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§0. Introduction.
In her preceding paper [3], the author has considered an operator L which
is a generalization of the differential operators of the form 4+ ﬁ)lai(x)a/axi and,

by means of an abstract method, proved that the existence of nonconstant L-
harmonic function implies the existence of a Green operator G associated with L.

In the present paper, we construct an extension G of the operator G in a
certain function space E, and prove that the inverse G-! of G generates a semi-
group {T;} of operators in E. The result will show the relation between the
contents of the author’s preceding paper [3] and the characterization of abstract
potential operators by K. Yosida [9].

§1. Preliminary notions and some results of the preceding paper [3].

The following assumptions and definitions are mentioned in the author’s
preceding paper [3].

All functions are assumed to be real valued.

Let X be a connected, locally compact and o-compact Hausdorff space, C(X)
be the set of all continuous functions on X, Cy(X) be the set of all bounded
functions in C(X) and C,(X) be the set of all functions in C(X) with compact
support. C(D), Co(D) and C(D) are defined analogously for any subdomain D of
X. The norm |f|| of any bounded function f on X (or D, D) is defined by
iHf stgp] f(x)], and the completion of Co(X) (resp. Co(D)) with respect to the

norm is denoted by Co(X) (resp. Co(D)). The dual space of C(D) is the set M(D)
of all signed measures on D. We denote by M,(D) the set of peﬁm(ﬁ) with
compact support in the interior of D.

Let L be a linear operator with the following properties and satisfying the
axioms (a), (B), () and (9) mentioned later. The domain ®(L) is a linear sub-
space of C(D) such that D(LYNCHD) is dense in C{(D) for any subdomain D of
X, and L is a linear operator of ®(L) into C(X); any constant ¢ belongs to
D(L) and Lu=0. L is assumed to be a local operator in the sence that, if
f€®D(L) and f(x)=0 in a neighborhood of a point x,€X, then (L f)(x4)=0.
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The operator L, which is obtained by localizing the operator L to any sub-
domain D of X will be denoted by L briefly (see [3; §1]). We may consider
the dual operator L% of the restriction of L on C(D)ND(L).

A subdomain D of X is called a regular domain if the closure D is compact
and, for any ¢=C(0D), there exists a solution wue®D(LINCWD) of the boundary
value problem: Lu=0 in D and u=¢ on 9D. We assume that there exist
sufficiently many regular domains, that is, for any domains D, and D, with
compact closure and satisfying D,CD,, there exists a regular domain D such
that D,cDCD,.

The operator L is assumed to satisfy the following axioms.

() If Lu=0 and u is nonconstant in D, then u does not take its maximum
in the interior of D (maximum principle).

(8 If {u,} and {Lu,} are uniformly bounded on D, then a subsequence
{un,} of {u,} converges uniformly on every compact subset of D (Harnack pro-
perty).

(r) For any regular domain D, any A>0 and any fe®D(L)NCD), there
exists ueD(L)NC,(D) satisfying (A—L)u=f.

@) If ueC(D) satisfies <{u, L*p>=0 for any peD(L*)N\M(D), then ue
D(Lp) and Lu=0 (cf. Weyl’s lemma).

By definition, a function » on a domain DCX is said to be L-harmonic if
ue®D(L) and satisfies Lu=0 in D. A linear operator G of Cy(X) into C(X) is
called a Green operator associated with L if, for any feD(L)NCy(X), u=Gf
belongs to ®(L) and satisfies Lu=—f on X.

Using the assumptions mentioned above, we have shown the following results
in [3].

We fix a regular domain D.

LEMMA 1.1. If ueD(Lp) takes its maximum at x,=D, then Lu(x,)=0.

LEMMA 1.2. If A—L)u=0 (resp. =0) in D (1>0), then u does not take its
positive maximum (resp. negative minimum) in the interior of D.

LEMMA 1.3. Suppose 2>0, FeDLINCD) and ueDLINCD). If A—L)u
=f, then |ull=Z|fll/A. Accordingly the function w in () is uniquely determind
by f ([3; §2]).

