. Let us take 0=3"' in Lemma 17, so that s=1. Then ¥ (x)
coincides with Z(x) and we have A(&Z;R;p)<-+co by the preceding lemma.
Hence the result.

THEOREM 21. Given a closed interval I, the function Z(x)=¥(x;I1;37?)
1s Dirichlet continuous, without being GAC, on the set I';.  More minutely,
for each meM, the function is not GAC on the intersection ['; K, where
K is any component of the figure K.

PROOF. The function 5(x) is continuous on R and hence its Dirichlet
continuity on ['; is an immediate consequence of Lemma 20 and Lemma 21.

By Lemma 12, Z(x) is not GBV on I7'NK. But any function which
1s GAC on a set, 1s necessarily GBV on the same set (see Saks [5], p.223).
Hence Z(x) cannot. be GAC on ;K. This completes the proof.

The function Z(x)=¥(x;I;3™') vanishes outside I and is linear on each
closed interval contiguous to I';. Accordingly &(x) is derivable at every
point of the set R~\JI";. For definiteness, we shall write &'(x)=0 for each
point x at which the function is not derivable.

Since &(x) is moreover Dirichlet continuous on the CT null set I'; by
the above theorem, the function must be powerwise continuous on the
interval I. The function f(x)=2ZF’(x) is therefore powerwise integrable
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over I. However, f(x) cannot be Denjoy integrable on I. To see this,
suppose if possible that the contrary is true. There then exists a function
¢(x) which is GAC, and hence also powerwise continuous, on I and which
has f(x) for its approximate derivative almost everywhere on I. It fol-
lows that ¢(z) and Z(x) are AED almost everywhere on I and that they
therefore differ on I only by an additive constant, on account of Theorem
12. We thus find that Z(x) is GAC on I, a fact which contradicts the
above Theorem 21.

It is obvious that if ¢ is any nonzero constant, then the function c¢f(x)
is likewise powerwise integrable, but not Denjoy integrable, on I

We thus obtain the following theorem :

THEOREM 22. Given any closed interval, there exist functions which
are powerwise integrable, without being Denjoy integrable, on this interval.

§5. The Luzin integration does not include the
powerwise integration.

Given a closed interval I=[a,b] and a number 2>0, we shall denote
by 6(x;I;h) the function which vanishes for x=<a, equals h for x=0b, and
is linear on I.

If S and T are two nonvoid linear sets and if we have x<y whenever
reS and yeT, we shall write S<T as on p.8 of [3].

Given a nonvoid elementary figure E and a number A#>0, let the com-
ponent intervals of E be L <L<----<I, and let us define

Ox; B h)=0(x; I;;n *h)+ -+ -+0(x; L,;n'h) for xeR.

The following lemma is obvious and will be used without quotation
in the rest of the paper.

LEMMA 22. Giwven a monvoid figure E and a number h>0, let the
wnterval spanned by E be I=[a,b]. Then

(i) the function O(x;E;h) vanishes for x=a, equals h for x=b, and
we have 0=60(x; E;h)=<h for x€R;

(i) the function 6(x;E;h) is continuous and mnondecreasing over R,
as well as linear on each component of the figure KE;

(iii) ¢f E has exactly n components, where n=2, and if the closed
wntervals contiguous to E are J,<J,<--:-<J,.;, we have

O(x: E; h)=n""h for xeJ;, where 1=1,2, -+, n—1.

LEMMA 23. Given a nonvoid figure E whose components are I[;<I,<
ce oI, and given for each k=1,2,----,m a nonvord figure Q, spanning
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the interval I, write Q=Q;\J----UQ, and suppose that the number of
the components of Q 1s independent of k. We then have the following
results, where h is any positive number.

(a) B(x;Q;h):é@(x;Qk;n"lh) for xeR;

(b) 6(x;Q;h)=06(x;E;h) wunless x 18 interior to K ;
(c) 10(x;Q;h)—0(x; E;h)=n"'h  for 2eR;
(d) 0(x;Q;h)=0(x;Qu;n'h)+n"'Wk—1)  for xcl,,

where k=1,2,--+-,mn, so that the imcrement of the function 6(x;Q;h)
over the interval I, is equal to n'h;

(e) if there exist a positive integer r<mn and a real number a>0
such that Q,..=Q,+a, where Q,+a means the tramslation of the figure
Q, by the number «, then

Ole+a;Q;h)=0(x;Q;h)+n"'h for xel, .

