On a Simplex Homomorphism, II

Fukiko Takeo

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received April 10, 1984)

§ 1. Introduction.

In [8], we defined a simplex homomorphism T of a simplex space E, whose second adjoint operator is a lattice homomorphism, and we investigated some properties of a simplex homomorphism T. It can be expressed with a mapping $k: K \rightarrow K$ and a function γ on K as $Tf(x) = \gamma(x)f \circ k(x)$ for any $f \in E$, where K is a subset of the state space of E. In this paper, by assuming some conditions, we shall investigate the behavior of the mapping k (Lemma $1\sim4$) and we shall show that there is a T-invariant ideal I to which the restriction T_I of T is uniformly ergodic and $P_{\sigma}(T) \cap \Gamma$ $=P_{\sigma}(T_I)\cap\Gamma$. We also show that there is a T-invariant simplex subspace A to which the restriction T_A of T is a simplex isomorphism with $T_A{}^n = I_A$ for some $n \in \mathbb{N}$ and $P_{\sigma}(T) \cap \Gamma = P_{\sigma}(T_A) \cap \Gamma$ (Theorem 1). By using this result, we show that $P_{\sigma}(T) \cap \Gamma$ is cyclic if T is a simplex homomorphism and satisfies some conditions (Theorem 2). In case of a lattice homomorphism T, $P_{\sigma}(T) \cap \Gamma$ is always cyclic [5, V. 4.2 Corollary 2]. As for a simplex homomorphism, we shall give a counter example which shows that the peripheral point spectrum of a simplex homomorphism is not necessarily cyclic.

§ 2. Simplex homomorphism.

An ordered Banach space E is said to be a *simplex space* if its dual space is an AL-space [3]. Due to E. B. Davies [2, Theorem 4.4], a simplex space is a regular ordered Banach space with the Riesz separation property of type M. An ordered Banach space E is said to be regular if it has the properties

- (i) if $f, g \in E$ and $-f \le g \le f$, then $||g|| \le ||f||$
- (ii) if $f \in E$ and $\varepsilon > 0$, then there is some $g \in E$ with $g \ge f$, -f and $\|g\| \le \|f\| + \varepsilon$.

E is said to have the *Riesz separation property* if $a, b, c, d \in E$ and $a, b \le c, d$ imply the existence of $f \in E$ with

$$a, b \leq f \leq c, d$$
.

E is said to be of type M if for any non-negative elements f, g of E and any $\varepsilon > 0$, there exists $h \in E$ such that

$$h \ge f, g$$
 and $||h|| \le \max\{||f||, ||g||\} + \varepsilon$.

Let X be the set $\{x \in E' : x \ge 0, ||x|| \le 1\}$ endowed with the weak*topology. Then X is a simplex and E may be identified with $A_0(X)$, the space of all continuous affine functions on X vanishing at 0. For each $x \in X$, there is a unique maximal representing measure μ_x on X supported by $\overline{\partial_{e}X}$ (the weak*-closure of the set $\partial_{e}X$ of all extreme points of X). By using this measure, we may further identify E [4, Theorem 3.3] with the space $A_0(\overline{\partial_e X})$ (={ $f \in C(\overline{\partial_e X})$; $f(x) = \int f d\mu_x$ for all $x \in \overline{\partial_e X}$ and f(0) = 0}).

We call $T \in \mathfrak{L}(E)$ a simplex homomorphism if for any $f, g \in E$ and any $x \in \partial_e X$, there exists $h \in E$ such that $h \ge f$, g and $Th(x) = \max \{Tf(x), Tg(x)\}$. Then by [8, Theorem 2], there are a function $\gamma(x)$ on $\overline{\partial_e X}$ with $0 \le \gamma(x) \le$ ||T|| and a mapping $k: \overline{\partial_e X} \to \overline{\partial_e X}$ with $k(\partial_e X) \subset \partial_e X$ satisfying

$$Tf(x) = \gamma(x) \cdot f \circ k(x)$$
 for any $f \in E$

and

$$k(x_{\alpha}) = k(x'_{\alpha})$$
 if $x_{\alpha} = c_{\alpha}x'_{\alpha}$ for some $c_{\alpha} > 0$

 $k(x_\alpha)\!=\!k(x_\alpha')\qquad\text{if }x_\alpha\!=\!c_\alpha x_\alpha'\text{ for some }c_\alpha\!>\!0\;.$ Put $\gamma(n,x)\!=\!\prod\limits_{j=0}^{n-1}\gamma(k^j\!(x))$ for any $x\!\in\!\overline{\partial_e X}\!.$ Then we have

$$T^n f(x) = \gamma(n, x) \cdot f \circ k^n(x)$$
 for any $f \in E$.

