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§0. Introduction. The Fubinian space is a typical example of the
Kahlerian space of constant holomorphic sectional curvature, and locally
coincides with such a Ké&hlerian space. In this paper, we shall study what
forms the geodesics of the Fubinian space take with respect to the Eucli-
dean metric, and shall show a certain representation which has some ana-
logy to Klein’s and Poincaré’s models of the non-Euclidean geometry. T.
Otsuki and Y. Tashiro showed that the geodesics of the Fubinian space
are the Mobius circles in the complex projective space ([1]), but do not
give shape to them in the Kuclidean space. Here we shall investigate
them in the Euclidean sense more precisely.

The author should like to express her hearty gratitude to Prof. Shun-
ichi Tachibana for his advice.

§1. The Fubinian space. In the n-dimensional complex number space
C™ with coordinates z*=uz*+iy*(x*, y*=R), k=1, ----, n, the relations

a*1<a -8> 8;1(8 .8>
1.1 O _=2(9 _;93) 2 __(% 449
(1) 5 T \owt ayt) a7 T\eat | oyt
hold between the real and the complex natural basis.

A vector a in C™ is written as

_ 5 k0 k*i) ko AR*
1.2) a= 3 (a0 a0, A arec,
kE*=n+k, k=1, ----,n).

a is called a real vector if it satisfies
(1.3) AF = A* (complex conjugate).
Then, putting
AF=q*+-1a*", at, e e R,
it holds that
AF'=qa*—1a*",
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_ s % 0 w0

a= > (a P +a W> .
Hence a real vector is a vector in R® identified with C™ naturally. In
the following of this paper, a vector means a real vector, and for a real
vector a, we call (A% A*) satisfying (1.3) its complex component, and
(a*, a*') its real component.

We define the linear transformation J of C™ as an 2n-dimensional real
vector space by

0 0 0 0

J: — L s 7
ox* oyt = oyt ox*

Then the complexification of J (denoted by J again) is the transformation

ai——>'a a»—>—i,a

92" Yok 5z 5z"

and for a vector a, we have

_"-ka__-k*8>_”<_k«.:a k8>
(1.4) Ja~k§1<@A Sat A 2 )T & a P +a oyt )

1. e., the real and complex component of Ja are (1A%, —1A4*) and (—a*’, a*)
respectively.

We call a plane spanned by a vector a and Ja a holomorphic plane
of a.

Let <(,)> be the Euclidean inner product, 4.e., for two vectors a=
(a*, a**)=(A*, A¥) and b=(b*, b*")=(B*, B")
(15) (a, by= k‘i (@*b* +a*b) =5 3 (A*B¥+A"BY)

k=1

Now we define a function S(z, Z) by
(1.6) S D=1+ % 3 'z,
k=1

where & is a real constant. We consider the domain F™:S(z,2)>0, and
introduce a Kéhlerian metric g by
g..*—_—z 0*log S(z, %)
Tk 0202’
1.7
i =Gij s otherwise 0.

{F'", g} is called an m-dimensional Fubinian space, and the surface S(z, 2)=0
its absolute. ,

It is the purpose of this paper to study what forms the geodesics of
the Fubinian space take with respect to the Euclidean metric, provided
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that k/2=—1*<0.

The covariant and contravariant components of the metric tensor ¢
and the Christoffel symbols of the n-dimensional Fubinian space are as
follows :

(1.8) = 5§ I zsi’ g =86, —P2%)

(1.9) ri=%ezvoe).

Let c:2¥=2%t) be a geodesic, where ¢ is a parameter. We draw the
perpendicular with respect to the Euclidean metric from the origin O to
¢, and denote its foot by P. We may assume that ¢t=0 at the point P.
Let a be the unit tangent vector at P in the Euclidean sense, and b the
position vector of P. Denoting the complex component of the vector a
and b by (A% A*) and (B* B*) respectively, we have the relations between
a and b
(1.10) <a, b>= —}Z- ¥ (A*B*+ AMBY=0,

k=1
(1.11) {a, a>:% zn) (AR AR+ AP A®) = ki AR AR =1 .
k=1 =1
We shall investigate the shapes of the geodesics of the Fubinian space

in the two cases, in which b is perpendicular or not in the Euclidean
sense to the holomorphic plane of a.

