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§1. Introduction.

In [8], we defined a simplex homomorphism 7 of a simplex space E,
whose second adjoint operator is a lattice homomorphism, and we in-
vestigated some properties of a simplex homomorphism 7. It can be ex-
pressed with a mapping k: K—K and a function y on K as T/f(x)=7(x)fok(x)
for any feF, where K is a subset of the state space of . In this paper,
by assuming some conditions, we shall investigate the behavior of the
mapping k (Lemma 1~4) and we shall show that there is a 7T-invariant
ideal I to which the restriction 7'; of T is uniformly ergodic and P(T)N\I’
=P(T;)NI". We also show that there is a 7T-invariant simplex subspace
A to which the restriction 7", of 7T is a simplex isomorphism with 7,*=1,
for some neN and P (T)NI =P, (T )NI (Theorem 1). By using this
result, we show that P, (7T)NI" is cyclic if 7 is a simplex homomorphism
and satisfies some conditions (Theorem 2). In case of a lattice homomor-
phism 7T, PAT)NI" is always cyclic [5, V.4.2 Corollary 2]. As for a sim-
plex homomorphism, we shall give a counter example which shows that
the peripheral point spectrum of a simplex homomorphism is not neces-
sarily cyclic.

§2. Simplex homomorphism.

An ordered Banach space E is said to be a simplex space if its dual
space is an AL-space [3]. Due to E.B. Davies [2, Theorem 4.4], a simplex
space is a regular ordered Banach space with the Riesz separation pro-
perty of type M. An ordered Banach space F is said to be regular if it
has the properties

(i) if f,geE and —f=g=f, then |gl=If]

(ii) if fe K and >0, then there is some geF with g=f, —f and
lgll= I/l +e.

FE is said to have the Riesz separation property if a,b,c,deFE and a,b=
¢, d imply the existence of fe £ with
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a,b=f=cd.

E is said to be of type M if for any non-negative elements f, g of E and
any >0, there exists h=FE such that

h=f, g and [Al= max{[|f], lgl}+e.

Let X be the set {xeFE’; =0, |z]|<1} endowed with the weak*-
topology. Then X is a simplex and EF may be identified with Ay(X), the
space of all continuous affine functions on X wvanishing at 0. For each
x< X, there is a unique maximal representing measure g, on X supported

by 4.X (the weak*-closure of the set 9,X of all extreme points of X). By
using this measure, we may further identify E [4, Theorem 3.3] with the
space A3.%X) (={feC@E.X); f(x):gfdyw for all ¢€3,X and £(0)=0}).

We call Te(FE) a stmplex homomorphism if for any f, g E and any
x<0,X, there exists he E such that h=f, g and Th(x)=max {Tf(x), T'g(x)}.
Then by [8, Theorem 2], there are a function y(x) on §,X with 0=<y(x)=<
IT| and a mapping %k:0,X—0.X with k(8.X)C3,X satisfying

Tflx)=7r(x)- fok(x) for any feF
and
k(xo)=Fk(x,) if z,=c,x, for some ¢,>0.

Put y(n, ac):ilfg1 7(k’(%)) for any x<d,X. Then we have
P

T"f(x)=7r(n, x)-fok™(x) for any feF.
Let E, be the smallest Banach sublattice of E” containing £ and let
F be the space {f€C(06,X): f(x,)=ca.f(x,) for all a = 4}, where {(x,, %, Ca)}acs
is a subset of 9,Xx3,X x[0,1] consisting of all the triple (x,, %4, ¢,) such
that f(x.)=c.f(x)) holds for any f=FE. Then there is a lattice isomor-
phism ¢ of E, onto F' [6, Theorem 1] and we have

LEMMA 1. Let T be a simplex homomorphism of E. Then for any
geF, y-9ok belongs to F and T: =¢T"¢" is a lattice homomorphism of F.

PROOF. By [6, Theorem 2], a simplex homomorphism keeps E| in-
variant. So geF implies T"¢ 'g<FE, and ¢T"¢ ‘g F. Since T” is a
lattice homomorphism of E” [8, Theorem 1] and ¢ is a lattice isomorphism,
T:=¢T"¢" is a lattice homomorphism. /]

§3. Peripheral point spectrum.