Let E_1 be the smallest Banach sublattice of E'' containing E and let F be the space $\{f \in C(\overline{\partial_e X}) : f(x_\alpha) = c_\alpha f(x'_\alpha) \text{ for all } \alpha \in \Delta\}$, where $\{(x_\alpha, x'_\alpha, c_\alpha)\}_{\alpha \in \Delta}$ is a subset of $\overline{\partial_e X} \times \overline{\partial_e X} \times [0, 1]$ consisting of all the triple $(x_\alpha, x'_\alpha, c_\alpha)$ such that $f(x_{\alpha}) = c_{\alpha} f(x'_{\alpha})$ holds for any $f \in E$. Then there is a lattice isomorphism ϕ of E_1 onto F [6, Theorem 1] and we have

LEMMA 1. Let T be a simplex homomorphism of E. Then for any $g \in F$, $\gamma \cdot g \circ k$ belongs to F and $\tilde{T} := \phi T'' \phi^{-1}$ is a lattice homomorphism of F.

By [6, Theorem 2], a simplex homomorphism keeps E_1 invariant. So $g \in F$ implies $T'' \phi^{-1} g \in E_1$ and $\phi T'' \phi^{-1} g \in F$. Since T'' is a lattice homomorphism of E'' [8, Theorem 1] and ϕ is a lattice isomorphism, $\tilde{T} := \phi T'' \phi^{-1}$ is a lattice homomorphism.

Peripheral point spectrum.

Hereafter let E be a simplex space satisfying the condition (C1) inf $\{\|x\| : x \in \overline{\partial_e X} \setminus \{0\}\} = a > 0$

and T be a simplex homomorphism of E such that

(C2)
$$\sup_{n} \|T^n\| = b < \infty$$

and

(C3)
$$\sigma(T) \cap \Gamma \neq \Gamma$$
,

where $\sigma(T)$ is the spectrum of T and $\Gamma = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$.

First we show some lemmas.

LEMMA 2. Let $x_0 \in \overline{\partial_e X}$ satisfy $k^n(x_0) = x_0$ for some $n \in \mathbb{N}$ and $k^j(x_0) \neq k^m(x_0)$ for $0 \leq j < m \leq n-1$. Put $c = (\gamma(n, x_0))^{1/n}$. If $c \neq 0$, then $c \cdot \exp((2\pi i/n)j)$ belongs to the point spectrum of T' for any $j \in \mathbb{N}$.

PROOF. Put

$$\mu = x_0 + \sum_{m=1}^{n-1} \gamma(m, x_0) \left(\frac{1}{c} \cdot \exp\left(-\frac{2\pi i}{n} j \right) \right)^m \cdot k^m(x_0)$$
.

Then $\mu \in E'$, $\mu \neq 0$ and we get

$$T'\mu = \left(c \cdot \exp\left(\frac{2\pi i}{n}j\right)\right)\mu$$

by using the relation $T'(k^m(x_0)) = \gamma(k^m(x_0)) \cdot k^{m+1}(x_0)$. //

Put

$$N_{\infty} = \{x \in \overline{\partial_e X} ; k^j(x) \neq k^m(x) \quad \text{if } j \neq m\}.$$

For $x \in \overline{\partial_e X} \setminus N_{\infty}$, put

$$r(x) = \min \{r \in \mathbb{N}; k^r(x) = k^s(x) \text{ for some } s \in \mathbb{N} \cup \{0\} \text{ with } r > s\}$$

$$s(x) = \min \{s \in \mathbb{N} \cup \{0\}; k^r(x) = k^s(x) \text{ for some } r \in \mathbb{N} \text{ with } r > s\}$$

$$n(x) = r(x) - s(x)$$

and $p(x) = \min \{ p \cdot n(x) ; p \cdot n(x) \ge s(x), p \in \mathbb{N} \}.$

Define the mapping $P: \overline{\partial_e X} \setminus N_\infty \to \overline{\partial_e X} \setminus N_\infty$ by $Px = k^{p(x)}(x)$.

