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§1. Introduction.

A simplex space E can be expressed as a space A,(X) of con-
tinuous affine functions on a Choquet simplex X [6]. One can also
identify it with a space A4,(0X) of functions on X (= the closure
of the set 60X of all extreme points of X), by using probability
measures on X supported by oX [7]. AM space is a special case of
a simplex space and it provides more information than a simplex
space because of the property of lattice and algebra. The second
dual E"” of a simplex space E is AM space and it can be expressed
as a space of bounded affine functions on X. But E” contains so
many elements that it cannot be expressed isomorphically as a space
of functions on 6X. So we investigate sublattices of E' containing
E, which can be identified with a space of functions on 6X. In §3,
we examine the smallest Banach sublattice E, of E" containing E
(Theorem 1). Although a simplex homomorphism keeps E, invariant
(Theorem 2), E, is not necessarily T"-invariant for a positive operator
T in E. So in §4, we investigate sublattices of E" containing FE
which is T"-invariant for any positive operator T € &(E) and obtain
that a closed subspace E, of E” generated by bounded upper semi-
continuous affine functions on X is the desired one (Theorem 3). We
also show that under some conditions, F, is the smallest one (Prop-
osition 3). '

§ 2. Basic results on a simplex space.

Let E be a simplex space [7], i.e., an ordered Banach space such
that its dual space E’ is an AL space and X be the set

{xe B’ ©20, |z[=1}

endowed with the weak*-topology. Then X is a simplex (in the
sense of Choquet) [7] and E may be identified with A,(X), the space
of all continuous affine functions on X vanishing at 0. For each



28 F. Takeo NSR. 0.U., Vol. 33

xe X, there is a unique maximal representing measure g, on X
supported by 0X (the weak™ closure of the set 0X of extreme points
of X). By using this measure, we may further identify E [8,

Theorem 3.3] with the space A,(3X) (:{ FeCEX); f(x)zS fdp, for
all x€oX and f (0):0}). As functions on X, E” may be identified

with the space of all bounded affine functions on X vanishing at 0.
For f, g€ E, the least upper bound of f and g does not neces-
sarily exist in E, but always exists in its second dual E”. We
denote the least upper bound in E” of fand g by fV¥g. The subspace
F of E” is called a sublattice of E' if f, g€ F' implies f¥geF.
Let f be a bounded function on X. The upper envelope F of
f is defined by

f@)=inf {h(x); he A(X) and hZ=f)

for all x€ X. For f, ---, f, in E, the function fiVv--:-Vf, defined
by :

(iV - V)(@)=max {fi(®), -+, fo(x)} for all xe X

is a convex continuous function on X. The upper envelope (f,V:--
V) of fivV.--Vf, is upper semi-continuous affine on X since X is

a simplex [2, 28.4] and so (f,\V---Vf,)" belongs to E'”. Therefore
we have

LemMMA. For fi, ---, f.€ B, we have
.flv ce an:(flv tre \/.fn)A .
ProOOF. For ze¢ X, it holds that

(£ VL)@ =sup{3] fi@); 3, v=a, v, ¢ X|

by [11, 11.4.2]. Put f= fiv---Vf,. Then by [6, Lemma 2.8], we
have

sup {Ez_“{ Si(@); Z. =0, &; € X}
=sup {#(f); 1 e P.(X)},

where P,(X) is the set of probability measures on X with barycenter
2. Since f is a continuous function on X, we have

F@)=sup {p(f); pe P(X)}
by [10, Proposition 3.1]. Therefore we have
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(fiV - NI =F=fiV -, . /!

As for the absolute value |f|z (=fV(—f)) of feE in E"”, we
have

COROLLARY. Let feE. Then we have

| f e = V(="

§ 3. The smallest Banach sublattice of E’.

Though a simplex space E is not necessarily a Banach lattice,
its second dual E’ is a Banach lattice (AM space). But E" is too
large compared with E. So we seek the smallest Banach sublattice
of E"” containing E and characterize it. Let Y be the set

{fye B"; y=0, ||y ||<1}

endowed with the weak*-topology. Since E” is an AM space with
order unit, the set 0Y is closed and E' is isometrically isomorphic
to C,(0Y) (={feC@Y); f(0)=0}). For y,y €dY, define the equi-
valence relation y~%" if f(y)=/f(y¥") holds for all fe E. Let

E={feRE"; fly=f() if y~v'}.

Let {(#,, %%, .)}ecs be a subset of 6Xx0Xx[0,1] consisting of

all the triple (., ., ¢,) such that f(z,)=c.f(x,) holds for any fe F.
Let V be the space

{f e C0X); fx)=c.f(x.) for all aecd}.

Though an element of ¥ does not necessarily belong to K", we have

THEOREM 1. Let E be a simplex space and X be the set {x € E';
=0, ||z|| Z1} endowed with the weak™*-topology. Let S={(f,V -V ) s
fieE,ne N} and E,={feE"; f(y)=fW") if y~y'}, where y~y' is
defined above. Then

i) E, is the smallest Banach sublattice of E'" containing K.

ii) (S—8)* (= the norm closure of S—S in E") is equivalent
to H,.

iii) HE, is isometrically isomorphic to V defined above.

iv) E, is the space of all bounded affine functions f on 0X such
that there exists g€ V satisfying g|oX=f|0X."!