§2. The geodesics -in the case of <Ja, b>=0. In this case, we
have S A*B¥* =3 A¥B*=0 from <{Ja, b>=0 and <{a, b)>=0.
The differential equation of geodesics

(2.1) 2" 3 M2’ 72’ =0
J. k

can be written in our Fubinian space as follows:

ni__ 2l2 Thzk\ "1
(2.2) 2= — 5 (222N,
k
where ’ is the differentiation with respect to the arc length s measured
from the point P.

Liet us consider the line
(2.3) Z'=At+B®

where t is a function of s satisfying ¢'>0. We shall show that the line
(2.3) satisfies (2.1) with a suitable function ¢ of s.
We differentiate (2.3) by s:
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2.4) 2't= A

(2.5) "= A" .

Using (1.10) and (1.11), and putting b*=>B*B*, we have

(2.6) S(z(t), 2(t)) =1—1*(t"+b%)

on the line (2.3). As S(z,2)>0 holds on this line, it follows that
2.7) 1= 40" >0.

Hence, the range of ¢ is

(2.8) —me<t<my,

where m,=+v1—0Pb/l. Especially at the point t=0, it holds that
(2.9) 1-0°>0

Substituting (2.3), (2.4), (2.5) and (2.6) into (2.2), it follows that

20

Ait// —_— =
1—13(t*+bY)

Attt

and
7t = =20t [{1— (" + b} .

Integrating it and taking account of ¢ >0 and (2.7), we get
logt'=log {1—1*(t*+0bY)}+C
where C is the integral constant. Hence

t{1=P{E+b%)=C, C>0: const..
Rewriting it as

t’< 1 1 >:C, C<0: const.,
t—m, t+my,

we integrate and have

t—m
1 <— °>= D
0g P Cs+

My
Cc<o, D : const.
on taking account of (2.8). As D=0 follows from t(0)=0,

_ t—my — gl
t+my,
holds, and we obtain
(2.10) f=met=¢ 0.
1_[_603
In the next, we shall determine C, using the relation

@.11) 25 g, 4~y at P
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Differentiating (2.11) with respect to s, it follows that
dt m 2Ce"*

ds e
On the geodesic, it holds that

dt _ 72qus
ds ds

AT ey

and

dz M_g_ i
ES\(O)—- 2 mOA at P.

On the other hand we have

0ij s BYB’
i - R t P.
=1 T gy °
Substituting them into (2.11), it follows that
0ij B B/ O 1—12b°
2 { gy ~»}A1AJ ¢ =1,
ZZJ 1-70°* + (1—10°%? 4 [?
from which we obtain
C=—-+2].
Thus we see that the line (2.3) with
1_e—~/§ls
2.12 t=my-————
( ) o 14e Vits

satisfies the equation of geodesics. Since a geodesic is determined uniquely
for a point and a direction, we conclude that the geodesic through the
point P with the direction a is the line.

Next, we shall investigate how the distance between two points on
this line is expressed. Let X, Y be the points of intersection of the line
and the absolute, and t,, t_ be the values of ¢t at X, Y, 7.e. t.=m,, t_.=
—m,. It is easy to see s=+oo if t=¢t.. We take an arbitrary two points
@ and R on this line, and denote the values of ¢ and s at the points by
ty, ts, S, Ss.  The length of QR along the geodesic is s,—s;, and it holds that

1_6—V§Lsi

Ty b2

(‘/i:mo

Hence the non-harmonic ratio (QR, XY) with respect to the parameter ¢

QX /RX _t.—t t_—t,

Y)= —
(@R, XY) QY/ RY t_—t, t,—t,

becomes
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(QR, XY) — e«/ﬁ (S9=87)

in terms of s, and s, and the distance d(Q, R) between @ and R can be
represented as

d(Q, R)=s,—s=(1/v—k) log (QR, XY).