Then we have $k^{n(x)}(Px) = Px$. The next lemma shows that $||T'^nx||$ is uniformly decreasing to 0 on N_{∞} .

LEMMA 3. For any $n \in \mathbb{N}$, there exists $m_0 \in \mathbb{N}$ such that

$$\sup \{ \| T'^m x \| \; ; \; x \in N_{\infty}, \; m \ge m_0 \} \le \frac{1}{n} \; .$$

PROOF. Suppose there exists $n_0 \in \mathbb{N}$ such that for any $m' \in \mathbb{N}$ there exist m''(>2m'+1) and $x_{m'} \in \mathbb{N}_{\infty}$ satisfying $||T'^{m''}x_{m'}|| > 1/n_0$. By the relation

$$\|T'^{m''}x_{m'}\| > \frac{\|T'^{m''+1}x_{m'}\|}{\|T'\|} \ge \frac{\|T'^{m''+1}x_{m'}\|}{b},$$

we can choose $m \ (>m')$ and $x_m \ (=x_{m'})$ satisfying

$$||T'^{2m}x_m|| \geq \frac{1}{n_0 b}.$$

Then we have

$$\gamma(2m, x_m) = \frac{\|T'^{2m}x_m\|}{\|k^{2m}(x_m)\|} \ge \frac{1}{n_0 b}.$$
 (*)

For any $\theta \in \mathbf{R}$, put $\lambda = \exp(i\theta)$.

We shall define a function f_m on $\overline{\partial_e X}$ by

$$f_m(x) = \begin{cases} \{\gamma(2m-j,x)/\gamma(2m,x_m)\} \cdot \frac{j}{m} \cdot \lambda^j \\ \text{for } x \in k^{-2m+j}(k^{2m}(x_m)) \text{ with } j=1,2,\cdots,m-1 \\ \{\gamma(2m-j,x)/\gamma(2m,x_m)\} \cdot \left(2-\frac{j}{m}\right) \cdot \lambda^j \\ \text{for } x \in k^{-2m+j}(k^{2m}(x_m)) \text{ with } j=m,m+1,\cdots,2m-1 \\ 0 \text{ for other } x \text{ on } \overline{\partial_e X} \,. \end{cases}$$

Then we have $f_m \in F''$ and

$$||f_{m}|| \ge |f_{m}(k^{m}(x_{m}))| = \left| \frac{\gamma(m, k^{m}(x_{m}))}{\gamma(2m, x_{m})} \lambda^{m} \right|$$

$$= \frac{1}{|\gamma(m, x_{m})|} = \frac{||k^{m}(x_{m})||}{||T'^{m}x_{m}||} \ge \frac{a}{b}$$

by using (C1) and (C2).

By Lemma 1, $\tilde{T}:=\phi T''\phi^{-1}$ is a lattice homomorphism of F. By using the relation (*), we get

$$\begin{split} \|\tilde{T}''f_m - \lambda f_m\| &= \sup\{|\gamma(x)f_m(k(x)) - \lambda f_m(x)| \; ; \; x \in \bigcup_{j=0}^{2m} k^{-2m+j}(k^{2m}(x_m))\} \\ &= \max_{0 \leq j \leq 2m} \frac{\gamma(2m-j, x)}{\gamma(2m, x_m)} \cdot \frac{1}{m} \leq \frac{n_0 b^2}{a} \cdot \frac{1}{m} \; . \end{split}$$

So by letting $m\to\infty$, we obtain that λ belongs to the approximate point spectrum of \tilde{T}'' . Since $\sigma(\tilde{T}'')\cap \Gamma=\sigma(\tilde{T})\cap \Gamma=\sigma(T)\cap \Gamma$, this leads to a contradiction to (C3), Therefore for any $n_0\in \mathbb{N}$, there exists $m_0\in \mathbb{N}$ such that $\sup\{\|T'^mx\| \mid m\geq m_0, x\in \mathbb{N}_\infty\}\leq 1/n_0$.

