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Introduction. In this paper, we study the algebraic properties
of curvature type tensors of a Riemannian space. Taking the con-
traction ¢ on B? (see §1), we first give the orthogonal decomposition
of B? as >, (Ker¢*)N(Ker ¢")*. This corresponds to the decomposi-
tion structure given by K. Nomizu [4] or R. S. Kulkarni [5]. Next
in §§3, 4, we consider the first Bianchi identity. Generalizing it,
we define the operator £ on B?. Then the strict curvature type
tensors (those satisfying the first Bianchi identity) are just the
elements of Ker <. Since T is a self-adjoint operator on B?, we
can determine all eigenvalues of ¥ and obtain the eigen-space
decomposition of B?. This shows that there exist many kinds of
curvature type tensors which are not strict. In the last section we
take skew-symmetric 2p-forms (p even) as an example of curvature
type tensors. It follows that they coincide with the eigenvectors
of the maximum eigenvalue of <.

1. Contraction of curvature type tensors. Let (M, g) be an
n-dimensional Riemannian space with the Riemannian metric tensor
9=(9:;). We denote by A? the vector space of differential forms of
degree p on M, and put 4=, 4?. A 1is a graded algebra with respect
to the exterior product A. The element w of the tensor space
D?'=A*QA’ has the tensorial component ..., ;,...;, (We often write
it as w;,,;, for short) which is skew symmetric for each < and j.
Let w=a,QB,€ D”* and n=a,QB.€ D™*, then the product is defined
by o An=(a; ANa,)QRQ(BA\B:) € D**™**.  The space D=3 D*? becomes
a graded algebra with this product. For w=(w,,,)e D" and 7=
(7z,,7,) € D™*, we have

(a)/\y])lp+,,-,Jq+s

1
a plqlr!s! otzn‘lﬂ 8(Oé)s(ﬁkoi”‘l“'7'-"‘1)’5‘81"".F"q"]i"‘p+1'''i“z:+r’jﬁq+1"""ﬁq+s ’

where « and B run through all permutations of degree p+7 and
q-+s respectively, and ¢( ) denotes the sign of the permutation. Let
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, 7€ D”? then the inner product {w, 7> is defined by
1 i1a ipl j j
<a), 77> :p_'(_]_' Z a)il---ip,jl---qual--'up,bl-"bqg 19 ... g'p pgnlu e gaqbq .

If the types of degree of w and 7 are different, then we set
{w, n)=0. A curvature type tensor @ of degree p is the element
@=w(y,,s,) € D»* which satisfies

D1 7,=Dg,,1, +
Denote by B” the space of curvature type tensors of degree p. The
space B=>) B® is too a graded algebra. -
A contraction operator ¢: D**—D?"1! ig defined by
(Cw)Ip_lqu_lzz gaanIp_l,qu_l

for w=(®,,.,,) € D»*. For we D"*+D"’, we set cw=0.

The Riemannian metric tensor g=(g;;) is an element of B*, and
we put gw=gAwe D*™™* for any we< D”? Then g: D»?—Drthett
is a linear mapping, and the local expression of gw for w=(w,,, 7)€ D™
is given by

(gw)zp+1,Jq+l = ; Zh. (— 1)k+hg¢kjhw1p+1(l€) T g b

where I,,H(IE) means the k-th index is deleted from the indices
(%; *+* 9p4,). The next lemma is immediate by the induction.

LEMMA 1-1. Let r be a positive integer. Then we have
cgw—gcow=rin—p—q—r+1)g "o, /
gerw—c gw=—r(n—p—q+r—>Lec ‘o
for we D™,
LeMMA 1-2. Let we D*™™* qnd ne D™, then
{ew, ) ={®, g7)) .
Proor. Taking »=(9;,.,)€ D™* we have

1
(p+D! (@+1D)!
_ 1

(p+1! (@+1)!
X (— 1)k+hgika'h771p+1<l?) T g1 (B

1
a (p+1>' (q+1)' Z (Cw)lp—u(7:),Jq+1(ﬁ)771p_-|_1(;2)’Jq_l_l(;;)

{w, gy = > OF ST > (= 1)k+hgikih771p+luﬁ),Jq+1<19)

> (= 1>k+hwikzp+1(12),mq+1 )

=?Y1-q—'— Z (cw)fp’quin,qu <cw, 77> .
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COROLLARY 1-3. The mapping ¢: D"?—D?™* 45 injective if

PrOOF. Letwe D??gsatisfy gw=0. From Lemmas1-1,1-2 we have

(gew —cgw, @) ={cw, cw) —{go, Jw)
=—(n—p—q)Kw, ®) .