Hereafter let £ be a simplex space satisfying the condition
(C1) inf {2l ; 0. X\{0}}=a>0
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and T be a simplex homomorphism of E such that

(C2) sup [T"=b<oco
and
(C3) o(T)NT+T",

where ¢(7T) is the spectrum of 7 and I'={2C; |1 =1}.
First we show some lemmas.

LEMMA 2. Let 2,€0,X satisfy k™(x,)=x, for some neN and k’(x,)+*
k™) for 0=j<m=n—1. Putc=(r(n, )" If ¢#0, then c-exp ((2ri/n)J)
belongs to the point spectrum of T’ for any j< N.

PROOF. Put

n—1 - ~ m
p=u+ X 7(m, 900)<i‘ -exp (— 2ﬂ9>> k™ (o) .
m=1 ¢ n

Then p€E’, p+0 and we get

7 u=(e-exa( 55 o
by using the relation 7"(k™(x,))=7y(k™(x,)) k™ (x,). /]
Put
N.={x<s0,X; ki(x)# k™) if j#m}.

For x€d,X\N., put

r(xz)=min {reN; k" (x)=~k(x) for some s= NU{0} with r>s}

s(z)=min {se€ NU{0} ; k"(x)=k*(x) for some r= N with r>s}

n(x)=7(x)—s(x)

and  p(x)=min {p-n(x); p-n(xr)=s(x), p< Nj.

Define the mapping P:8,X\N.—3,X\N.. by Px=Fk"®(x).
Then we have k™®(Px)=Px. The next lemma shows that [|[7""x| is uni-
formly decreasing to 0 on N..

LEMMA 3. For any n<N, there exists mys N such that

sup {[7""xll ; €€ Ne, m=mo} =~ .

PROOF. Suppose there exists n,=N such that for any m’€ N there
exist m”(>2m’+1) and . € N, satisfying |7"™ x| >1/n,. By the relation

[T/ ™ ] o T ™ 2]
A

1™ @ || >

we can choose m (>m’) and %, (=) satisfying
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PN
Ny
Then we have
72m

1™ m) | — 1
For any #<= R, put 1=exp (46).
We shall define a function f,, on 9,X by

r@m—3, )7 (©@m, 1)} g%— Y

for x ek~ ™*(k*™(x,)) with 7=1,2, -+, m—1
fale)= | (@m—j )lr@m, za)-(2— L)
for x k™" (k™ (x,,) With j=m, m—+1, ----,2m—1

0 for other x on 0,X .

Then we have f,=F” and

1 Fl 2 | Fllem ()] = [F B (@) g

7(2m, xm)
_ 1 _ ™)l < @
lr(m, z)l 1T ™x,) — b

by using (C1) and (C2).
By Lemma 1, T: =¢T"¢"! is a lattice homomorphism of F. By using
the relation (*), we get

| 77 fu— 2 f ull =s0D{| 7 () F (@) — Af )] ; @ & Jg k= (K™ (@)}

—max @m=4,%) 1 _ mb* 1

osism y(2m, Xn) M a m

So by letting m—oo, we obtain that 21 belongs to the approximate point
spectrum of T”. Since o(T")NI =a(T)NT =o(T)NI", this leads to a con-
tradiction to (C3), Therefore for any n,= N, there eixsts m,= N such that
sup {I 7"zl ; mZm, © € Neo} =1/ms. Il

COROLLARY. For ng, n,s N, put

By, = {2 €8.X s sup | T > o} .

MZNgy

Then for any ne N, there exists me= N such that

sup {r(x) ; £ € By, my} <00 .

PROOF. Suppose that there exists n,=N such that for any me N,
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there exists %€ Bnjsm+1 such that »(x,)>2m-+1. This implies |7""x,|
=1/nd. So in the same way as the proof of lemma 3, this leads to a
contradiction to (C3). Therefore for any n<N, there exists my= N such
that sup {r(x); £ € By n,} < . /!