COROLLARY. For $n_1, n_2 \in \mathbb{N}$, put

$$B_{n_1,n_2} = \left\{ x \in \overline{\partial_e X} ; \sup_{m \ge n_2} \|T'^m x\| > \frac{1}{n_1} \right\}.$$

Then for any $n \in \mathbb{N}$, there exists $m_0 \in \mathbb{N}$ such that

$$\sup \{r(x); x \in B_{n,m_0}\} < \infty$$
.

PROOF. Suppose that there exists $n_0 \in \mathbb{N}$ such that for any $m \in \mathbb{N}$,

there exists $x_m \in B_{n_0,2m+1}$ such that $r(x_m) > 2m+1$. This implies $||T'^{2m}x_m|| \ge 1/n_0 b$. So in the same way as the proof of lemma 3, this leads to a contradiction to (C3). Therefore for any $n \in \mathbb{N}$, there exists $m_0 \in \mathbb{N}$ such that $\sup \{r(x) : x \in B_{n,m_0}\} < \infty$.

Put

$$N_0 = \{x \in \overline{\partial_e X}; \lim_n \|T'^n x\| = 0\}.$$

Then lemma 3 implies that $N_{\infty} \subset N_0$. Furthermore the next lemma shows that the set $\{n(x) : x \in \overline{\partial_e X} \setminus N_0\}$ is bounded.

LEMMA 4. i) For any $x \in \overline{\partial_e X} \setminus N_0$, we have $\gamma(n(x), Px) = 1$.

ii) There exists Mo such that

$$\sup \{n(x) ; x \in \overline{\partial_e X} \setminus N_0\} \leq M_0$$
.

PROOF. i) For $x \in \overline{\partial_e X} \setminus N_0$, n(x) and r(x) are finite numbers and we have a relation:

$$T'^{(s \cdot n(x) + p(x))} x = \gamma(p(x), x) \quad T'^{s \cdot n(x)} P x$$

$$= \gamma(p(x), x) \cdot (\gamma(n(x), Px))^s P x \quad \text{for any } s \in \mathbf{N}.$$

So the condition (C2) implies $\gamma(n(x), Px) = 1$.

ii) Since $\sigma(T)$ is closed, (C3) implies that there exist c_1 and c_2 such that $0 < c_1 < c_2 < 1$ and

$$\{\exp(2\pi i\theta); c_1 < \theta < c_2\} \subset \rho(T) \ (= \text{the resolvent set of } T).$$
 (**)

Put $M_0=1/(c_2-c_1)$. Since for any $j=0,1,\dots,n(x)-1$, $\exp((2\pi i/n(x))j)$ belongs to $P_{\sigma}(T')$ by i) and lemma 2, the relation (**) implies that n(x) is less than M_0 for any $x \in \overline{\partial_e X} \setminus N_0$.

Let M be the least common multiple of the set $\{n(x); x \in \overline{\partial_e X} \setminus N_0\}$. Then M is a finite number by lemma 4 and the following is easily obtained.

LEMMA 5. For any $x \in \overline{\partial_e X} \setminus N_0$, we have

- i) $k^{M}(Px) = Px$ and $\gamma(M, Px) = 1$,
- ii) $P(k^{j}(x)) = k^{j}(Px)$ for any $j \in \mathbb{N}$,
- iii) $k^{mM}(x) = Px$ and $\gamma(p(x), x) = \gamma(mM, x)$ for sufficiently large $m \in \mathbb{N}$.

LEMMA 6. Let f be an element of E satisfying f(x)=0 for all $x \in N_0$. Put and

$$g(x) = \gamma(p(x), x) \cdot f(Px)$$
 for $x \in \overline{\partial_e X} \setminus N_0$
 $g(x) = 0$ for $x \in N_0$.

Then we have $g \in E$ and $g(x) = \lim_{m \to \infty} T^{mM} f(x)$ for any $x \in \overline{\partial_e X}$.