PROOF. 7e (a): For each k=1,2,----,n let JPJP<----<JP De
the components of the figure @, the number m being the same for all k
by hypothesis. Then, for any z=R,

0(x;Q;h)= él g)lﬁ(oc;ﬂk);h/mn) = élﬁ(oc;(;)k; n~'h) .

re (b): Suppose that x is not an interior point of . Then x is not
interior to I, for any k=1,2, ----, n either and hence we have

0(x;Qr;n th)=60(x; I,;n " h) for all k.

It therefore follows from the relation (a) proved just now that
0w; Qs h)= 35 0(w; Ly~ h)=0(w; Hs h) .
=1

re (c): On account of part (b), We may assume x to be interior to
E, so that x belongs to one, say I,, of the intervals I, ----,I,. Then

0(x;Qr;n ™ h)=0(x; L;n'h) for k7.

This, combined with the relation (a), gives
0(x;Q; h)—0(x; K h):é}l {0(x; Qr;n™'h)—0(x; I;n~"h)}

=0(x;Q.;n'h)—0(x;I,;n'h)
for x=R. But this last difference has absolute value =n~'h, since
0=0(z;Q;n h)<n~'h and 0=Z6(x;I;n*h)<n"'h.

re (d): Keeping k fixed, let x=I, and consider positive integers 1= mn.
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Then 0 for >k, if k<n;
0(x;Q:;m™'h) =
n'h for +<k, if k>1.

The required result follows at once from this and the relation (a).

re (e): Let x be any point of I,. The above relation (d) implies that
Ole+a;Q;h)=0x+a;Q,.;n h)+n"rh,
0(x; Q; ) =6(2; Qs n~'h)+n"th(r—1) .
But we clearly have O(x+a;Q,,;n 'h)=0(x;Q,;n 'h). Hence the result.

Let I be a closed interval. As before, we associate with I a descend-
ing sequence of figures (K&, E,, ----> constructed inductively as follows:

E,=1, E...=FE,(3;3™) for meM .

The compact set I’ is then defined as I'=E,NE/N----.

We denote by K a generic component of the figure E, for each me M,
and by K, <K,<K, the successors to K under 3-sized ramification of K.
We write further 1=(2/5) K]|.

We shall consider the functions F',,(x) defined on R by

Fo(x)=0(x; FE,;1), where meM .

The above notation will be retained throughout the sequel.
The reader is requested to keep in his memory the following facts,
where the figure E,(3) is the result of 3-sized ramification applied to E,.

(i) The figure E, has exactly 3™ components K ;

(ii) the figure E,(3) has exactly 3™**! components ;
(iii) the intervals K,, K,, K, are components of E,(3);
(iv) we have K,=K,+ 1 and K,=K,+ A.

LEMMA 24. Let m and p be two integers such that 0=m<p. Then,
with the same notation as above, we have

() F,(K)=3"™"  for each component K of E,,

(i) Fp(x+A)=Fy(x)+3 ™" for K, where i=1,2.

PROOF. re (i): The figure E, has just 3™ components K, and the
figure E, is obtained from E, by replacing each K with the figure KNE,
which spans K and which has exactly 37?°-™" components. Consequently it
follows from part (d) of Lemma 23 that the increment of the function
Fy(2)=0(x; E,;1) over K is 3™,

re (ii): The figure E,(3) has just 3™**! components, which we shall
denote generically by L. The figure £, is obtained from E,(3) by replac-
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ing each L. with the figure LN E, which spans L and which has exactly
gr*-m*-1 components. The relation (ii) then follows immediately from part
(e) of Lemma 23, if we take E=FE,(3) and Q=F, in that lemma.

LEMMA 25. The sequence of fumnctions {F,(x), Fi(x), -+ converges
uniformly on R and its limiting function, which we denote by F(x ;1) or
simply by F(x), has the following properties, where we write I=[a,b].