By virtue of Lemma 1.3, we can define the operator J?=(1— L) of D(L) N
Co(D) into Co(D), which is uniquely extended to a bounded linear operator in
Co(D) with norm =<1/2; we denote the extended operator by J? again. Then
{J?} 1> satisfies that

(1.1) _ J?—JE=(u—2AJ2J2 (resolvent equation),
(1.2) s-lim AJ¥=I] and s-lim1/?=0
At 210

in the Banach space Cy(D). Hence, by the result of K. Yosida [9], there exisﬁs
a Green operator GP? such that
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(1.3) GDf::s-llim J? for any feD(L)NCKD);
0

here J?f increases monotonously as 1} 0 if feDL)NCHD) ([3; §3D).
If the space X admits a positive nonconstant L-harmonic function, then there
exists a Green operator G associated with L, and

(1.4) (Gf )(x)zlgiTrE (GPf)(x) (pointwise convergence)

for any feD(L)NCy(X); in particular, (GPf)(x) increases monotonously as D T X
if feDL)NCEX). Furthermore there exists a family of measures {D(x, E)]
x€ X} such that

(1.5) GHm=| O, dnf(») forany feCilX)

([3; §4 and §5)).

§2. The operators J,(A1>0) in Cy(X).

In the sequél, we always assume that the space X admits a positive non-
constant L-harmonic function. ‘

We first notice the following facts. Let D be an arbitrary relatively com-
pact domain in X. Then any function wéCT(DT may be regarded as an element
of Co(X) by putting w(x)=0 for x€X—D. Similarly any function weCi(D)N
(L) may be regarded as an element of Co(X)\D(L) since L is a local operator.
We shall use these facts without repeating the above notices.

For every regular domain D in X and every 1>0, let J? be the bounded
linear operator in C,(D) mentioned in § 1. We shall define the operator J; in
Co(X) which corresponds to J? in Cy(D).

Let welC(X)N\D(L), and define u? by

for any 4>0 and any regular domain D Dsupp w.

PRrROPOSITION 2.1. If weC{X)ND(L), then ul=J?w increases monotonously
as D increases.

PrROOF. Suppose that D,C D, and we put u=uf2—u%1. Then u=0 on 0D,
and

(2.1) A—Lyu=0 in D,

since (A—L)u1=QA—L)uP>=w in D,. If u takes negative value at some point
in D,, then —u takes the positive maximum at some point x,=D,, and L(—u)(x,)
=0 from Lemma 1.1 in § 1. Hence (A—L)(—u)(x;)>0, which contradicts (2.1).
Thus we get u=0 in D,.

Since J? is a positive operator, we have O_S_Jﬂ’wé—i—llwll for any weCH(X)

ND(L). Hence the limit function
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2.2) u ;= lim 2= lim J%w
D+ X Dt X

exists by Proposition 2.1. Since any weCy(X) N\D(L) is expressible as w=w,
—uw, for suitable w,, w,eC§HX)N\D(L), the limit function u; in (2.2) is defined
for any weCo(X)N\D(L).

PROPOSITION 2.2. u; s continuous on X.

. Proor. Let {D,}..; be a sequence of regular domains satisfying lim D,=X.

n-—roco

We fix a domain D,Dsupp w such that D, is compact. Then for any D, D D,,
we have

@.3) ugr =+ lwl.
As Q—Lyu?r=w, Lulr=—w-+iu?» and hence
2.9 I Lupr|=2lul.

By (2.3), (2.4) and the axiom (f) in §1, there exists a subsequence {uP»} which
converges uniformly on every compact subset of D,. Hence u; is continuous in
D,. As D, is arbitrary, u; is continuous on X.

By Proposition 2.2, the operator J; defined by

(2.5) fzw:})ig}{]?w
is a bounded and positive linear operator of Co(X)N\D(L) into C,(X) such that
l[]lﬂé%. Since C{(X)N\D(L) is dense in C§(X), J, can be extended to a boun-
ded and positive linear operator of C,(X) into Cy(X), and we have
1 ,
|Lw(x) | == wl  for any weCy(X).

Hence, for any fixed >0 and x< X, there exists a measure pji(E) in X such

that pf(X)= % and

(]zw)(x)zgxw(y)dpf(y) for any weCy(X).

For any we(Cy(X), we define

26 (= w)de3(),
and we have the following
PROPOSITION 2.3. (Jaw)(x) 7s continuous on X for any weCy(X).