§3. The geodesics of the case of <(Ja,b>+0. At the foot P of
the perpendicular from the origin O to a geodesic, we consider the holo-
morphic plane spanned by a and Ja. The circle formed as the intersec-
tion of this holomorphic plane and the absolute is denoted by O’. We
denote its center by the same letter O’. We consider the circle 4 on this
plane with a center A on the line O’'P and perpendicular to the circle O’.

h=(H*, H¥) denotes the vector O_O>’. Such circle A can be written as

Fig. 1
3.1 z(t)zO_:élJre cost+Ffsint,
where
(3.2) Fera=(F* F")
(3.3) e=Jf=rJa=(E* E*)=GF* —F*).
Then
(3.4) <f, e>:%§(pkEk*+Fk*Ek},
(3.5) FF>=2F*F* =92,
(36) <e, e>::EEkEk*:7~2,
3.7 f, by = %2 (F*H™ + F*HY)

(3.8) e, b = % S (B*H+ B H*,
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hold. From (3.3), (3.7) and (3.8), we have

(3.9) SF*H"=3E¥*H*=0
and

(3.10) SFFHM=F*H*"=0,
and from (3.3), we know

(3.11) SE¥Fr=— i3 FFF = —ip®,

Since O_’?l:ce (¢ is a real constant), we have
5)4:5_)0’%—0_’—;1211—&—% ,

and the equation of the circle A becomes

(3.12) z(t)=h+ce+ecost+fsint.

The condition that the circle O’ and the circle A are perpendicular each
other is expressed as

1P —hi—r*=<0"A, 0" A>=c*

1. e.

(3.13) 1/P—W=(—1)r",
since the radius of the absolute is 1/{*, where
(3.14) c—1>0

and % is the length of A.
We shall show that the circle (3.12) satisfies (2.1) with a suitable
function ¢ of s.

Substituting the equation of the circle A into (2.2) and taking account
of (8.5), (8.6), (3.7), (3.8) and (3.13), we have

(3.15) S(z(t), z2(t))= —2I*7*(1+ccos t) .

From this formula, it follows that the circle A intersects with the abso-
lute at the point satisfying

(3.16) cost=—1/¢,

and at the inside of the absolute

(8.17) 1+ccost<0,

since S>0. Especially at the point ¢=0, it holds that
(3.18) 14+¢<0.

Differentiating (3.12) by the arc length s, we have
2''=(—FKE'sin t+ F* cos t)t’
2" '=(—t"sint—t?cos t)E*+(¢t” cost—t'?sin t)F'* .
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Substituting them into (2.2), it follows that
— 2032 %2k  =21%r*(¢ sin t+1c cos t+1)(— E* sin t+ F'* cos t)t”*

from (3.5), (3.6), (3.9), (3.10) and (3.10) and (3.11). Therefore the equation
(3.2) becomes as follows:

(3.19) (—t" sint—t"?cos t)E*+(t” cos t—t* sin t)F"*

___ccost+i(ccost+1) (

= —FEtsint+F¢cost)t’?.
1+ccost . )

Substituting E*=<F* into (3.19), we obtain two differential equations

(m&w) cos t=0
1+ccost

o sin £ '
t” + &c’g sin t=0.
< 1+ccost

These two equations reduce to the single equation:

3.20 pry_CSint yn_g
(3.20) +1+ccost

Integrating it at the interval where (3.7) is satisfied and assuming t'>0,
we get
logt'—log {—(1+4+ccost)}=C,

where C denotes the integral constant. Hence
(3.21) —t'/(14¢ccost)=C, C>0: const..

In order to integrate it, we put

(3.22) w=tan (¢/2) .
Then
cos t= 1——uj , dt:-%;—,
1+4° 1+
and
(8.28) —m1<u<’m1, mlz\/gji B
from (3.14), (3.17), and (3.18). Substituting them into (3.21) it follows that
2d
- S =Cds, C>0
R =
(14u?) +61+u2
1. €.
2du

_(l—c)(u‘“’—m'f):CdS’ C>0.