PROOF. For any $x \in \overline{\partial_e X} \setminus N_0$, we have

$$\lim_{m \to \infty} T^{mM} f(x) = \lim_{m \to \infty} \gamma(mM, x) \cdot f(k^{mM}(x))$$
$$= \gamma(p(x), x) \cdot f(Px) = g(x).$$

By corollary to lemma 3, for any $n \in \mathbb{N}$, there is $m_0 \in \mathbb{N}$ such that $c_n := \sup \{r(x) : x \in B_{n,m_0}\}$ is finite. Let b_n be an integer such that $M \cdot b_n \geq c$, m_0 . Let $j \geq b_n$. Then for any $x \in B_{n,m_0}$, we have $k^{jM}(x) = Px$ and $g(x) = T^{jM}f(x)$. For any $x \in \overline{\partial_e X} \setminus B_{n,m_0}$, we have $\|T'^{jM}x\| \leq 1/n$ and $|g(x)| \leq \sup_{j \geq b_n} |T^{jM}f(x)| \leq (1/n)\|f\|$. So we have for $j \geq b_n$,

$$\|\,T^{j\,\mathbf{M}}f-g\,\|=\,\sup\,\{|\,T^{j\,\mathbf{M}}f\,(x)-g(x)|\;;\;\;x\,\in\,\overline{\partial_{\,\mathbf{e}}X}\,\backslash\, B_{n,\,m_0}\}\,\leqq\,\frac{2}{n}\,\|f\|\;.$$

Therefore g is the limit of a norm convergent sequence $\{T^{jM}f\}$ of E and g belongs to E.

We recall that a convex subset F of X is said to be a *face* if given $x, y \in X$ and $0 < \alpha < 1$ with $\alpha x + (1-\alpha)y \in F$, it follows that $x, y \in F$.

LEMMA 7. Denote the smallest face of X containing $x \in X$ by F(x). Then $x_0 \in N_0$ implies $F(x_0) \cap \overline{\partial_e X} \subset N_0$.

PROOF. It is easily seen that $F(x_0)$ is the set $\{y \in X : y \le cx_0 \text{ for some } c > 0\}$. For $y \in F(x_0) \cap \overline{\partial_e X}$ there is some c > 0 such that $y \le cx_0$. Since T' is positive, we have $0 \le T'^n y \le c \cdot T'^n x_0$. Therefore $0 \le \|T'^n y\| \le c \|T'^n x_0\|$ for any $n \in N$. Hence $x_0 \in N_0$ implies $y \in N_0$.

A linear subspace I of E is said to be an ideal if it has the properties:

- (i) $0 \le f \le g \in I$ implies $f \in I$.
- (ii) If $f \in I$, then there is some $g \in I$ with $g \ge f$, -f. The set $\{\lambda : |\lambda| = r(T)\} \cap P_{\sigma}(T)$ is called the *peripheral point spectrum of T*, where r(T) is the *spectral radius of T*. Now we have the main results.

THEOREM 1. Let E be a simplex space such that $\inf\{\|x\|; x \in \overline{\partial_e X} \setminus \{0\}\} > 0$ and T be a simplex homomorphism of E satisfying r(T) = 1, $\sup \|T^n\| < \infty$ and $\sigma(T) \cap \Gamma \neq \Gamma$. Suppose $\partial_e X \supset \overline{N_0} \setminus N_0$, where $N_0 = \{x \in \overline{\partial_e X}; \lim \|T^n x\| = 0\}$. Put $I = \{f \in E; f(x) = 0 \text{ for all } x \in N_0\}$ and $A = \{f \in I; f(x) = 0 \text{ for all } x \in N_0\}$

 $f(x) = \gamma(p(x), x) \cdot f(Px)$ for any $x \in \overline{\partial_e X} \setminus N_0$, where P and p(x) are defined before lemma 3. Then we have