Proor. It is sufficient to prove this Proposition for weC#(X). Let {D,}ns:.
be a sequence of regular domains such that D,CD,.; and lim D,=X, and {f,}
n—>0

be a sequence of functions in Cy(X) satisfying that
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falx)=1 for xeD,,
fn(x):() fOI' XEX_Dn+1 -

Since CE(Dprs) ND(L) is dense in C3(D,,.), there exists w,€CFHX)N\D(L) such
that supp w,CDy4e and |w,—w-f,|=<1/n. Then

2.7 nglo walx)=wlx) at each point xe&X
and we have ,

(2.8) Jwal =lwl+1.

It follows from (2.6), (2.7) and (2.8) that

(2.9) Ll_[ilo (Jawan)(x)={Jrw)(x) for each point xeX

by means of the bounded convergence theorem. We fix an arbitrary m. Then,

for any n>m, the function (J?w,)(x) is continuous in x and increases monoto-
nously as D increases and the limit function

(2.10) (Jawa)(D)=Um (Jwa)(x)  (cf. 2.5)

is also continuous by Proposition 2.2. Hence the convergence in (2.10) is uniform
on D, by Dini’s theorem, and accordingly

|(JZrwd@—(aw)@ <= on D,

for a suitable regular domain D, D D,.,.. From this fact and (2.9), it follows
that

(2.11) }Ziglc(]fnwn)(x)=(jxw)(x) for each point x€D,, .

Since w, is regarded as an element of Cy(D7,) "\D(L), we have (A—L)J{rw,=w,
and accordingly

ILJZrwall=l2]2rwal+Hlwal S2(1wil+1) ;

the last inequality follows from (2.8) and II]ﬁ‘IIé%. Therefore {/22w,} pom

and {LJ?2w,}.>n are uniformly bounded. Hence, by the axiom (B) in §1, a
subsequence of {JP»w,},>» converges uniformly on D,. This fact and (2.11)

imply that (J;w)(x) is continuous on D,. Since m is arbitrary, the proof of
this Proposition is complete.

PROPOSITION 2.4, Co(X)N\D(L) 7s contained in

(2.12) Ro(JO=A{J2f | f€C(X)}
for any 2>0. |
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PrROOF. We first prove that
(2.13) Avl=l@—=Lwl  for any veCo(D)ND(L)

where D is an arbitrary relatively compact subdomain of X. Let x, and x, be
points in D for which v(x,)=maxwv(x) and wv(x,)=minuv(x). Then Lv(x,)=<0
z<€D zeD -

(Lemma 1 in [3]), and accordingly
0=2w(x)=(A—Lw(x ) =[(A—L)v| .

Similarly we may show that 0=Av(x,)=—|(A—L)v||. Hence we have (2.13).
Now, for any usCy(X)N\D(L), we consider f=(A—L)u. Then feCy(X) and
supp fCsupp u. For any relatively compact domain D2Dsupp u, we may consider
that f=Cy(D), and hence there exists a sequence {f,} CCy(D)N\D(L) such that

.14 lim £, —f11=0.

By means of (2.13) and the fact that | J2]< % and JP=(i—L)™* (see § 1), we
have

ANJRf —ul SATRF =T f all+AUTRf n—ul
Sf=Fall+H1QA—=LYJR fa—wll

=|f—=Fall+lfa—f1.
Passing to the limit as n — co, we obtain by (2.14) that
(2.15) J2f=u.

Since D is arbitrary, we may take the limit as D1 X in (2.15) and we obtain by
(2.5) that u=J;f on X. Proposition 2.4 is thus proved.

THEOREM 1. The family of operators {Ji}i>e in Co(X) satisfies the resolvent
equation ; namely, for any weCy(X),

(2.16) Jaw—Juw=@—=0:J,w 4, £>0).

PrOOF. It is sufficient to prove (2.16) for welCf(X). We first assume that
weC¥(X). Then, for any regular domain D Dsupp w, we may consider that
weCH(D). Since {JP} 1> satisfies the resolvent equation in C,(D), we have

(2.17) JRw—Jpw=(p—AJ?]pw.

Let {D,} be a monotone increasing sequence of regular domains in X such that
lim D,=X, and define J?=/%». Then

n—>c0

(2.18) }g{}o Jiw(x)=Jaw(x)

by (2.5). Since [} is a positive operator and Jfw increases monotonously in z,
we have J?Jiw<=];/aw. Similarly, the positivity of J; and the monotonicity of
Jiw in n imply that [,Jiw=]:/,w. Hence we get
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]?]ﬁwéjlij .