Hence if n—p—q¢>0, {cw, cw)={w, wy=0 holds, and consequently
w=0 follows.

DEFINITION. The linear operator ¢: D??—D?+:4* ig defined by

r—1
o0=73, S: D 9Tc 0
=l I (m+k)
k=0

for 8 € D>, where we put m=n—p—¢>0. The sum is finite becal.lse
c¢"6=0 for large N.

LEMMA 1-4. For ¢ D*? we have, if n—p—q>0

cold=20,
ocgf=g0 .

PrOOF. Since ¢ !0 ¢ Dr~rthe—r+1 we have

— r—1
cof=>, (—1) (gre"@+r(m+r—1)g c"0)

7! kI—Il (m+k)
=0
:E S: 1)r_l grca-a_ Z E—: 1)7_2 gr—lcr——10 —}-L'mﬂ
mkno (m—+k) 7! 11 (m+F) n
= =0
=0.

By the similar way, we have for cgf e D™

(=1

r! II (m+k)

k=0

ocgld=73 grcTgl

=3 (=1 g7 (ge 0 +r(m—+r—1)c"'0)

r—1

r! kI=Io (m+k)

:Z‘ (—1)"‘_ gr—l-lcrﬂ_l__z (_1)T~ grc'r——la_i_ge

r—1

PUT (k) (r—l)!E(m—{-k)
=g0 .
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As an easy result, we have the following

COROLLARY 1-5. The mapping c: D»*—D? "4t {5 surjective if
p+a<n.

2. Orthogonal decomposition of D?? with respect to the con-
traction ¢. Let we D?*? The mapping conf: D”?—D??is defined by

conf w=w—ocw .

This coincides with the mapping con in Kulkarni [5]. We have from
Lemma 1-4 that for we D!

c¢(conf w)=0,
conf (gw)=0.

According to Kulkarni, we call effective the elements of Kere
and set E?'={w e D" cw=0}.

LEMMA 2-1. conf: D»?—D"? satisfies

conf?*=conf ,
{conf w, 1) ={w, conf 7)) ,

for @ and ne D™ Moreover we have
Im conf=Kerc, Kerconf=Imyg .

PROOF. The last relations are evident from Lemma 1-4 and the
fact that ImocImg. Next we have

conf (conf w)=conf w —o¢ conf w=conf w ,

and
(eont w, ) =L@, Py — 2>, S: L {gc"w, Ny
r! kIZIO (m—+k)
={w, ) —3, E: V™ (o, e
7! kl;[o (m+k)

which is symmetric with respect to w and 7. Hence
{conf w, 1) ={w, conf 1)
holds.

THEOREM 2-2. D7 is decomposed as the following:
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D71 =CppCrt CP'={we D”? conf w=0},
Cri={we D*?% conf w=w} .
We have C{''=Im g and CP?‘=Ker c.

PROOF. Since conf is symmetric with respect to {( , > and satis-
fies conf?’=conf, the eigenvalues of conf are 0 and 1. The eigen-
spaces CP? and CP?? are orthogonal and the space D??is decomposed
as their direct sum. The last assertion is obvious.

As a consequence of the above lemmas, we obtain the following
exact sequences if n—p—q¢>0:

g conf

(0)_>Dp—1,q-1__>Dp,q___+Dp,qi)D;n—l,q—l_»(O) .

Since the relations CP?=E?? and C{?=g(D* %) hold, we have
D? 1= E?1Pg(D?~*"), and hence

Dp,qzEp,q@ng—l,q—l@ngp—z,q—z@ v

is obtained. We denote by A' the orthogonal complement of the
space A. Then it is easy to prove

g EP1 " =Ker ¢"' N (Ker ¢")*

for any integer »=0, because we have ¢ " (g"E?~"*")=0. Therefore
the components g"E? "% of the decomposition of D?? are orthognal.