- i) I is a T-invariant closed ideal of E.
- ii) A is a T-invariant simplex subspace²⁾ of E, which contains every eigenfunctions pertaining to the peripheral point spectrum of T.
- iii) The restriction T_I of T to I is uniformly ergodic simplex homomorphism and $P_{\sigma}(T_I) \cap \Gamma = P_{\sigma}(T) \cap \Gamma$.
- iv) The restriction T_A of T to A is a simplex isomorphism and we have $T_A{}^M = I_A{}^{3)}$, where M is the number defined before Lemma 5.
- PROOF. i) If $x \in \overline{N}_0 \cap (\overline{\partial_e X} \setminus \partial_e X)$, the assumption $\partial_e X \supset \overline{N}_0 \setminus N_0$ implies $x \in N_0$. By lemma 7, $F(x) \cap \overline{\partial_e X} \subset N_0$. So the convex closure of \overline{N}_0 is a closed face of X [1, Problem 28.7] and I is a closed ideal of E. Since $x \in N_0$ implies $k(x) \in N_0$, I is T-invariant.
- ii) In order to show that A is a simplex space, it is enough to show that A is a regular ordered Banach space with the Riesz separation property of type M as described in § 2. At first, we show that A has the Riesz separation property. Let $g_1, g_2, f_1, f_2 \in A$ satisfy $g_1, g_2 \leq f_1, f_2$. Since E has the Riesz separation property, there exists $h \in E$ such that $g_1, g_2 \leq h \leq f_1, f_2$. So $h \in I$. Put

$$\widetilde{h}\left(x
ight)\!=\!\left\{egin{array}{ll} \gamma(p(x),\,x)\!\cdot\!h(Px) & \quad ext{for } x\!\in\!\overline{\partial_{\pmb{e}}X}\!\setminus\!N_0 \ 0 & \quad ext{for } x\!\in\!N_0 \,. \end{array}
ight.$$

Then by Lemma 6, $\tilde{h} \in E$. For any $x \in \overline{\partial_e X} \setminus N_0$, $\tilde{h}(Px) = h(Px)$ holds by Lemma 4. Therefore we have $\tilde{h} \in A$. It is easily seen that $g_1, g_2 \leq \tilde{h} \leq f_1, f_2$. So A has the Riesz separation property.

Next we show that A is regular. For $f \in A$, there exists $h \in I$ such that $h \ge f$, -f since I is an ideal of E by i). By Lemma 6, we have $h_0 := \lim_{i \to \infty} T^{jM} h \in A$ and $h_0 \ge f$, -f. Put

$$\phi(x) = \inf \{h(x); h \in E, h \ge f, -f\}$$

and

$$\phi(h) = \inf\{h(x); h \in A, h \ge f, -f\}$$
(***)

for all $x \in X$. Then ϕ is a bounded function on X and $\phi(x)=0$ for any $x \in \overline{N}_0$. It is clear that $\phi \ge \phi \ge 0$ and ϕ is upper semi-continuous affine on X and $\phi(x)=|f(x)|$ for any $x \in \partial_e X$, since X is a simplex $[1, \S 28]$. Since A has the Riesz separation property, the set $\{h \in A; h \ge f, -f\}$ is directed downward and so ϕ is upper semi-continuous affine on X. If $\phi \ne \phi$, there

²⁾ A subspace A of E is said to be a simplex subspace if A itself is a simplex space.

³⁾ I_A is the identity operator in A.

exists $x_0 \in \partial_e X \setminus N_0$ such that $\phi(x_0) > \phi(x_0)$ by [8, Lemma 1]. Then we get

$$\psi(Px_0) = \{\gamma(p(x), x_0)\}^{-1} \cdot \psi(x_0) > \{\gamma(p(x), x_0)\}^{-1} \cdot \phi(x_0)$$

$$= \{ \gamma(p(x), x_0) \}^{-1} \cdot |f(x_0)| = |f(Px_0)| = \phi(Px_0)$$

by using $Px_0 \in \partial_e X$. So there exists $\varepsilon_0 > 0$ such that $\phi(Px_0) - \varepsilon_0 > \phi(Px_0)$. Put

$$g(x) = \left\{ egin{array}{ll} 0 & x \in \overline{N}_0 \ & & & & \\ \phi(Px_0) - arepsilon_0 & x = Px_0 \ & & & & \\ \|\phi\| & & & & & x \in X \setminus (\overline{N}_0 \cup \{Px_0\}) \;. \end{array}
ight.$$