Rewriting it as
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. 1 1 > duw  _ C>0
(%'—ml ?/L-l—'ml '\/02—1 Cds, z ’

and integrating it at the interval (8.23), we obtain

~ g oe(— )= VET G
- 1

Hence, putting v¢*—1=a, we have

— UM p-acs C>0
u+m1 » »
a=vc—1.
Solving it for u, we obtain
__p,-aCs
(3.24) w=my C>0.

— M 1+e2Cs’
Therefore it follows that

f,, L1—eme ,
(3.25) t=2tan l(mrl—w> , C>0: const..

In the next, we shall determine the constant C, using the relation
(2.11). It holds that

S(2(0), 2(0)) = —2'r*(1+c) ,

o Dy
9:(2(0), 2(0)) = (1T 0
+ {H" 4+ (c+1)E*}{H+(c+1)E%}
AP (1 +¢)? ’

2 ()= Ft(0)
ds
and

dt _
2L O)==(+1C:

Substituting them into (2.11), and using (3.10) and (3.11). it follows that

- dzi dZ_J ) L'(2 9
= o s 0 = —0"
1= 3 20:,(2(0), 20) 2022 0)= & c*,
from which we conclude
C=vV2l|a.
Thus we see that the circle (3.12) with
- 1—e~2ts
. —2t 1( -—————frﬂ>
(3.26) t an m11+e‘~2 -

satisfies the equation of geodesics. Since a geodesic is determined uni-
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quely for a point and a dlrectlon we conclude that the geodesic through
the point P with the direction a is the circle which is perpendicular to
the circle formed as the intersection of the absolute with the holomorphic
plane of a.

Next, we shall investigate how the distance between two points @, R
on the geodesic is expressed. We take wu as a parameter. Denote the
values of u and s at @ and R by uy, us; 8, and s,. Let X and Y be the
points of intersection of the geodesic and the absolute, and denote the

values of v at X and Y by wu, and u_ respectively, <.e. u.=m,, 4_.=—m,.
The length of QR along the geodesic is s;—s;. It holds that
l_e“a/é_lsi
w1 )
u_—ui:m1<—1~}:2ii> 1=1, 2,
1+6 ~2184

from (3.24). Hence the non-harmonic ratio (QR, XY) with respect to the
parameter u '

(QR XY)—_- Ur— U U_— Uy
’ U-— Uy Ur— Uy

becomes
(QR, XY)= oV~ (s2-sD

in terms of s; and s,, and the distance d(Q, R) can be represented as
d(Q, R)=s,—s,=(1/v'—k) log (QR, XY) .

REMARK. For four points @, R, X, Y on the circle with the center A,
we take the points Q’, R, X', Y’, T and the lines ¢, 7, z, ¥ as in the figure.
Then it holds that

(QR, XY)=(qr, xy)=(Q'R’, X' Y")

P
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by the property of the non-harmonic ratio. Taking L TAQ=t as a parameter
for a point @ on the circle, we have

TQ =2k tan (t/2) , k. the diameter.

Hence it is natural to take 2ku as a parameter in calculating (Q'R’, X'Y")
i.e. (QR, XY). )

§4. The representation of the Fubinian space. The results we
have obtained in the proceeding sections are summarized as follows:

Consider the Fubintan space with 1+ (k/2)X2*2*=0 (k<0) as the ab-
solute. Denote the foot of the perpendicular from the origin O to a geo-
desic by P, the unit tangent vector in the Eucliden sense at P by a, and
the position vector OP by b. Then it holds that <a,b>=0 and

(i) the case of {Ja,b>=0. The geodesic is the line

z=at+b

and the distamce between arbitrary two points A and B on it can be ex-
pressed as

d(A, B)=(1/ v —k) log (AB, XY),
where X, Y, denote the points of intersection of the geodesic and the ab-
solute (see fig. 2).

(i1) the case of <Ja,b>+0. The geodesic is the circle
z=b—rJa+r(Ja cos t+a sin t)

which 18 perpendicular to the circle that is the intersection of the absolute
and the holomorphic plane of a, and the distance between arbitrary two
points A and B on it can be expressed as

d(A, B)=(1/~—k) log (AB, XY),

where X, Y denote the points of intersection of the geodesic and the ab-
solute (see fig. 1).
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On the other hand, the following lemma is well known.