THEOREM 2-3. The decomposition of Drthiti=3 grEr—rtha-rti=
>, (Ker ¢t N (Ker ¢")*t can be written explicitly as

g"conf ¢"w
r—1

7! kH (m+r—1+k)
=0

w=conf w+>, , m=n—p—q

for w € Drthett,
ProOF. We can put, for any we Db+,
w=conf @+3>) a,g" conf ¢"w
for some real numbers a,. Then we have

co=3,r(m+r—1a,9" " conf c'w ,
and

cro=r! ﬁl (m+r—1+k)a, conf ¢"w+g7
k=0 .

holds for some 7}er4”'“". Operating conf on each side, we get
a,=1/(r! TI;2s (m+r—1+k)), because conf*=conf and conf g=0.
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3. First Bianchi identity. We define the first Bianchi operator
&: D7 ?%—Dr*t0t gecording to Kulkarni [5] by

(@w)zpﬂ,d’q_l =3 (— 1)k—10)1p+1 ()T g—1

for ¢q=1, and Sw=0 for we D*°. The p-th curvature type tensor
@ satisfying Sw=0 is called strict. Clearly the strict curvature
tensor is an extension of the first Bianchi identity for the Rieman-
nian curvature tensor on a Riemannian space.

Taking the x-operator x: A»—/A""? we extend it to the mapping
x: D??—Dn?"70 g

1
plq!

POy - @y iy Gy )oBy e By Gy G )@ ugnag by -

(+)1,_poryy = S det (g;)g%ei - - - gootnghli -
Then as usual, we have for we D?*
o= (=)0t

We define &: D»?—D?~ b4 by

Sw=(—1)"? 0 "xSxw .
Then we get the local expression as

CIOFIANED Y ) O PPN N
LEeMMA 3-1. We hawve
(Gw, 1) =<w, Sp)

Jor we D??, npe DPHI,

Proor. Taking the components of the metric tensor as g,;=0;
at a point, we calculate

1 -1
(G, 1= (p+1)! (g—1)! 2 (=1 PRI ML/ FERT o

1
:m Z wlé”qu~177:iI:’0,Jq_1

and
= 1 _
{w, @9y :_ﬂ—)'—ll' > (=1)" NOTIR/ P

_ 1
ST > iy

={@w, 1) .
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Since we have for we D»?, neD"*

(@)1 07y 1= B0ttt
(Sw A7) = UV 5 s
Iptrtvdote1 g 1)l 8! &3
Xw

t0’1'"iap+1’~’.31'"ﬁq—lyhvl;mz''”fxp+r+1’”ﬁq'""ﬁq+s—1

where a and B are the permutations of suitable orders, we obtain
the following lemma.

LemMmA 3-2. Let we D*? and ne D™, then
SwAY)=Cw A+ (11w A\CSy .
LEMMA 3-3. & commutes with ¢, g, ¢ and conf.

Proor. We have

(Bec®)r,,5,-=22 (= 1) 7He@) 1, by, 117,
=2 (=17 @1, By igi7qs
=>.(— l)hwiorp By sigiolg—g T PIpigiolg—s
= (@a)>i01p
=(cGw),,

,iqu_.2

WJg—2 *

The metric tensor g=(g,;) € B* satisfies ©g=0, and hence S(gw)=gSw
follows. The mappings ¢ and conf consist of the mappings g and
¢, and taking consideration of the coefficients of their expressions,
we obtain

Soc=0S,
S conf=conf & .

COROLLARY 3-4. & leaves invariant each orthogonal component
g E*~r of DP9 Especially, tf @< D?? satisfies Sw=0, then
&(g” conf ¢"@w)=0 holds for any 7.

THEOREM 3-5. Let we B?, Then we (Ker &) if and only if
®;,,1,=0 for any I,=(i, -+, i,).

Proor. Taking a fixed subset A=(a,---a,) of (1, -+ -, »), we set
0f,,,= 3 e(0)s(T)0% « -+ Bicwd3L - - 5p
Then w* is a p-th curvature type tensor. We have

71
Yy p+1

(@Y1, 7, = 5% S(@)E(O)E(DI - - - Bicodize B3t -+ 058,
p! » : »
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In each terms of the summation there exists an integer k, 1<k=<p,
such that o,=7, and hence it contains as a factor 3“”k§“°k+ which
vanishes. Thus Sw*=0 holds. Then taking the metric tensor 9=1(0;;)
at a point, we have

1 _
@, 09 =(-1) So,..,0f,,
ZG)A,A .