Then g is a lower semi-continuous concave function on X and $g \ge \phi$. By [1, 28.6 (vii)], there exists $h \in E$ such that $g \ge h \ge \phi$. Then $h \in I$. So by lemma 6, we have $h_0 := \lim_{j \to \infty} T^{jM} h \in A$. Furthermore we have $h_0 \ge f$, -f and $h_0(Px_0) = h(Px_0) \le g(Px_0) = \phi(Px_0) - \varepsilon_0$. This is a contradiction to (***). Therefore $\phi = \phi$. So for any $\varepsilon > 0$ and for any $x \in \overline{\partial_e X}$ we can find $h_x \in A$ such that $h_x > \phi$ and $\phi(x) > h_x(x) - \varepsilon$. Since $\overline{\partial_e X}$ is compact and A has the Riesz separation property, we have $g_0 \in A$ such that $g_0 \ge \phi \ge f$, -f and $\|g_0\| \le \|\phi\| + \varepsilon = \|f\| + \varepsilon$. So A is a regular ordered Banach space. We can show that A is of type M in a similar way. Therefore A is a simplex space.

For $f \in A$, we have $Tf \in A$ by using the relation:

$$Tf(x) = \gamma(x) \cdot f(k(x)) = \gamma(p(x) + 1, x) \cdot f(Pk(x))$$

= $\gamma(p(x), x) \cdot Tf(Px)$ for any $x \in \overline{\partial_e X} \setminus N_0$.

So A is a T-invariant simplex subspace of E.

Suppose $Tf = \alpha f$, $|\alpha| = 1$. Then $\sigma(T'') \cap \Gamma = \sigma(T) \cap \Gamma \neq \Gamma$ and the periodicity of $\sigma(T'')$ [5, V. 4.4] imply that there exist p and $q \in \mathbb{N}$ such that $\alpha = \exp((q/p) 2\pi i)$. We have

$$f(T^{\prime pj}x) = T^{pj}f(x) = f(x)$$
 for all $j \in \mathbb{N}$.

So f(x)=0 holds for all $x \in N_0$. For any $x \in \overline{\partial_e X} \setminus N_0$, we have

$$f(x) = T^{p \cdot p(x)} f(x) = \gamma(p \cdot p(x), x) \cdot f(k^{p \cdot p(x)}(x))$$
$$= \gamma(p(x), x) \cdot f(Px) \quad \text{by Lemma 6.}$$

Therefore $f \in A$.

iii) Suppose $f \in I$. Then $g = \lim_{j \to \infty} T^{jM} f$ exists as an element of E by Lemma 6. Moreover, in the proof of Lemma 6, we have that for any $n \in \mathbb{N}$, there exists $b_n \in \mathbb{N}$ such that $\|T^{jM} f - g\| \leq (2/n) \|f\|$ for any $j \geq b_n$, which implies that T_I^M is mixing and T_I is uniformly ergodic. $P_{\sigma}(T) \cap \Gamma = P_{\sigma}(T_I) \cap \Gamma$ follows from ii) since I contains A.

iv) For any $f \in A$ and any $x \in \overline{\partial_e X} \setminus N_0$, we have

$$T^{M}f(x) = \gamma(M, x) \cdot f(k^{M}(x))$$

$$= \gamma(M, x) \cdot \gamma(p(x), k^{M}(x)) \cdot f(Pk^{M}(x))$$

$$= \gamma(p(x) + M, x) \cdot f(Px) = \gamma(p(x), x) \cdot f(Px)$$

$$= f(x).$$

Therefore $T_A{}^M = I_A$ and T_A is a uniformly ergodic, simplex isomorphism of A.

We recall that a subset $S \subset \mathbb{C}$ is said to be *cyclic* if $\alpha \in S$, $\alpha = |\alpha| \lambda$ implies $|\alpha| \lambda^j \in S$ for all $j \in \mathbb{Z}$.