We may assume p>A without loss of generality. Then it follows from (2.17)
and the above inequality that

Jiw—Jpw=(u—= ] iw=(—A]1J.w .
Let n — oo, and we obtain by (2.18)
Jaw—Juw=p—0 1] .w .

We shall prove the inverse inequality under the same assumption g>A4 as above.
If m<n, we obtain from (2.17)

Jiw={p—A 3+ Jawz{(u—AJi+1}Jjw.
We fix m arbitrarily and let n — co. Then we get by (2.18)
Jawz{(p—=A i+ pw.
Let m — oo, and we obtain
Jawz{(p=A a1} aw
by means of (2.6), (2.18) and the bounded convergence theorem. Hence we have
Jaw—=Jw= (=] w .

Thus we get (2.16) for weC${(X). Now for any weC§(X), there exists a mono-
tone increasing sequence {w,} CC¥(X) such that lim w,(x)=w(x) on X. Hence

it follows from (2.6) and the bounded convergence theorem that
. 1
175_1};],1 wa(x)=Juw(x), |Jowal= % flwl

and accordingly
lim [ Jpwa(x)=J2Jpw(x).

Therefore the equality (2.16) for weC3(X) follows from the same equality for
wa,eCHX).

§3. Extension of the operator G.

In this §, we extend the operator G defined on Cy(X) in § 1.
Let {@(x, -)} ;ex be the family of measures in X mentioned in § 1, and define

3.1 DE)={reC(X)| sup| 0(x, dy)lo()] <o
and
(3.2) (@v)(x)zgx@(x, dyw(y)  for ved{E).

Then it is clear that G is an extension of G and that (Gv)(x) is bounded on X
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for any ve®(G). Hence G maps D(G) into Cyo(X) by the following proposition.
PROPOSITION 3.1. (Gv)(x) is continuous on X for any ve®D(G).
Proor. We may take a sequence {w,} CCo(X)ND(L) such that
lwalx)|=lv(x)] and lim wa(x)=v(x) on X.
‘We define
un(D)=(GuD=| Ox, dywa(y)  (1=1,2, =)
and |

u(x)=Go0=|_ 00, dywi).

‘Then, by the dominated convergence theorem, we have

(3.3) Lim Ur(x)=ulx) for every point xX.
On the other hand, it follows from the result of [3] that
—Luy=w, and |u)|=| O, dy)by)].

Accordingly {u,} and {Lu,} are uniformly bounded on X. Hence, by the axiom
(B) in §1, there exists a subsequence {u,} which converges uniformly on every
compact subset of X, and

m u, (D=u(x)=(Go)x) by 3.3).
Hence (Gv)(x) is continuous on X.

LEMMA 3.2. . For any wed(G),
(3.4) Haw) ()| =(Glwl)(x) and &i%(fzw)(x)z(éw)(x) on X

where |w|(x)=|w(x)|.

ProOF. For any we®(G), it is clear that w*, w~ and |w|e®(G) and that
(3.4) holds for w if it holds for w*, w~ and |w]|. Hence itis sufficient to prove
(3.4) under the condition: we®(G) and w=0.

First we assume that weCH{X)N\D(L). For any regular domain DDsupp w,

we have
" 0= Pw=sG?w for any 2>0

from (1.3). Hence, by Proposition 2.1, (2.5) and (1.4), it follows that
Passing to the limit of each term as 2|0, we obtain

OéGDwglém Law=Gw.
0 :
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Since Il)lTer} GPw=Gw, the above inequality implies that 1%% Jaw=Gw. Thus (3.4)

is proved for weCHX)N\D(L).
For any nonnegative function we®(G), there exists a sequence {w,} CC}(X)
ND(L) such that

(3.5) 0fw,(x)=w(x) and l;_rg we(x)=w(x) on X.
Then it follows from (2.6), (3.2) and the dominated convergence theorem that
(3.6) lim (Jawa) () =(Jaw)(x),  lim(Gwa)(x)=Cuw)(x).
Since 0=/ w,=<Gw, as mentioned above, it follows from (3.5) and (3.6) that
0w . J,w=<Gw  for any A>0.
Passing to the limit of each term as A/ 0, we obtain
0=Gw,<lim Jw=Gw.