Hence if w € (Ker &)*, then w,,,=0 for any A=(a, --- a,). Conversely,
let w=w,+w, be an orthogonal decomposition such that w, € Ker &
and w, € Ker ©)*. We assume w, ,=0. The above argument shows
(@0,)4,,=0, and hence (w,),,,=0. It is well known that a strict cur-
vature type tensor w, satisfying (@,),,,=0 must be 0, we conclude
that w=w, € (Ker &)*.

REMARK. Taking an orthonormal basis e, --+, e, of a tangent
space, w, , is sometimes called the sectional curvature K, (o) of @
for the p-plane o=e, A -+ Ae,,.

A direct computation shows the following

LEMMA 3-6. For we D™ we have

(@5@@)11,,% =PW;,,7,— 2, @ voob
ik

’
Iplig)s T g tip)

S — 3 k
©Sw);,,;,=901,7,— 20 Y Y,
ok Iplig)sdq(ip)
3

Vv
where I,(j,) means the h-th number ¢, is replaced with the number
i In particular, for we D*? we have

(GG —-S)w=(p—q)w .
For we B?, we have S6w=68w. We put $=68: B>—~B?. %

is a linear mapping and can be written locally as

(@) 10, =0D1,,7,— 2@ § v

Ik Iplip)idplip)

LEMMA 3-7. Ker T=Ker &=Ker S.

Proor. KerScKer ¥ is trivial. Let Tw=0 for we B?, then
Ew, ®)={(SCw, w)={(Sw, Sw) implies Sw=0. The proof for & is
similar.

‘Owing to the Lemmas 3-1, 3-3, we get

LemMMA 3-8. X commutes with the operators ¢, g and conf, and
18 a self-adjoint operator on B?, i.e., it satisfies
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Rw, n)={w, Ty
for w, ne B,

COROLLARY 3-9. ¥ leawves 1nvariant the orthogonal components
g (E?P~" "N B?*™") of B®. Each eigenvalue of T is a non-negative real
number.

PROOF. The first half is evident. Let X and w+#0 be an eigen-
value and the eigenvector of £ then ) is real and we have

Mo, ) ={Ew, w)={Bw, Sw)

from which =0 is obtained.

4. Orthogonal decomposition of B? with respect to £. We will
determine all eigenvalues of £ on B?. Any eigenvalue » of ¥ is
non-negative, and from Lemma 3-7 we know that the eigenvectors
of x=0 are just the strict curvature type tensors. Since the elements
of B' are strict by definition, we consider in the following under
the condition 2=p<n/2.

LEMMA 4-1. For we D" we have
(GS—SNw=r(p—q+r—1)& v .

ProOF. When »=1 this reduces to Lemma 8-6. We assume that
the equation is valid for r=2. Then we have

S HSw =" (GSw + (p—q)w)
=SS M w+r(p—q+2+r—1)S 0+ (p—q)S @
=86 w0+ (r+1)(p—q+7r)Sw

which shows the lemma is true for »--1.
LeMMA 4-2. The only possible eigenvalues of T on B® are 0, 2, 6.

PROOF. Let we D*:. Then we have T2w =SS0 +2%w, and since
Sw=0,

V=SS0 +8Tw —12Tw
=80 —12%w

follows. Taking )\ and w € D*? such that Tw= w, we get
A =8\ +120)w =0

from which A=0 or 2 or 6 holds.
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THEOREM 4-3. The only possible eigenvalues of T on B? are the
p+1 numbers {r(r+1), 0=r=p}.

