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Let C be a complete nonsingular curve over an algebraic closed
field k. Let X be a ruled surface over C, that is a complete non-
singular surface with a surjective morphism n: X—C such that each
fibre is isomorphic to P' and 7= admits a section. When C is an
elliptic curve, X is called an elliptic ruled surface. From now on
we consider elliptic ruled surfaces over a fixed elliptic curve C.

The present paper is a continuation of [2], and our notations
are the same as used in that paper.

REMARK. The explanation of C, in the introduction of [2] should
read as follows. We fix a section C, with Zx(C,) = Zp«,(1), Where
¢, which is explaned later, is a normalized locally free sheaf of
rank 2 on C.

TrEOREM ([1,V, 2.21], [2, Th. 3.3]). Let X be an elliptic ruled
surface with non-negative invariant e and D~nC,+bf a divisor on
X. Then

(1) D is ample if and only if n=1 and degb>ne;

(2) D s very ample if and only if n=1 and degb=ne+3. In
this case D is normally generated and I(D)=Xer [SI'(D)—@;s, ['(4D)]
18 generated by its elements of degree 2 and 3.

In this paper a similar result for X with negative invariant
will be proved. For the fixed elliptic curve C, such a surface X is
unique up to isomorphism and e=—1. It is known that D~nC,+bf
on X is ample if and only if n=1 and degb>(1/2)ne ([1, V, 2.21)).
The result, which will be proved in §3, is as follows: D s very
ample iof and only if n=1 and degb=2; or n=2 and degb=(ne+3)/2.
In this case D is normally gemerated and I(D) is generated by its
elements of degree 2 and 3.

As in the previous paper [2], our main tool for the proof is
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cohomology of a divisor on X. In [2] the dimension A*(D) of the
1-th cohomology group HiX, D) was computed partially, using the
following exact sequences (#1), (#2) and their long exact sequences.

(#1) 0—»D—-C—D—D|,=DRX;—0 .
(#2) 0—=D—yf—D—D|-1,Z2DRXTn—0, where yeC.

In §2 we will compute r*(D) for D~nC,+5f by using the following
exact sequence

(#3) 0—»D—-Y—-D—D|,—0,

where Y is an elliptic curve on X which is numerically equivalent
to 2C,—f. The sequence (#3) and its resulting cohomology sequence
will play an important role in this paper. The existence of such a
curve Y is proved by using a technique of an elementary transfor-
mation of elliptic ruled surfaces. In the first section we will study
an elementary transformation of X with center one point.

§1. An elementary transformation.

We begin by recalling some notations and some definitions. Let
w: X=P(&)—C be an elliptic ruled surface, where & is a normalized
locally free sheaf of rank 2 on C. Then —e=— A*& has degree ¢
that is the invariant of X. A section is said to be minimal when
its self-intersection number is equal to —e. We fix a section C,
such that &3 (C,) =7 (1), which is minimal. A divisor D on X is
written nC,+bf up to linear equivalence, where » is an integer and
b is a divisor on C.

First we remark on minimal sections. When ¢>0; or X corre-
sponds to an indecomposable locally free sheaf & of degree 0; or
X is isomorphic to P*xC, any minimal section is linearly equivalent
to &%,(Cy). Furthermore in the former two cases, C, is unique since
n(Cy)=1. Next if X=P(~,Pe) with invariariant 0, where ex 7,
then a minimal section is linearly equivalent to Z7:(C,) or Zx(C,—ef).
Since r(C,)=h"(C,—ef)=1, we denote by C, the minimal section other
than C,. Finally when e=—1, |C,+bf| contains a minimal section if
and only if degb=0. In this case A'(C,+bf)=1.

Now we study an elementary transformation of X with center
a point Pe X. It is easy to see that the elementary transform X’
of X is also an elliptic ruled surface ([1,V, 5.7.1]). Our result is
as follows: if P is on a minimal section, them the strict transform
of the section 1is also minimal on X' with invariant e+1. In the
other case, X' has the invariant e—1 (Prop. 1.1,1.2, 1.3, 1.4).
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Let L, be 77(y) where y=n(P). Let f: X—X be the monoidal
transformation with center P and E the exceptional curve of f. If
Z is a curve on X, we denote by Z [resp. Z'] the strict transform
of Z via f [resp. elm,]. Let g: X—X’ be the morphism sending L,
to a point @, then we get the elementary transformation elm,=

g-f.

PROPOSITION 1.1. Let X=P(Z,Pe) be an elliptic ruled surface
with e=1 and P a point on X with n(P)=y.