ProOF. i) Since E” can be identified with C,(0Y) and for f,
ge K", (fVg)(y)=max{f(y), 9(y)} holds for all yedY, it is easily

L f|F denotes the restriction of f to F.
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obtained by definition that FE, is a Banach sublattice of E’ con-
taining F.

Suppose F' is a Banach sublattice of E” such that E,DFDOE.
For y,y €0Y, define the equivalence relation y~y’ if f(y)=rF(")
holds for all feF. Then F={fecE"; f(y)=f(y") if y~y'} holds
since F' is a Banach sublattice. On the other hand, ECF' implies
Ec{feE";, fy)=f") if y~y'} i.e., E,CF. Therefore E,=F and
E, is the smallest Banach sublattice of E’ containing E.

ii) f, g€ S implies f;I—.geS by Theorem 28.4 (iv) in [5]. For
f,9€S, fvvge S follows from Lemma. Let f,geS—S i.e., f=fi—fo
9=0.—09, fi, 9:€8 (t=1, 2). Then by the relation

fvg:<f;+gz)V(g1+f;)—(f;+gz) ’

we have fvgeS—S. Let f, g€ (S—S)*. Then for any ¢>0, there
exist £, g.€ S—S such that

[f—fill<e and [g—g.[<e.

Therefore || £V g.— fVg|<e, which means f¥vge(S—S)*. So (S—S)*
is a Banach sublattice of E' containing E. By the definition, the
smallest is obvious. Therefore by i), E,=(S—S)".

iii) For feS ie., f=(fV: V) ficeE (=1, --,n), let
o(f)=(AV---VSf)|oX. Then ¢(f)eV and |¢()l=|fI. For
reoX, o(f)x)=f(x) by [10, Proposition 8.1]. For f, g8, let
o(f —9)=¢(f)—¢(g). Then ¢(f—g)e V and ||g(f—g)||=|f—g|. For
xeoX, ¢(f—g)@)=(f—9)(x). Let fe(S—8)* Then there exists a
sequence {f,} =S —S8 such that || f,— f||—0. By the relation || f,—f.ll=
lo(f) —o(fll, ¢(f) is also a Cauchy sequence in V. Therefore
#(f,) converges to an element he V. Let h=¢(f). Then | f|=
lo(F) ] and f(x)=¢(f)(x) for all x€dX. Moreover ¢ is a continuous
one-to-one mapping of FE, into V. It remains to prove that ¢ is
onto. Since ¢ is isometrie, ¢((S—S)*) is a closed sublattice of
V. E separates points of X and for any nonzero xzc€oX, there
is fe ECE, such that f(x)*0. By Stone-Weierstrass theorem, we
have ¢((S—8)»)=1V.

iv) In the proof of iii), we get the conclusion by putting g=
¢(f) for fekK,. /]

Let T be a positive operator in a simplex space E. Then E,
is not necessarily T”-invariant. The following example shows that
E, is not T"-invariant.

ExampLE. Let E={feC(0, 1]); FA/2)=1/2){f(0)+ f1)}} and T
be defined by
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F(22) 0=z
o=l o3 dered
F@z—1) 2 <os1.

Then E is a simplex space, T is a positive operator and FE, is
the space of all bounded functions on [0, 1] such that f is continuous
on [0, 1/2) U (1/2, 1] with £(1/2)=1/2){f(0)+ f(1)}. Put fi(x)=1—2x and
fi@)=2x—1. Then f, f;€ F and f,vVf,e E,.. But T"(f,vf.) ¢ B, And
there is no extension T of T to E, such that TE CE..

So we consider what kind of operator keeps E, invariant.

DEFINITION. We call T € ¥(E) a simplex homomorphism® +if for
any f, g€ K and any x<oX, there exists he E such that h=f, g and
Th(x)=max {Tf(x), Tg(x)}.

Then we have

THEOREM 2. If T is a simplex homomorphism of a simplex
space, then T"E, is contained in H,.

Proor. For feS, ie., f=(f,V:---VSf), ficE, we have
(THNV - VTf) (x)=max {Tf(x), ---, Tf,(x)} for xeoX. If T'x=+0,
T'x/|| T'x|| € 90X, which implies that fi(T'z)V---Vf(T'€)=(fiV -
V) (T'x) = f(T'x). Therefore T"f(x) = f(T'x) =(TfiV - VTf) @).
Since f is upper semi-continuous affine, T"f is upper semi-continuous
affine and so T"f=(Tf,V---VTf,)" holds by [4, Korollar 2.4.5].
Hence T"feS. 1If feS-8, ie., f=fi—f» fi€S (i=1,2), then
T'f=T"f,—T"f,e S—8. If feS—S, we get T"feS—S. Therefore
T"E, is contained in E,. /!

§4. 8(E),-invariant sublattice of E".