Proor. It is sufficient to prove that ¥ has p+1 eigenvalues
{r(r+1), 0=<r=p} on D*?. First we show by the induction that the
equation

TO=SS0+a,I W+ +a"Iw

holds for we D?? and any integer =2, where a{” are certain real
numbers. For r=2 or 38, the equation is given in the proof of
Lemma 4-2. We assume it is true for ». Since I'we D*? and
& w € D*~"?*", we have
T e =8S(6""w)+ IS, ai”" Tiw)

:@(@r@r—l—lw+,r(,r_l_1)@r—1@ra))+z aér)ziﬂw

=S M+ rr+1)(Fw—3, a"Tw)+ 3, ol Titw

=& S+ (@ +rr+1)Trw

+ 3] @ =@+ Da) To —r(r + 1ol Tw
= @:1@”10) +> a T
Thus the equation is trué for r4+1. Moreover we see that
o = —r(r+a”
holds for r=2, and a{? =2. Therefore
" = (=1 (r+1)r .. 322

is obtained. Taking N and ®,(+£0)e D»? such that Tw,=rw,, we
have as before the equation

(7\;29+1__a’§010+1)7\'p__ c e _a§p+l)?\’)wp:0 .
Then the non-zero solutions A, --+, A, satisfy
(=D - Ny = (=1 (p+1)p -+ 828,

If ¢ is an eigenvalue of T on D?~**7!, then we have ZTw,_,=tw,_,
for some w,_, € D*"»*7* and hence T(gw,_,)=pgw,_,. Since g is injec-
tive for p<n/2, ¢ is an eigenvalue of £ on D*?, Thus we see that
¢ (0) is one of n,, +-+, ,. Taking consideration of Lemma 4-2 we
suppose that the non-zero eigenvalues of € on D?*?~! are the p—1
numbers r(r+1) (1=r<p—1), then they are eigenvalues of T on
D?? which are the same as A, -+, \,_;. The last one )\, is easily
given by the above equation as p(p+1). This proves the theorem.
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COROLLARY 4-4. If w,€ B? satisfies Tw,=p(p+1)w,, then w, is
effective.

PrROOF. For such w,, it holds that
Zew,)=pp+1ecw, , cw,cB*™".

However p(p+1) is not contained in {r(»+1), 0=r<p—1} which are
the possible numbers of eigenvalues of £ on B?!, hence we conclude
cw,=0.

Let V} denote the eigenspaces of T on B? for the eigenvalue \.
Then by the definition it follows

Ve={w € B®; @;;,11,= ®;, 5~ Djp,in} »

1
Vi= {w & BY; @i = — 5@ — ij} ;
1
Vi= {a) € B% wij,kh=‘2—(a)ik,:ih - wik’ih)} .

Making use of the property ;.=®..:;, it is shown that if
(I)GV22, then Coij,kh::'—a)ih,kao, and if weVg, then a),;j,kh=—a)ih,k,-.
Hence we have

Vi=(0),
Vi=at.

THEOREM 4-5. The eigenvalues of T on B* are 0 and 6. Vi s
the space of the strict curvature type 2-temsors and Vi is the space
of the skew-symmeiric 4-tensors.

Theorem 4-3 states that the maximum eigenvalue of ¥ on B? is
possibly p(p+1). We show

LEMMA 4-6. For we B?, we have alt (w) € B? and
Falt (w)) =p(p+1)(alt (@) ,
and hence A C V.
Proor. Direct computation shows

Yalt (@))s,.7,=p@lt (@)r,,5,— 2, (@l (@) & 7§

Ip(jh)pr('llk)
= p(alt (), 7, + 5 @t @)s,.s,
= p(p+1)(alt @)y, s,

REMARK. If p' ié even, then A*CB? is in V},.,, but if p is
odd, then A** N B?=(0) and hence alt (w)=0 holds.
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Next we prove the main theorem.

THEOREM 4-7. Let p<n/2, then the eigenvalues of T on B? are
Just [p/2]+1 numbers {2r2r+1), 0=Zr=[p/2]} and B? is orthogonally
decomposed with their eigenspaces.