(1) If PeC, then X' =P(ZP(—y)) and C; is the minimal
section of X' (Fig. 1).

(2) If P¢C, and e=2, then X'=P(Z,PD(e+vy)) and C, is the
minimal section of X'.

PROOF. When PecC,, we see that Ci*=C2=C2—1. Since a section
with negative self-intersection number is minimal, the invariant of
X'"is e+1. If Z is a section on X such that Z*=e¢, then Z~C,—ef
(2, Prop. 3.1(a)]). Note Z-C,=0, then we get Z'~Ci—(e—%)f and
Z"=¢+1. Hence we see that X'=P(Z,PD(e—y)). Considering elm,,
we get (2) easily.

X L,
Co
. 15 g
Y Ly / \ X
Q<
= S _elm, — 1
T b
Yy Yy
Fig. 1.

If P¢C, and e=1, then X’ is an elliptic ruled surface with in-
variant 0. But in this case we have to study more carefully.

Let Z, and Z, be any two members of |C,—ef|. Then Z,NZ, is
one point on L_.. We denote it by R, which is Bs|C,—ef]|.

PrROPOSITION 1.2, Let X, P and R be as above.
(1) If y+—e, then X' =P(ZD(e+vy)). The minimal sections
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on X' are C, and C}, where C, 1s the section which 13 passing through
P and linearly equivalent to C,—ef (Fig. 2).

(2) If P=R, then X'=P(TPD).

(3) Ify~—eand P+#R, then X' corresponds to an indecomposable
normalized sheaf of degree 0 and the minimal section of X' is C;.

PrROOF. We only prove (1). The assertions (2) and (3) can be
proved in the same manner. Since h°(C,—ef)=h"(ERT(—e))=2,
there exists a member of |C,—ef| that passes P. Because P¢C,
and y+ —e, there exists a unique section C, €|C,—ef| that passes P.
We can easily compute Ci~Cy—(e+y)f and C*=0. In general if Z
is a section which passes [resp. dose not pass] through P, then
Z"=27*—1 [resp. Z*+1]. Hence for a section Z¢|C,—ef| not passing
through P, Z""=2. For any other section Z which is not linearly
equivalent to C, nor C,—ef, Z*=¢+2=38 by [2, Prop. 3.1(a)]. So
we see that C; and C; are the minimal sections on X’ and X'=
- PO@ e+ 1)
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Fig. 2.

The assertion (2) of the following proposition is avairable in

§2.

ProposSITION 1.8. Let X=P(Z,Pe) be an elliptic ruled surface
-~ with e=0 and ex ;. Put y=n(P).

(1) If PeC, [resp. C,]l, then X'=P(Z,D(e—vy)) [resp. P(TD
(—e—y)] with invariant 1 and the minimal section of X' is C;
[resp. C.].

(2) If Pe¢C,UC,, then X' has the invariant —1. For every
be Pic'(C) such that b is meither y mor y—e, there exists a unique
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section Zy € |C,+bf| passing through P. The set of minimal sections
on X' are the union of C;, C, and Zs (Fig. 3).

ProOF. The assertions can be proved in the same manner as
Proposition 1.2. We will only give a remark on Z; in (2).

Every section Z¢|C,+bf| intersects with C, and C, at Se L.,
and T € L, respectively. These two points are Bs|C,+bf|. On the
other hand A°(C,+bf)=hr" (&£ R7,0))=2, so there exists a member of
|C,+bf| passing through P. Because P¢C,UC,, bxy and bry—e,
such a member is unique, which is Z;. Clearly C;, C, and Z; have
their self-intersection number 1.

—~
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Fig. 3.

Similarly examining elm, of X with e=—1, we get the following
proposition but omit its proof.

PROPOSITION 1.4. Let X be an elliptic ruled surface with e=—1
and C, the minimal section which 1s linearly equivalent to C,+bf
Jor every be Pic’(C).

(1) If there is only one minimal section passing through P,
then X' corresponds to an indecomposable normalized sheaf of degree
0.

(2) If there are two minimal sections C, and C; passing
through P, then X'=P(Z,pb—Y")) with invariant 0, where bLY .

§2. Dimension of HYX, D).

This section is devoted to a computation of Ai(D) of a divisor
D on an elliptic ruled surface with invariant —1. But for a while
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let X be P(<,Pe) with invariant 0.

LEMMA 2.1. Let e be a divisor on C such that 2¢e~c7,. Then
on X=P(ZDe) there exists an 1rreducible reduced curve that is
linearly equivalent to 2C,. Such a curve is elliptic.