Put
Ny={x€9,X; lim | T"x| =0} .

‘Then lemma 3 implies that N.CN, Furthermore the next lemma shows
that the set {n(x);x<0d,X\N, is bounded.

LEMMA 4. i) For any x€0,X\N, we have
r(n(x), Px)=1.
ii) There exists M, such that
sup (n(x); €0, X\NJ=M,.

PROOF. i) For x€0d,X\N, n(x) and »(z) are finite numbers and we
have a relation:

T/(s-n(x)+p(.r))x:7.(p(x)} 90) T/s-n(.r)Px
=7(p(2), ©)-(y(n(z), Pz))’Px  for any s€N.
So the condition (C2) implies y(n(x), Px)=1.

ii) Since o¢(T) is closed, (C3) implies that there exist ¢; and ¢, such
that 0<¢;<e <1 and
{exp (2710) ; ;<O <coy Cp(T) (=the resolvent set of T). (**)
Put My=1/(¢c;—¢,). Since for any 5=0,1, ----, n(x)—1, exp ((2xt/n(x))j) be-
longs to P,(7') by i) and lemma 2, the relation (**) implies that n(x) is
less than M, for any z<0d,X\N,. /]

Let M be the least common multiple of the set {n(x); z€d. X\Ny.
‘Then M is a finite number by lemma 4 and the following is easily ob-
‘tained.

LEMMA 5. For any x€d,.X\N,, we have
i) k™(Px)=Px and 7y(M, Px)=1,
ii) P(ki(x))=k(Px) for any jE N,
iii) k™ (x)=Px and 7(px), z)=7(mM, x) for sufficiently large m < N.

LEMMA 6. Let f be an element of K satisfying f(x)=0 for all x< N,
Put
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g(z)=7r(p(x), z)-f(Px)  for <3, X\N,
9(x)=0  for x=N,.

and
Then we have g=E and g(x)=lim T™%f(x) for any x<0,X.

PROOF. For any z<4d,X\N, we have

lim 7% f ()= lim r(mM, x)-f (™" (2))

NMe—oco

=r(p(x), ) f(Px)=g(x) .
By corollary to lemma 3, for any n< N, there is m,= N such that ¢,: =
sup {r(x) ; * € Byn, is finite. Let b, be an integer such that M-b,=c, m,.
Let j=b,. Then for any x< B, n, We have k’¥(x)=Px and g(x)=T""f(x).
For any #€0.X\B, ., we have |T"/¥z|<1/n and Jg(oc)léjsg)p [T f ()] <
A/n)1fl. So we have for j=b,, "

|77 f—gl = sup {| T7F (@) 9(2)| ; ©E€3,X\Bon} = =11 .

Therefore ¢ is the limit of a norm convergent sequence {T7¥f} of E and
g belongs to E. /]

We recall that a convex subset F' of X is said to be a face if given
z,yeX and 0<a <1l with ax+(Q—a)yel, it follows that x, y=F.

LEMMA 7. Denote the smallest face of X contarning x< X by F(x).
Then x,&N, implies F (x,)N\0,XC N,.

PROOF. It is easily seen that F'(x,) is the set {y= X ; y=cx, for some
¢>0}. For y=F (x))N0,X there is some ¢>0 such that y=cxz, Since 7"
is positive, we have 0= T'"y<c-T'"x,. Therefore 0= [T ™y|=c|T ™x,| for
any n<N. Hence x,= N, implies y< N,. !/

A linear subspace I of E is said to be an <deal if it has the pro-
perties:

(i) O0=f=g<I implies fel.

(ii) If fel, then there is some g=Il with g=f, —f.
The set {1; |A|=7r(T)NP,T) is called the peripheral point spectrum of T,
where 7(7T') is the spectral radius of 1T. Now we have the main results.