Let w=(w;,.,,)€B*. We define »” € B? for 0=r=p by

h h
me,= 20 ¢ v ¢V
ApHy  Iplipetip,)sdpligy - +ig,)
where the sum is taken over all 4, and H,, A.,=(a,, ---, a,) and
H,.=(h, ---, h,) are any permutations of numbers taken from (1, - - -, p).
Then we have

(r) @r+1 hpty Apt1 Hyt1
v vit= S oy v
Cptrohpts  Iplip,yq)Jp (‘ba'r-l‘l) Apt+pHptg IpuH‘r-l—l)’J?(ZAr-l-l)

—2r(p—7) 3 © ¥

ApH, Iy (g‘HT),Jp (iAr)

+rp—r+l? X @ Tt T

Ap 1, Hp g Ip(jH’r—l)'Jp(iAr—l)

Hy

We assume w € V. Then Tw=x1w, and ITn" =11’ holds. Since the
left hand side of the above equation is p77), 7o — &N )10, WE have

@—=N08 5, =05 —2r(p—r)9f) (0 —r+ 1)1 7,
and consequently we obtain

7 —@r(p—r)+@—M))" +rie—r+1)=0.
Hence for small », it holds

77(0) =,
W=p@P-No,
NP =((p—N+2(p—1)(p—N)—p)w .

We set a,=@2r+1)p—27% b,=r*(p—r+1)% and 4A,=a,—\, 0Zr=p.
LEMMmA 4-8. We have for r=3,
N ={Ay e A= S04y e A FSbDA, e A= )0
where the sum 1s taken all over the terms of the same type.
PrOOF. We will show by the induction. We easily get
7®=(4,4,4,—b,A,—b,A)w .

Suppose the lemma is true for ». Then we have
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77('r+1) :Arv('r) __br,y(r_—l)
={4,--- A, —D b4, --- A, +>bbA, - A, —---}w
_{bq-Ao tee Ar—z—z b,b,4,A, ,+ -+ '}w
={4y-- 4, —20A, - A, +20bA, - A — o,

which shows that the lemma is true for »-1.
LEMMA 4-9. Let we B? and 7' is defined as above. Then

77(?') _ 77(p~r)
@ (-1’

PrOOF. A straight calculation leads to

(- Ay Hep
Nigr,= 24 @\
ApH,  Iplip,)siplig)
— 2 @y Gr hy ke
—elF 3 e Sy b b
h%<...§z; i '-7h1'"v"h,,"'zzl’ﬂl"'zal'"";a?,"'jp

a1< <ar Zar—i-l.-'iap'zal..'za/rjh/r-*-l‘.'yhp .

Replacing the induces j,,, - -+, ji, to (A, - -+, h,)-position and <,, -- -, 7,
to (a,, ---, a,)-position, it becomes

r

— 2 @1 @p Gpiy1 Gp kg hy hpeyy hp
=) 2wy VivovivT oy
Zj‘iié ézp LR HIE SPELS J ORT) SRRLE) SCONPLLLL N
— 1 2 (p—r)
(r )(( ),)2 /)

PrOOF OF THEOREM 4-7. By virtue of Theorem 4-5, the eigen-
values of ¥ on B? are 272r+1), r=0 and 1. Therefore we suppose
first that the eigenvalues of ¥ on B* are all 2r2r+1), 0r=o.
Since each eigenvector w € B* of eigenvalue )\ satisfies gw(0) € B*»**
and Z(gw)=1(gw), ) is an eigenvalue of & on B**', Moreover by
Lemma 4-8,

N ={dy e A= S0, e Ayt
= (D (— D+ -+ N D]

holds, where [(p—1)] shows the terms of degree less than p—1 in
A. On the other hand, from Lemma 4-9 we have

w+n _ [(@FDIV oo
7 - ( (p—1) !) 7
=p(P+1){(—=1)>" N (=D + -+ -+, A [(p—3)}w

and hence we obtain the equation



14 Y. Ocawa NSR. 0.U., Vol. 33

N —(ao+ -+ - +a, N +[(p—1)]=0.

Therefore the numbers of the different eigenvalues X, - - -, N, of
on B are at most p+1 and they satisfy

NoF o FN, =0+ 0 Fa, .

Next let @’ (resp. ®”) be the eigenvector of the eigenvalue £ (resp.
y) of ¥ on B¥**' (resp. B**%), Then the similar computation is valid
for @ and ®”, and hence g and v satisfy the equations

Lt —(ao+ -+ a,— (0 +1))e+[(p—1)]=0,
VP — (@’ + - e )"+ [(0)] =0,

where we set a;=2i+1)2p+1)—2i% a/=(2:i+1)2p+2)—27%.. Since
the eigenvalues of £ on B?» are also eigenvalues of £ on B** and
the numbers of the eigenvalues of ¥ on B**' are at most p-+1, we
conclude that y,, ---, ¢, coincide with X, -+, n,. We put y,=2x,, -
v,=\, by the same reason. v, satisfy the equauion

Vot ooy, v, n=a)+ - Fay,, .
Therefore we have

Vi1 =25 @ — D3 N
= a2 a
=2(p+1)2(p+1)+1).