This result and the second equality of (3.6) imply that lﬁrf}] Jiw=Gw. (3.4) is
thus proved for nonnegative we®(G).

LEMMA 3.3. If ve®(G), then J,veDG) for any 1>0.

ProOOF. It is sufficient to prove this lemma for v=0. Then, since JveC§H(X),
there exists a monotone increasing sequence {w,} CC}(X) such that

(3.7 0=wa(x)=(Jaw)x) and Lm wa(x)=(Jw)x) on X.
For any positive number p<4,

1 1 1 =

O§J#wn§fy]xv:—m~(]y—h)v§ — Juw= =g Gv

by the resolvent equation and Lemma 3.2. Let ¢ — 0, and we have 0=Gw,=

% Gv, namely

1, = 1 =
< - <
0=| 0z, dy)wa(n)= 7 CW==IGv) .
Let n — oo, and we obtain by (3.7) and the monotone convergence theorem that
1 =
0= oz, dyXJw)n=1Gl.

Hence we have J,0€®(G).

PROPOSITION 3.4. If ve®D(G), then
3.8) G/ = j@:%(év— 7w for any 1>0.

PrROOF. From the resolvent equation (2.16), it follows that
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3.9 JuJv=J:Jsv= Ziy (Juv—J3v) 0O<u<).

By means of the above two lemmas, the assumption ve®(G) implies that
JwedE), Lig}(]pfzv)(x)z(éj (),
|J)X) | =@ lvh(x) and lim (Jw)(x)=Gv)(x) on X.
Accordingly lyug( JaJuv)(x)=( J.Gv)(x) by (2.6) and the bounded convergence

theorem. Hence, passing to the limit as ¢ | 0 in (3.9), we obtain (3.8).

§4. The main results.

We define

l
E0: {g}jl kwk

wpeCXISZD; =1, 2, -},

and E=E,(the closure of E, with respect to the norm in Co(X)). Then E, is
a Banach space as a closed linear subspace of the Banach space Cy(X). By
Proposition 2.4, we have

(4.1) EDOC(X)NaD(L)
and accordingly
4.2) EDC\(X).

We define an operator Gz in the Banach space E whizh is a restriction of
the operator G. Let
NGr)={wedDGC)NE|GveE}
and define
Gzv=Gv for vED(Gg).

We shall later show that ©(Gg) is strongly dense in E.

The following proposition shows that every J;(4>0) may be regarded as an
operator in E.

PROPOSITION 4.1. J,usE for any usE.

Proor. It is sufficient to prove this proposition for u< E, since E, is dense
in E and J; is a bounded operator. We may assume that u=J,w, weCyX).
In case A#y, we obtain from the resolvent equation (Theorem 1) that

1
jguz—ﬁ(hw——u)EEocE .

In case A=y, we take a sequence {2,} such that 2,>2 and lim 4,=A. Then

(Zad-od

Ja,u€E, for any n as proved above. From the resolvent equation:

fxnu—fzu=(2—1n)fxn]1u ,
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we get

Illl

I Jagu—Jaul £ —=—=— 12 T2, 1 - 14T all - [l

Illl
e

lu|| =0 as n—oo,

Hence J;u<E.
Now we are ready to show one of our main theorems.

THEOREM 2. Let E be the Banach space defined above. Then,
i) the family of operators J;, A>0, restricted to E satisfies the resolvent
equation

Jim=J.=(u—D]:], in E;
ii) s-lim 2J;=I and s-lim 2J;=0 in FE;
Atoo A0

iii) there exists a closed linear operator O:s-lziin J: with domain D(G) and
0

range R(G) both strongly dense in E such that the inverse operator A=—G™
exists in such a way that [;=(AI—A)™ and A is the infinitesimal generator of a

uniquely determined semigroup {T:}:z0 of class (Co) of bounded linear operators
in E.