LEMMA 1. For a wvector a on the holomorphic plane of a wvector a’,
the holomorphic plane of a coincides with that of a'.

In general, a plane is called an anti-holomorphic plane if Ja is always
perpendicular to the plane for any vector a on it. We consider the plane
spanned by two vectors a, b satisfying <{Ja, b)=<a, b>=0. Since any vec-
tor @’ in this plane is represented as a linear combination of a and b,Ja’
is represented as that of Ja and Jb. As <b,Ja)>=<b,Jb>=0, it holds that
<b, Ja’>=0 i.e. Ja’' is perpendicular to this plane. Taking account of g¢(,)
=2¢,> at the origin, the following lemma holds.

LEMMA 2. In the Fubinitan space, the plane through the origin
spanned by arbitrary two wvector a, b satisfying {Ja, b>=<a, b>=0 1s an
anti-holomorphic plane (with respect to both the Fubintan and FEuclidean
metric).

In the case of (i), the plane through the origin spanned by a and b is
an anti-holomorphic plane from the view of Lemma 2. On this plane, we
draw thhe perpendicular from the origin to an arbitrary line, and denote
its foot by P’, the unit tangent vector in the Euclidean sense by a’, and
the position vector 6—}—;’ by b’. As Ja' is perpendicular to this plane,
(Ja’,b’>=0 holds. Therefore all the lines on this plane are geodesics.
Furthermore, on this plane, we have seen that the distance between two
points A and B is expressed as

d(A, B)=(1/~/~F) log (AB, X 1),
where X, Y denote the points of intersection of the line through A and B

and the absolute.

On an arbitrary anti-holomorphic plane through the origin, we have
the same statement. Thus the following theorem holds.

THEOREM 1. In the Fubinian space with S(z, 2)=1+(k/2)22"2*=0 as
its absolute, on any anti-holomorphic plane through the origin, the geo-
desics are lines, and the distance d(A, B) between two points A and B 1s
represented as

d(A, B)=(1/~—k) log (AB, XY),

where X, Y denote the points of intersection of the line through A and
B and the absolute.

Therefore, for any anti-holomorphic plane through the origin, it holds
so-called the Klein’s representation of the non-Euclidean geometry.
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Next, we consider the case of (ii). On the holomorphic plane of the
vector a, consider the geodesic through an arbitrary point @ and with a
direction ¢ on the plane. Then they are lines or circles on the holomorphic
plane of ¢, which is that of a from Lemma 1.

Drawing the perpendicular from the origin to a geodesic on the holo-
morphic plane of @, we denote its foot by P’. Let a’ be the unit tangent
vector in the Euclidean sense, and b’ the position vector O_P>’ . If the geo-
desic passes through the points O’, b’ coincides with A’ and is perpen-
dicular to this holomorphic plane. And from (i), the geodesic is a line.
If the geodesic does not pass through O’, since b’ cannot be perpendicular
to the holomorphic plane then, the geodesic is a circle from (ii). Further-
more, on the holomorphic plane, we have seen that the distance between
two points 4 and B is expressed as

d(A, B)=(1/v —k) log (AB, XY),

where X, Y denote the points of intersection of the geodesic and the ab-
solute.

On an arbitrary holomorphic plane, we have the same statement.
Thus the following theorem holds.

THEOREM 2. In the Fubinian space with S(z, z)=1+(k/2)22*2*=0 as
its absolute, let H be any holomorphic plane, and O° the foot of the per-
pendicular from the origin. Then, on H the geodesics through O’ are lines
and the geodesics mot through O are circles which are perpendicular to
the circle of intersection of H and the absolute. The distance between
two points A and B 1is represented as

d(A, B)=(1/~ —k) log (AB, XY),

where X, Y denote the points of intersection of the geodesic and the ab-
solute.

Therefore, for any holomorphic plane, it holds so-called the Poincaré’s
representation of the non-Euclidean geometry.
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