Thus it is shown that the eigenvalues of T on B*»*? are 2r(2r-+1)
0=r=p-+1. This proves the theorem.

5. Skew-symmetric forms as curvature type tensors. By virtue
of Lemma 4-6, we A* satisfies Tw=p(p+1)w. We prove that the
converse is true. Let p=2s be even in the following.

LEMMA 5-1. Any o€ B*? satisfies
alt (Bw)=p(p+1) alt (w) .

Proor. Let w= (a),p, s,) € B?, then Lo=pw—7"* and

(alt (7](1)))12p (2 )' Z e(o )77(1) oo 1 Togp
=—=2,¢(0) Z ® ;
(2 )! 01..ijﬁk...iap,iopﬂ...i\;a...iazp .
a »+k o

If we put o'=(o;,-- -¢V7p+k- -"-c;a~ *+0y), then &(g)=—¢(0") and hence we
have
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1 _ -1 '
(alt (n' )))Izp '—W > e(a”) % wiai---io;,i

= —pi(alt (@), -
It follows that alt (Tw)=1p alt (w)+p*alt (w)=p(p+1) alt (w).

veed 1
op+1 oo,

COROLLARY 5-2. If we B? satisfies To = \w, An<p(p+1), then
alt (w)=0.

ProorF. By Lemma 5-1, it is easily shown that \(alt (w))=
p(p+1) alt (w) and hence alt (@)=0.

Taking the eigenspace V}? for eigenvalue \ of < on B?, we have
B?=3\, Vi and AP C V.

LEMMA 5-3. If we B? satisfies Tw=p(p+1)w, then we have
7 =(=1ypp—1* -+ (p—7+ 1) .

ProOF. When =1, we have 7" =pw—%w=—p°w. We assume
the lemma is true for =2. Then making use of the successive
relations of " we have

N =2r(p—r)+o— @ +0))" —r(p—r+1ypT?
=(=1)"p(p—1)" - - - (p—7+1)"(p*—2pr+1)@
=(=1"p* .- (p—7)®

which shows the lemma is true for »-1.

LEMMA 5-4. For we B? we have

_0 o (=1,
AO= o= T

Proor. First for »" of we< B?, we have

() — 2 §‘ ay, ap ky  ky
Y}il"-ip,ip+1---z'2p (T!) 15k <Shn < @ \% \% V \'
< res P Gqeeed - vesd, 4 ceef, eeni, eesd
150120 2a0gp VPR e R, T tp 1 ey T e T Ragy

=(=1)"(r1)2 > (—1)ZautZkigy, A

A
7'1"'ip":p+kl"'ip-l-kq.!ip-%-l"'izzzial"'itz,,. .

For any permutation ¢=(o, --- 0,,) of 1, ---, 2p, the pairs (o, :--: 7,)
and (0, - 0,) have the numbers 1<---<p<p+k<---<p+k,,
< <a,<p+l<---<2p for some . Thus we have

S e(o)a)%l...iap,%pﬂ...iazp

A A
=@l > el---ppth---pth o aptl---2p)
APIDL

A A
X a)il"'ip":p+k1'"ip+k7.r7:a1'"iarip+1"'7:2p
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— (=1 .
=@l =D e s -

(rl)
Since (—1)'=(—1)*"" and " /(r!)*=n*""/(p—7)!)’, we obtain
alt (@) = (_2%)_! SOV, oty ey

— @) 5 (=1
(2p)! > (rl)y

THEOREM 5-5. If we€ B” satisfies To=p(p+1)w, then @€ A*,

77(1‘) .

Proor. If Sw=p(p+1)w, then we have by Lemmas 5-3, 5-4

@) 3 (=D e
alt () = 2p)] 2 o1y 7"

<212.9> é} (:o(p~1> <o (p—r+1) >2w
Y

7!
1 & [p)\
=-———Z<>w=w,
2p 1'=Orr

(7]

which shows w is a skew-symmetric 2p-form.
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