ProoOF. Part i) is an immediate consequence of Theorem 1 (§2) and Pro-
position 4.1. Part iii) follows from parts i), ii) and a result by K. Yosida [9]
(see Theorem 1 and Remark 2 in [9]). In order to prove part ii), it is sufficient
to show that

(4.3) lim |2];v—v[=0 and lim [|2]v]|=0
Atoo 40

for veE, since E,=FE and [|1];]| <1 for any A>0. | Accordingly it is sufficient
to show (4.3) for v=/,w where >0 and weCy(X). It follows from the resol-
vent equation and (3.4) that

12 w—vll=12]2Jpw—Juwl =l g2 Jpw—Jawll

§7(||1le| el - Tl +1AT20 - Tl
2
=~ lwl  for any 2, >0,

and

12wl =12]2 ], wl= #iz 1Jaw—Juw|

<A Ul D=2 1B lul)

whenever 0<A<py. Hence we obtain (4.3). Theorem 2 is thus proved.



12 M. Ito NSR. O0.U., Vol. 34

In the sequel, we shall investigate the relation between the operators G and
Gpg, and that between A and L.

LEMMA 4.2, If vE@(C_})mE, then v—2AJ,0EeDNGCE) ND(G) and Geglv—AJ )=
G—2Jw)=Jw for any 2>0.

Proor. It follows from Lefnma 3.3, Proposition 3.4 and Proposition 4.1 that
the assumption v€®(G)NE implies that v—AJweD(G) and Gw—AJw)=JveE.
Hence v—1/,0€®(Gg) and Gglv—4Jw)=Jv. On the other hand, since s-lim /v

2#30

=0 from part ii) of Theorem 2, it follows from the resolvent equation that
s-lim J,(v—2]w)=s-lim J,(v—pdv)=Jv.
gy 2o
Hence v—2JweD(G) and Gu—AJw)=Jw.

THEOREM 3. i) DGg) is strongly dense in E.

i) DGCHCDG) and Gv=GCgv for any vED(Gg), namely G is an extention
of Gg.

i) DLYNCAX)TD(A) and Lu=Au for any ueD(L)NCyX), namely A
is an extension of L restricted to D(L) N\ Co(X).

ProoF. i) By Lemma 3.3 and Lemma 4.2, v—A/,0=D(Gg) for any ve E,.
Since S-l}l;l;l (v—2AJw)=v by part ii) of Theorem 2 and since E, is strongly dense

in E, we may conclude that ®(Gg) is strongly dense in E.
ii) For any v&®(Gg), we may see from Lemma 4.2 and Proposition 3.4
that v—AJw€D(C) ND(Gg) and

Glo—2J0)=Ggv—2G J;v=CGgv—2] Gz .
Since s-aifrol (v—AJv)=v and s—lxi?g(GEv—Z J ZC—Ev):GEv from part ii) of Theorem

2 and since G is a closed operator, we may conclude that ve®(G) and Gv=G .
iii) We first notice that C(X)C®(G); this may be shown by the same

argument as we have derived (5.2) in the proof of Theorem 2 in [3]. Hence

Co(X)TD(G)NE by (4.2). For any ueD(L)NCy(X), we put v=Lu. Then

4.4) veC(X)CDG)NE.

We put v;=Au—v=(A—L)u. Then u=J,v; as is shown in the proof of Pro-
position 2.4, and accordingly

(4.5) : u=JQu—vy=AJu—Jw.
By part ii) of Theorem 2, we have

s-lim 2/;u=0,
240

and, from (4.4) and by Lemma 3.2, we may see that

llll;ré Jav=Gv  (pointwise convergence on X).
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Hence, passing to the limit as 2] 0 in (4.5), we obtain u=—Gv and accordingly
(4.6) | Gv=—ucCyX)CE.

From (4.4) and (4.6) follows that v&®(Gg) and Ggr=Gv. Combining this result
and part ii) just proved above, we obtain that ve®(G) and u=—Gz=—_Go.
Since A=—G"1, we may see that ue®(4) and Au=v=Lu.

The proof of part iii) of the above theorem incidentally shows the following

PROPOSITION 4.3. The set Roy(L)={Lu|usDL)NC(X)} 7s contained in
NNGg) and GgLu=—u for any ucsD(L)N\Co(X).

We see from Theorems 2 and 3 that D(Gx) CD(G)C E and D(Gy) is strongly
dense in E. Proposition 4.3 shows that sufficiently many functions are contained
in ®(Gg). A model of such family is the set of all functions of the form Lu
with ueC¥X) in the case where X is an n-dimensional euclidean domain and

L=4+3 ai(x)

0
aJCj.
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