Proor. Since A°(2C,)=h"(S*ZPe))=2, there exists an effective
divisor Y~2C,. Assume that Y is reducible. Say Y=Y,UY,, then
Y, ~C,+bf and Y,~C,—bf for some divisor b of degree 0. Since
(Cy,+bf)=hr"(HP(B+e)) >0, b must be linearly equivalent to &7, or e.
Hence we get that Y,=Y,=C, or Y,=Y,=C,. So a general ¥ of
|2C,| is irreducible.

Now we show that Y is elliptic. The restriction map z|,: Y—C
is a finite morphism of degree 2. Hence Hurwitz formula implies
that the genus of the normalization of Y is not less than 1. On
the other hand, by adjunction formula 2p,(Y)—2=2C,-(2C,+K) we
get p,(Y)=1, where K is the canonical divisor —2C,+e¢f. This means
that the genus of the normalization of Y is not grater than 1. From
these we see that Y is a nonsingular curve of genus 1. g.e.d.

Now we consider an elementary transformation of X with center
a point Pc Y, where X and Y are as above. Since Y intersects with
neither C, nor C,, X'=elm,X is an elliptic ruled surface with in-
variant —1 and C; is a minimal section by Proposition 1.8. It is
easily computed that Y’ is linearly equivalent to 2C;—yf. Hence
we get an elliptic curve Y’ that is numerically equivalent to 2C;—f.
We have just proved the following corollary.

COROLLARY 2.2. The numerical equivarent class of 2C,—f on
X with e=—1 contains an irreducible nonsingular curve, which s
an elliptic curwve.

ProPOSITION 2.3. Let D~nC,+bf be a divisor on X and m the
degree of b.

(1) If n=0 and m>—n/2, then h'(D)=h*D)=0 and h'(D)=
A/2)(n+1)2m+n).

(2) If n=0 and m<—mn/2, then h°(D)=h*D)=0.

(3) If n=-—1, then h'(D)=h'(D)=h*D)=0.

PrROOF. We have already known (3) and the that A* D) is vanish-
ing under the assumption #=0 in the previous paper. Let Y~2C,—yf
be an elliptic curve in Corollary 2.2, where y is some divisor of
degree 1. Consider the following exact sequence

(#3) 0—(n—2)Cy+ (b+Y) f—nCy+bf—nC,+bf|,—0 .
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Since deg(D]y) =n+2m is grater than 0, H(D|,) is vanishing and we
get that H'(D— Y)—H'(D) is surjective. Repeat this replacing D by
D—Y, then we obtain the following surjections:

Hl(D—lz’i Y)—»HI(D)‘, if n is even ;
HI(D—_”_;E}_ Y)—J—Il(p) . if n is odd .

In n is even, then H(D—(n/2)Y)=HY((b+ (n/2)y)f)=H'(C, b+ (n/2)y),
which is zero. Hence H'(D) vanishes. If #» is odd, then H'(D-—
((n+1)/2)Y)=H"(—Cy+ O+ ((n+1)/2)y)f), which is zero by (8). So we
get H'(D)=0. Therefore we conclude that A°(D) is equal to X(D),
which is computed by the Riemann-Roch formula X(D)=(1/2)D-
(D—K)+1+9,X), where p,(X)=X(%)—1 is equal to —1. Similarly
we can prove (2).

§3. Projective normality of D on X.

ProprosITION 3.1 ([2, Prop. 3.1, 3.2]). Let D~C,+bf be a divisor
on X.

(1) |D]| contains a section if and only if degb=0.

(2) |D]| has no base points i1f and only if degb=1.

(3) D is very ample if and only if degb=2. In this case D
18 normally generated and I(D) is generated by its elements of degree
2 and 3.

LemmA 3.2. If n=1 and degb=(2—n)/2, then a divisor D~
nC,+bf 1s free from base points.

ProOF. We prove the result by induction on n. First we
remark that a divisor bf with degb=2 is free from base points.
When n=1, the lemma holds by Proposition 3.1. We assume n=2
and put m=degb. Let Y be as in the proof of Proposition 2.3.

Since H'(D—Y) vanishes by Proposition 2.3 (1), we get the following
exact sequence

(£4) 0—I'(D—Y)—I'(D)—I'(Dy)—0 .