As for the peripheral point spectrum, we have

THEOREM 2. Let E be a simplex space such that $\inf \{\|x\| ; x \in \overline{\partial_e X} \setminus \{0\}\} > 0$ and T be a simplex homomorphism of E satisfying r(T) = 1, $\sup \|T^n\| < \infty$ and $\sigma(T) \cap \Gamma \neq \Gamma$. Suppose $\partial_e X \supset \overline{N_0} \setminus N_0$, where $N_0 = \{x \in \overline{\partial_e X} ; \lim_{n \to \infty} \|T^n x\| = 0\}$. Then the peripheral point spectrum of T is cyclic.

PROOF. Suppose $Tf = \alpha f$, $|\alpha| = 1$ and $f \in E$. Then by Theorem 1, f belongs to A defined at Theorem 1 and $T_A{}^M = I_A$. By the spectral mapping theorem, $\lambda \in \sigma(T)$ implies $\lambda^M = 1$. With this fact and by [7, Theorem 3 and Theorem 5], it follows that $\sigma(T_A) \cap \Gamma$ is cyclic and consists of poles of $R(\lambda, T_A)$. Hence for any $j \in N$, there exists $g_j \in A$ such that $T_A g_j = \alpha^j g_j$. Therefore $Tg_j = \alpha^j g_j$ and $g_j \in E$, which shows that the peripheral point spectrum of T is cyclic.

If T is a Markov operator, the above theorems can be rewritten as follows.

COROLLARY. Let E be a simplex space with the order unit 1 and T be a simplex homomorphism of E such that T1=1 and $\sigma(T) \cap \Gamma \neq \Gamma$. Then T is uniformly ergodic and the peripheral point spectrum of T is cyclic.

If we omit the condition $\partial_e X \supset \overline{N_0} \setminus N_0$ in Theorem 2, the peripheral point spectrum is not necessarily cyclic as shown in the following example.

EXAMPLE. Let K be the subset

$$\{1, 2, 3, 4\} \cup \bigcup_{j=1}^{2} [3+2j, 4+2j]$$

of R and E be the space

$$\left\{ f \in C(K) ; f(3+2j) = \frac{1}{2} \{ f(j) + f(j+2) \}, j=1, 2 \right\}.$$

Let T be defined by

$$Tf(x) = \begin{cases} f(x+1) & x = 1, 2, 3 \\ f(1) & x = 4 \\ (6-x)f(x+2) & 5 \le x \le 6 \\ (8-x)f(x-2) & 7 \le x \le 8 \end{cases}.$$

Then E is a simplex space, T is a simplex homomorphism of E, $\partial_e X \simeq (K \setminus \{5,7\})$ and $N_0 \simeq \bigcup\limits_{j=1}^2 (3+2j,4+2j]$. Therefore $\overline{N}_0 \simeq \bigcup\limits_{j=1}^2 [3+2j,4+2j]$ and $\partial_e X \not\supset \overline{N}_0 \setminus N_0$. Let

$$f_0(x) = \left\{ egin{array}{ll} i^x & x = 1, 2, 3, 4 \ \ 0 & x \in [5, 8] \cap K \, , \end{array}
ight.$$

where i is the imaginary unit.

Then $f_0 \in E$ and $Tf_0 = i \cdot f_0$. So $\alpha = i$ belongs to the point spectrum of T. But $\alpha^2 = i^2 = -1$ does not belong to the point spectrum of T.

References

- [1] G. Choquet, Lectures on Analysis II, Benjamin, New York 1969.
- [2] E.B. Davies, The structure and ideal theory of the predual of a Banach lattice, Trans. Amer. Math. Soc., 131 (1968), 544-555.
- [3] E.G. Effros, Structure in simplexes, Acta Math. 117 (1967), 103-121.
- [4] E.G. Effros, Structure in simplexes II, J. Functional Analysis 1 (1967), 379-391.
- [5] H. H. Schaefer, Banach lattices and positive operators, Berlin-Heiderberg-New York, Springer 1974.
- [6] F. Takeo, On the second dual of a simplex space, Natur. Sci. Rep. Ochanomizu Univ. 33 (1982), 27-36.
- [7] F. Takeo, On the spectrum of positive operators in simplex spaces, J. Fac. Sci. Univ. Tokyo Sect. IA, 30 (1983), 93-109.
- [8] F. Takeo, On a simplex homomorphism, Natur. Sci. Rep. Ochanomizu Univ. 34 (1983), 53-58.