THEOREM 1. Let E be a simplex space such that inf {||z];
=0, X\{0}}>0 and T be a simplex homomorphism of E satisfying v(T)=1,
sup |77 < oo and o(T)NT+I". Suppose 8,XDN\N,, where Ny={r<0d,X;
lim | T"x|=0}. Put I={feE; f(x)=0 for all =Ny and A={fel;

N -—o0
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F@)=7(p(x), )-f(Px) for any x<d,X\N,}, where P and p(x) are defined
before lemma 3. Then we have

1) I 1s a T-invariant closed ideal of E.

ii) A is a T-invariant simplex subspace® of E, which contains every
eigenfunctions pertaining to the peripheral point spectrum of T.

iii) The restriction T; of T to I is uniformly ergodic simplex homo-
morphism and PT )INT=P(T)NnI.

iv) The restriction T4 of T to A is a simplex isomorphism and we
have T M =1,%, where M is the number defined before Lemma 5.

PROOF. i) If xeN,N(0.X\0.X), the assumption 9, XDN,\N, implies
xzeN, By lemma 7, F(x)n9,XCN, So the convex closure of N, is a
closed face of X [1, Problem 28.7] and I is a closed ideal of E. Since
x < N, implies k(x)e N,, I is T-invariant.

ii) In order to show that A is a simplex space, it is enough to show
that A is a regular ordered Banach space with the Riesz separation pro-
perty of type M as described in §2. At first, we show that A has the
Riesz separation property. Let g, g, f1, i€ A satisfy g, .=/, fo. Since
E has the Riesz separation property, there exists &= FE such that g, g,.=
h<fi, fo. So hel. Put

- r(p(x), 2)-h(Px)  for x§,X\N,
h(x)=
for xeN,.
Then by Lemma 6, heE. TFor any z<3,X\N,, h(Pz)=h(Pz) holds by
Lemma 4. Therefore we have heA. It is easily seen that g, gggﬁ
=fi f.. So A has the Riesz separation property.

Next we show that A is regular. For fe A, there exists h=I such
that h=f, —f since I is an ideal of E by i). By Lemma 6, we have
he: =lim T'""he A and h,=f, —f. Put

o #(x)=inf {h(x); he E, h=f, —f}
and
o(h)=inf {h(x); he A, h=f, —f} (**%)

for all xeX. Then ¢ is a bounded function on X and ¢(x)=0 for any
xe N, Tt is clear that ¢=¢=0 and ¢ is upper semi-continuous affine on
X and ¢(x)=|f(x)| for any x=d.X, since X is a simplex [1, § 28]. Since
A has the Riesz separation property, the set {hesd; h=f, —f} is directed
downward and so ¢ is upper semi-continuous affine on X. If ¢+#¢, there

2) A subspace A of E is said to be a simplex subspace if A itself is a simplex
space.

8) I, is the identity operator in A.
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exists x,=0,X\N, such that ¢(x¢)>¢(x,) by [8, Lemma 1]. Then we get
P(Pmo) = {r (p(x), 0}~ P(w0) > {r (p(@), T0)} ™" - $(o)
={r(p(@), @)} '+ | flwo)| = A (Pro) | = $(Py)
by using Px,=0.X. So there exists e >0 such that ¢(Pxg)—ey> d(Px,). Put

0 .’X;EN()
g(x)= ¢(P900)“_50 x=Pux,
ol x & X\(Ny\J{Pzy}) .

Then ¢ is a lower semi-continuous concave function on X and g=¢. By
[1, 28.6 (vii)], there exists h=F such that g=h=¢. Then hel. So by
lemma 6, we have h,: :}11;{1 T'¥he A. TFurthermore we have h,=f, —f
and ho(Pxo)=h(Pxe)=g(Px,)=¢(Px,)—e. This is a contradiction to (**%*).
Therefore ¢=¢. So for any ¢>0 and for any z=0,X we can find h,= A
such that %,>¢ and ¢(x)>h.(x)—e. Since 6,X is compact and A has the
Riesz separation property, we have g, A such that go=¢=f, —f and | gl
< |gll+e=Ifll+e. So A is a regular ordered Banach space. We can
show that A is of type M in a similar way. Therefore A is a simplex
space.
For fe A, we have Tf= A by using the relation:

Tf (x)=7(x)-f (k(x)=r(p(x)+1, x)- f (Pk(x))
=y(p(x), x)- Tf (Px) for any z<6,X\N,.