We see that D is free from base points when both D—Y and D|,
are free from base points. For deg(D|y)=n-+2m is grater than or
equal to 2, D|, is free from base points. If n is odd, then by the
induction hypothesis that I"(D—Y) has no base points, we get that
so dose I'(D). If n is even and n+2m>2, then by the first remark
and the induction hypothesis, we get that I'(D) has no base points.
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To complete the proof, we have only to prove that D~2C,+bf with
m=0 is free from base points. We show that for every point P
on X there exists a member of |D| which dose not contain P. If
P is not on C, nor the section C,+bf, then we have nothing to do.
Let P be on C, then the minimal section C,+ (#(P)—e)f intersects
with C, at P and any other minimal sections do not pass through
P. Hence for b’ € Pic’(C) in general position, the union of two mini-
mal sections C,+bf and C,+(b—V)f is what we want. Similarly
when P is on C,+bf, we can find a member of |D| which does not
contain P.

LEMMA 3.3. Let D~nC,+bf be a divisor on X such that n=2
and degb=(8—n)/2. Ifthe map B: ['(D)RXI'(D)—I'(2D) is surjective,
then D 1is mormally generated.

Proor. By Lemma 3.2, I'(D) has no base points. By Proposi-
tion 2.83(1), for t=2 both A'((t—1)D) and h*((t—2)D) are zero. An
application of the generalized lemma of Castelnuovo in [3] to the
map By I'tD)YRXQI(D)—I'((t+1)D) yields that B, is surjective. By
the assumption of the surjectivity of @ and by ampleness of D we
get that D is normally generated.

THEOREM 3.4. A divisor D~nC,+bf on X is very ample if and
only if n=1 and degb=2: or n=2 and degb=(B—n)/2. In this case
D is normally generated and I(D) is generated by its elemenis of
degree 2 and 8. '

ProOOF. Let Y and m be as in the proof of Lemma 3.2. We
have only to prove the case when n=2. If D is very ample, then
D]}, is also very ample. Hence deg(D|y)=n+2m must be grater than
or equal to 8. To prove the converse we show that D is normally
generated. By Lemma 8.3 it is sufficient to prove the surjectivity
of the map g.

In case n=2 or 3, we note that the assumption n+2m =3 means
n+m=38. We can consider the following commutative diagram

0—=I(D—C)QI(D)—TI'(DYRI(D)—I' (Do )QI(D)—0

I | |

0— I1r@on-c¢) — I@eD -— rebl,) —O0.

The rows are exact because H*(D—C,) and H'(2D—C,) are vanishing
by Proposition 2.3(1). Since deg (D|s)=n+m=38, D, is normally
generated. Hence 7 is surjective. An application of the generalized
lemma of Castelnuovo in [3] to the map a yields its surjectivity. In
fact I'(D—C,) has no base points by Lemma 3.2, and H'(D—(D—C,))=0
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by Proposition 2.8 (1) and H*(D—2(D—C,)=H*(2—n)C,—bf) is zero
by Proposition 2.8(2), (8). The surjectivity of a and 7 implies that
of B.

In case n=4, we use induction on n. Tensoring the exact
sequence (#4) in the proof of Lemma 3.2 with I'(D) and I'(D—Y)
we get the following commutative diagrams with exact rows.

0—-I'(D—Y)YRXI['(D)—-I'(D)RXQ[(D)—I'(D|y)RQI'(D)—0

I I I

0—» I'(eD-Y) — TI'(@D) — I'eD—Y|,) —0
0—I(D—Y)QI(D—Y)—T(DYRI'(D—Y)—I(D])RI(D—Y)—0

; - f

0—» I'@D—2Y) — I'(@D-Y) — TI@D-Y|) —0

Since deg(D|y)=n+2m=3, D|, is normally generated. Hence 7 is
surjective. We claim that 7' is surjective. Since both deg(D|,) and
deg(D—Y|y) are grater than or equal to 3, I'D|y) QI (D—Y|y)—
I'@2D—Y|y) is surjective ([4, Prop. 1.10]). Furthermore there is a
surjection I'(D—Y)—I'(D—Y|y), because HYD—Y) is vanishing.
Therefore 7' is surjective. By the induction hypothsis that g’ is
surjective, so is a. It follows that B is surjective as required.
For the rest of the theorem on generators of I(D), see [2,
69-70 pp.]. The same proof will work. q.e.d.

We summarize our results in Fig. 4, where a lattice point (%, m)
means a divisor which is numerically equivalent to nC,+mf.

(O =no base points

m ® =ample
il ® ® © © ® ® =ample with normal generation
3Ir ® ® ® ® ®
2F @ ® ® ® ®
1 @. ® ® ® ©®
0 o< OB &>
172, 3 4.5
—1} ~ @T®. 3,
. Tm= 5
~ n
L)
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