(i) The function F(x) vanishes for x=a, equals 1 for x=b, and s
continuous as well as nondecreasing, over the whole line R;

(ii) F'(x) 1s a constant on each closed interval contiguous to the com-
pact set '=FE,NE,N----;

(i) F(z-+2)=F(x)+3"™" for xcK,, where i=1,2.

PROOF. re (i): The figure FE,.; is obtained from F, by replacing
each component K of E,, with the figure KNE,,,=K(3;3*) which spans
K and which has exactly 3% components. Consequently it follows from
part (c) of Lemma 23 that

| Fons1(0) — Fr ()] = 0(2; Ensi31) — (w5 B 1)| = 3- ™ <37
for all x=R. This appraisal implies that the series X {F.i(x)—Fn.(x)},
where m ranges over M, is uniformly convergent on R ; therefore the
sequence {F,(x); meM) converges uniformly on R to its limit F'(x).

The assertion (i) is certainly true if we replace there the function
F(x) by F,(x). This fact, together with the uniform convergence of
(Fn(2); meM), completes the proof of (i).

re (ii): Let A be any closed interval contiguous to the set I'. As is
readily seen from the definition of the sequence <{FE,; mcM), there exists
a least integer ¢>0 such that A is contiguous to the figure E,. We then

find that A is contiguous to K, for every integer m=q. Accordingly, by
part (b) of Lemma 23, we have

Fro(@)=0(x; Bpi;1)=0(x; En; 1)=Fn(x)  for x4,
provided that m=q. It follows that

F(x)=1lim F,(z)=Fy(x) for x=A.

But F,(x) is a constant on A by part (iii) of Lemma 22, since A is
contiguous to the figure E,. Hence the result.

re (iii): We need only make p—-+oco in part (ii) of the foregoing
lemma.

We now remind us of a few basic notions concerning the Luzin inte-
gration (see [4], p. 26 and p.31). A function ¢(x) is said to be approxi-
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mately derivable (N), or ADN, on a closed interval I, if on this interval
the function is continuous, subject to the condition (N), and further AD
almost everywhere. Again, we call a function ¢(x) to be stable (N) on I,
if ¢(x) is ADN on [ and if every function wbich is ADN on I as well as
AED with ¢(x) almost everywhere on I, differs over I from ¢(x) only by
an additive constant.

THEOREM 23. The function E(x)=¥(x;I1;37") of the foregoing § is
ADN on I without being stable (N) on I

PROOF. The function Z(x) is continuous on R and it fulfils the con-
dition (N) on I by Lemma 10. Moreover, Z(x) is linear on each closed
interval A contiguous to the compact null set I which spans the interval
I. E(x) is therefore ADN on I

On the other hand, the function F'(x)=lim F,(x) which is continuous
on R, is a constant on each interval A considered just now (see Lemma
25). Consequently, if we write

Q(x)=E(x)+3F(x) for xeR,
the function £(«x) is not only continuous on R and AD almost everywhere
on I, but also AED with Z(x) almost everywhere on I. Furthermore, the
difference £2(x)— Z(x), which equals 3F(x), is nonconstant on I. Accord-

ingly we need only show, in what follows, that £(x) fulfils the condition
(N) on I and hence is ADN on I.

Fixing an integer m =0, let us consider any component K of the figure
E,. We shall prove first that the measure of the compact set Q[ KNI}
is independent of the choice of K and hence depends only on m.

We have to verify that |2[K'N[]|=|2[KNI"]|, where K’ is any com-
ponent of K, other than K. As we find easily, there exist real numbers
a and B such that K'=K+a and that

F(x+a)=5(x)+p for zc K.
We can show further the existence of a real number y such that
Fe+a)=F(x)+7 for xe K,
the proof being the same as for part (iii) of Lemma 25. Hence
Qx+a)=52x)+ B+37 for xe K.
But we have K'N"I'=(KNI' )+« as an easy consequence of K'=K+a, and
it follows that
QK N=R2[KNT']+p+37.
This plainly implies the required result [Q[K'NI']|=|2[KNI]|.
We proceed to establish the inequality
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IQ[KNT]|=2m3™ ™ |Q[LAT]|  for meM,

where L is any component of E,.; and where the measure [Q[LNI"]| is
independent of I by what we proved just now.
Consider the intervals K;, K,, K;. We have

K= (KD, so that Q[KAT]= U QUK.
But QKN =Q[K;nI"], as we shall show below. Thus
QIKAT]= U QIK:AT'], whence |Q[KNT1< X [QIKNT.