So A is a T-invariant simplex subspace of FE.

Suppose Tf=af, |a|=1. Then o(T")NI =c(T)NI +I" and the period-
icity of o(T”) [5, V.4.4] imply that there exist p and qEN such that a=
exp ((¢/p) 2r1). We have

fT'Pig)=T?f (x)=f(x) for all jeN.
So f(x)=0 holds for all x=N, For any x<d.X\N, we have

F@)=T7?Df (x)=7r(p-p(x), x)-f (P ?(x))
=y(p(x), z)-f(Pz) by Lemma 6.

Therefore f< A.
iii) Suppose feI. Then g¢g=lim T¥f exists as an element of E by

J—soo

Lemma 6. Moreover, in the proof of Lemma 6, we have that for any
n € N, there exists b, = N such that | TV¥f—g| < (2/n)|f]l for any 7=b,, which
implies that 7,” is mixing and 7, is uniformly ergodic. P,(T)NIT'=
PAT;)NI" follows from ii) since I contains A.
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iv) For any fe A and any x<3,X\N, we have
Tf(x)=7(M, x)-f (k*(x))
=7(M, ) y(p(x), k¥ (2)) - f (PE¥(x))
=7(p(x)+ M, x)-f (Px)=r(p(x), x)- [(Pz)
=f(x) .

Therefore T,”=1I1, and T, is a uniformly ergodic, simplex isomorphism
of A. /]

We recall that a subset SCC is said to be cyclic if a€S, a=|all im-
plies |a|2’€ S for all je Z.
As for the peripheral point spectrum, we have

THEOREM 2. Let E be a simplex space such that inf {|z] ;
x<0,X\{0}}>0 and T be o simplex homomorphism of E satisfying r(T)=1,
sup|| T <o and o(T)NL#I. Suppose 0. XDN\N, where N,={x<0,X;
im | T™x||=0}. Then the peripheral point spectrum of T s cyclic. '

n—oco

PrOOF. Suppose Tf=af, |a|=1 and feFE. Then by Theorem 1, f
belongs to A defined at Theorem 1 and 7,%¥=1,. By the spectral mapping
theorem, 2€¢(T) implies 2¥=1. With this fact and by [7, Theorem 3 and
Theorem 5], it follows that (T ,)NI" is cyclic and consists of poles of
R(2, T4). Hence for any j= N, there exists g;= A such that T,9,=a’g;.
Therefore Tg¢;=a’g; and g,€FE, which shows that the peripheral point
spectrum of 7' is cyclic. /]

If T is a Markov operator. the above theorems can be rewritten as
follows.

COROLLARY. Let E be a simplex space with the order unit 1 and T
be a sitmplex homomorphism of E such that Tl=1 and o(T)N[+TI.
Then T is uniformly ergodic and the peripheral point spectrum of T 1is
cyclic.

If we omit the condition 9, XDN,\N, in Theorem 2, the peripheral
point spectrum is not necessarily cyclic as shown in the following example.

EXAMPLE. Let K be the subset
(1,2,8, U U [3+2), 4+2/]
of R and E be the space
. 1 . . .
{reC®); £@+2)=51F()+F G+, 5=1, 2}
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Let T be defined by
f(x+1) r=1,2,3
F@) =4
(6—a)f(z+2) 5=x=6
B—z)f(x—2)  T=2=8.

Tf(x)=

Then FE is a simplex space, T is a simplex homomorphism of £, 90,X=

(K\G,7) and Ny= U (3-2j,4+2]]. Therefore No= U [3+2j,4+2/] and
. J= Jj=1
9. XHN\Np. Let

I x=1,2,34
Jo(x)=
0 re[5,8]NK,

where ¢ is the imaginary unit. ‘
Then fyeE and Tf,=14-f;,. So a=1 belongs to the point spectrum of
T. But a’=7"=—1 does not belong to the point spectrum of 7.
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