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§1. Introduction.

All groups considered in this paper are abelian groups. Notations and termi-
nology follow [1] and further details may be found in [2] and [3]. In [1], we
investigated p-indicators in Ext(Q/Z, T) without gaps and consequently p-in-
dicators with finitely many gaps, where T is a given reduced p-group. Our aim
in this paper is not only to examine p-indicators of elements belonging to
Ext(Q/Z, T) with infinitely many gaps, but also to clarify the relations between
the groups T, lir_n T/p°T and Ext(Q/Z, T) for some ordinal p.

a<p .
Professor Fuchs and Professor Roteman kindly gave valuable suggestion for

my question on Proposition 1 at Honolulu conference. 1 wish to express my
thanks to them here.

§2. On lim G/p°G.
o<p
PROPOSITION 1. Let p be a prime and p be an ordinal which is cofinal with
. If G is an abelian group whose p-length is p and p°*G=0, then for a<p,
lim p*G/p°CG=p*1lim G/p°G.
o< o<p
That is, im G/p°G is a p-isotype subgroup of 1;[ G/p?G.
— o p
o<p
PrROOF. If we consider {p“G: a<p} as a neighborhood system of 0 in G,
then G is a Hausdorff group satisfying first axiom of countability and lim G/p°G

o<p R
is the completion of G by this topology. So, we write im G/p°G=G. By
a<p

Lemma 37.1 in [2], p*(G/p°G)=p*G/p°G. Consequently we have
p“G‘c(p@E)G/p@G)mG
 =(TIp°G/p°G)NC

a<p

S
C peG.
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To prove the converse, we need following lemma.
LemMmA 1. If p, p and G are the same as in Proposition 1, then p/\G:;bé.

Proor. Let x<lim pG/p°G and let a,, 04, -+ be an increasing sequence of
a<lp
ordinals where sup o;=p. Let o,-th coordinate of x be px.+p?'G. We may

suppose o,=1. Let s be the least integer such that px;+p?G+#0. Clearly j>1.
Put xj.,==x; Next, we can write px;,,—px;=py; where y;€p’i-1G since
pxjm—px;Ep?iG. Put xj=xj.,+yj. Repeating this procedure, x'€lim G/p’G
o<p
is uniquely determined whose o;-th coordinate is x;+p?*G and px’'=x. There-
A\ A
fore pGC pG.
Let a<p. Since the p-length of p*G is cofinal with w, p**'GCp-p*G by

: N A
Lemma 1. Now, by transfinite induction, we can conclude p*G C p*G for a<p.
This completes the proof of Proposition 1.

COROLLARY TO PROPOSITION 1. If p, p and G are the same as in Proposi-
tion 1, then é/ G is p-divisible.

~ N
PROOF. G is dense in G with respect to the neighborhood system {p*G: a<p}.

For x=6, (x+pC)NG=(x+pG)NG+#¢ implies G/G is p-divisible.

PROPOSITION 2. Let p be a prime and p be an ordinal which is cofinal with
w. If T is a reduced p-group whose p-length is =p, then
(I) Im G/p°G=G/p*G where G=Ext(Q/Z, T).
a<lp
(m) lim T/p°T can be embedded in G/p°G as an isotype subgroup.
a<lp

Proor. Corollary to Proposition 1 implies that (lim G/p?G)/(G/p*G) is divi-

sible. By 54(F) in [2], 1i£1 G/p’G is a reduced cotor;?gn group. By 54(B) in [2],
the fact that G/p°G is g(ifc)orsion implies that (léi_r_n G/p°G)/(G/p°G) is reduced.
Therefore lim G/p?G=G/p*G. e

'Applyir‘;;p Proposition 1 to 7T /p°T, we know that l(i_I?fl T/p°T is an isotype

a<p

subgroup of ];I T/p°T. Since T/p°T=(T+p°T)/p°T is an isotype subgroup of
29
G/p°G, 1;[ T/p°T can be embedded in I<I G/p°G as an isotype subgroup. There-
a<lp a<p
fore 1im T/p°T can be embedded in lim G/p’GC 1<'[ G/p°G as an isotype
«— «— olp

a<lp a<p
subgroup.

§3. On p-indicators with infinitely many gaps in Ext(Q/Z, T).