" From the definition of the function Z(x) we find that
Ex+2)=58(x)—3™ for zekK,.
On, the other hand, by part (iii) of Lemma 25, we have
F(x+2) = F(x)+8 ™1 for ze K,;.

Hence 2(x+21)=82(x) for x=K, This, together with KNI =(K;,N\I")+2
which is a direct consequence of K,=K,+ A, shows that Q[K;N\I'] coincides
with Q[K,NI"] as stated above.

We go on to appraise the measure |Q[K;NI[']| for i=1,2. Writing
S=K,NE,.: for short, we have K;N\['=SNI, so that QITK,NT]=2[SNT].
But the figure S has exactly 3" components, and these are at the same
time components of FKE,.,.. If, therefore, L denotes as above a generic
component of E,,;, then

QENT= U QILNTT, [IENT=3""Q[LNT]]

Of course, the inequality |Q[K,NI'|=3*™|Q[LNI"]] admits a similar treat-
ment.

The inequality |Q[ENTN=Z|Q2[KNT]|+|R2[K,N ]| which was already
established, combined with what we showed just now, gives
|QIKNT]|=2:3"™|Q[LNT"]] for meM.
From this we readily find, by induction, that
|Q[M]j=2m3™™=DIQI[KNIT]| for meM,

where K is any component of the figure FE,, as hitherto.
By means of this inequality we shall prove that |2[/"]|=0. For this
purpose, we appraise the measure |2[KNI"]] as follows.

By what was shown in the proof of Lemma 16 (see p. 33), there is
a constant ¢(K) depending on K and such that

c(K)SE(x)<c¢(K)+3"™ for zcK.

On the other hand, if p is any intezer >m, part (i) of Lemma 24 asserts
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that F,(K)=3"™" for each K. Making p— o here and passing to the
limit, we get F(K)=3""". By part (i) of Lemma 25, however, F(x) is
nondecreasing on R. We thus find the existence of a constant ¢'(K) de-
pending on K and such that

(K)sF(x)=c¢(K)+3™ for zeK.

The above results together lead at once to the following estimation of
the function 2(x)=5(x)+3F (x):

c"(K)=R(x)<c¢"(K)+3>™ for xcK,

where ¢”(K) is g certain constant which depends on K. It follows that
|2IENTSAQRIKNT)=A(R[K]) =3,

We thus arrive at

erryzznsm e QKA =9(%)"

Since m is arbitrary, this implies that |2[/"]|=0.

By part (ii) of Lemma 25, the function £(x) is linear on each closed
interval A contiguous to the set [, and hence Q2(«x) fulfils the condition
(N) on each A. Combining this fact with |2[/7]|=0 obtained just now, we
find that £2(x) fulfils the condition (N) on the whole interval I. This
completes the proof.

THEOREM 24. The Luzin integration does mot include the powerwise
integration.

PROOF. As we saw on p. 38, if f(x) denotes the function which equals
E’(x) at every point x of derivability of Z(x) and which vanishes every-
where else, so that Z(x) is derivable to f(x) almost everywhere on I, then
f(x) is powerwise integrable on I.

We shall show that the function f(x) is not Luzin integrable on I
Suppose, if possible, that the contrary is true. There then exists a func-
tion «(x) which is stable (N) on I and which has f(x) for its approximate
derivative almost everywhere on I (see [4], p. 32). Then the function
F(x), which is ADN on I (see Theorem 23) and AED with +(x) almost
everywhere on [, differs over I from +(x) only by an additive constant.
Consequently 5Z(x) itself must be stable (N) on I, contradicting Theorem
23. This completes the proof.
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