PROPOSITION 3. Let p be a prime and T be a reduced p-group. If xe&
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Ext(Q/Z, T) has p-indicator (@, 01, 04, ---) with infinitely many gaps, then x&
Ext(Q/Z, po°T).

PROOF. According to the direct decomposition of p?¢Ext(Q/Z, T) in Pro-
position 56.4 in [27], we write x=x,+x, where x,€Ext(Q/Z, p°°T) and x.<
pPExt(Q/Z, T/p°°T). «’s p-indicator in p7Ext(Q/Z, T)is (0, o1, 03, --) Where
c;=0,+0; and gaps occur in the same place as in (o,, 03, 03, **+). Suppose x,
#0. Since p? Ext(Q/Z, T/p°°T) is reduced and torsion free, the p-indicator of
x exceeds that of x, somewhere. Therefore x,=0.

PROPOSITION 4. Let p be a prime and T be a reduced p-group. Let oy, oy,
os, +++ be a strictly increasing sequence of ordinals with infinitely many gaps.
That is, for a strictly increasing sequence of integers 0=k, <k, <ks< -, gaps
occur after each o4, Then, the necessary and sufficient condition for (o., o3,
gy, -++) o be a p-indicator of some element belonging to 1i£1 T/p°T is that the

o<sup oy

o s,-th Ulm-Kaplansky invariant of T is not equal to O for every i.

PROOF. Suppose x< lim T/p°T has p-indicator (o, o1, +-). By Proposition
o<sup o

1, we can observe the p-indicator of x in IIT/p°T. Write the o,,-th coordinate
of x, xg+p7%T. h(p**'x)>0,,+1 implies p*i*x,, ., =px’ for some x’'€p#:*'T.
p*ixp,+1—x"#0 and belongs to p?#:T[p] follow h(p*ix)=o,.

To prove the sufficiency, we need following lemma.

LEMMA 2. Let o4, 01, 04, -+ be a strictly increasing sequence of ordinals
where the gaps occur after each o4, Then there exists an increasing sequence of
integers 1(1)<i(2)<i(3)<+-- such that o, T Rimin =04

i(n+1)"*

Proor. Put {(1)=2 and i(n+1)=:i(n)+kim,. Gaps occur i(n+1)—i(n) times

between o4;(,, and oz, 1herefore

O hitnsn =0 by T Ricnrn—Ricny Filn+1)—i(n)

:aki(n>+k7ﬁ(n+1) .
Now, suppose p?#T[p]1+0 for =1, 2, ---. For x;,, we can choose an
element in 7" which has p-indicator (oo, 01, ***, Or;q, ©). Next, let x be in T

with p-indicator (o4;py+1 > Trigr ) Oryy T Riy =01y, implies that x=
priw*1x! for some x’€prkiwT and pix’'€p?itiT for j=1, -+, kyw. If we put
iy +x'=%Xsw, (00 01, *, Ty ) 18 p-indicator of xie and xym—xiw €
p°kiwT. Repeating this procedure, we get a series of elements in T x;q), X2,

- where x;;’s p-indicator is (go, 01, =, G54y, ©°) and Xigin—Xipn EPkipT.
Thus we can construct an element x & 1331 T/p°T whose ok“j)-th coordinate is

a<lsup g

xipn+p ki T and whose p-indicator is (g, 03, 05, --). This completes the proof
of Proposition 4.
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PROPOSITION 5. Let p be a prime and T be a reduced p-group. Let o, o,
o5, - be a strictly increasing sequence of ordinals with infinitely many gaps. Then
the necessary and sufficient condition for (o,, 61, 04, ---) to be a p-indicator of some
element belonging to Ext(Q/Z, T) is that the o4, th Ulm-Kaplansky nivariant of
T is not equal to O for every 1.

PrOOF. The necessity follows 103, (ii) in [3] since the torsion part of
Ext(Q/Z, T)is T. Put supo;=p. If x+p°G has p-indicator (oo, 01, 05, **)
in G/p°G, then x has also p-indicator (oo, 01, 03 --) by Lemma 37.1 in [2].
Thus the sufficient part of Proposition 5 is an immediate consequence of proposi-
~ tion 2, (II) and Proposition 4. ‘
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