Let F' be a Banach sublattice of E’ containing E. Put Z=
{ze F"; 220, ||2]|<1}. Let 4; X—Y be the natural embedding and
7; X—Z be the restriction of Y to F' defined by z(x)=1(x)|F for all
x€ X. Then we have

PRrROPOSITION 1. 7(0X) 1s contained in 0Z4.

Proor. Let A€0X. Then since A is a simplex homomorphism
of K into R, t(\) is a lattice homomorphism of E” into R. So for

2 F. Jellett ealled it a Riesz homomorphism [9].
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any f, g€ FCE", we have (fVvg)(i(x)=max {f(i(\)), g(¢(\))}. Since
F' is a sublattice of E”, fVYge F. So ¢(\)|F is a lattice homomor-
phism of F' into R. By Theorem III.9.1 in [11], we have z(\)=
i(\) | F € 0Z. //

E, is not necessarily T'-invariant and 0X is not necessarily
o(E"', E'")-dense in 0Y as shown in the example [1, Example 1.2.10].
So we investigate the family of a Banach sublattice F' of E' satis-
fying

I) F contains E and order unit of E”.

II) F is T"-invariant for any positive operator T € ¥(H).

III) z(0X) is o(F’, F')-dense in 0Z.

REMARK. Since a bounded affine function on 90X has many
extensions to bounded affine functions on X [1, Example 1.2.10],
E" cannot be expressed isomorphically as a space of functions on
0X. But F can be expressed as a space of functions on 6X by the
condition III).

Let S, be the set of all bounded upper semi-continuous affine
functions {f} on X satisfying f(0)=0. Then we have

PROPOSITION 2. Let f be a bounded upper semi-continuous func-
tion on 60X such that f(x)zgfdyx for all x€oX and f(0)=0. Then
there is a unique extension fe€ S, such that f|oX=f.

PrOOF. Put

f(x) rcoX

g(oc)={c re X\0X ,

where c¢=inf{f(x); x€9X}. Then ¢ is an upper semi-continuous
convex function on X. By [2, Lemma 1.2], §(x)=p.,(9)=pt.(f), since
the maximal measure is supported by 0X. Let f=§. Then F is
affine on X by the relation g,.,=p,+, and so f is the desired one.
Uniqueness follows from [4, Korollar 2.4.5]. /]

Let E, be the space (S,—S,)* (norm closure in E"”). For ¢c E",
|6||=sup,.x|#(x)| is not necessarily equal to sup,.sz |4(x)|. But for
¢ € K, ||¢||=sup,.sz |#(x)| holds. So by Proposition 2, E, can be ex-
pressed as a space of functions on 6X. Furthermore we have

THEOREM 8. Let E, be the space (S,—S,)* (norm closure in E'"),
where S, is the set of all bounded wupper semi-continuous affine
functions f on X satisfying f(0)=0. Then E, is a Banach sub-
lattice of E" satisfying I)~III) defined above.
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Proor. For f, f,€8,, we shall show that fivVf,=(f,V/f)" . Since
fiVf. is an upper semi-continuous convex function, . (fiV/f)=
(fiVFf) (x) holds by [2, Lemma 1.2]. So we have that (f,Vf)" is
upper semi-continuous affine on X by using the relation g, .=
1/2(p,+p¢,) obtained from [5, I1.28.4]. For z¢e X,

(¥ o) (@) =sup {(fi—f)(¥) + fo(x); 0=y=x} .

Put K={ye X; (fi—f)(¥)=0}. Define the mapping z; E—R by z(g)=
Sg-XKd;c,. Then z¢ E’ and 0=z=52. So

(V) (@) = (fi—[f)(2) + fa()
=\ (A=) Tadpt, + )

=\ (A= v 0dp, + fi@)

= {(fi—F) VO + 1. (1)
=;lm(f1 \/fz) .

So we have fiVfo,=(fiVSf)". Since (f,V/f.)” belongs to E”, we have
AV =V,

For f, geSz"Sz’ i.e., fzfl—fz’ g=0;— G f;y gz‘esz ("::13 2); we
have

FYg={(fi+9.)V@+)} —(fit+9,)e8,—S,.

For f, g€ (S,—8,)?, there exist {f,}, {9.}<=S,— S, such that || f,—fF||—0
and ||g,—g||—0. Then ||f,Vg9,—FfVg|—0. Therefore fvge(S,—S,)"
So E, is a Banach sublattice of E”. :

I) By the definition of E,, it is clear that E, contains E. The
order unit I of E” is expressed as follows: I(x)=sup{f(x); f€E,
IfI=1}. So I is lower semi-continuous affine on X and belongs to
E,.

II) For fe S, and 2€ X, we have

f@)=inf {n(x); h=f, he B} .

So we have T f(x)=f(T'x)=inf {Th(x); h=f, h€ E} and T"f is upper
semi-continuous affine on X and 7T”feS,. So fe E, implies T"fe K,
in a similar way to the above proof.

III) Let Z={ze E;; 2=0, ||2]|<1}. Since E, is a Banach lattice
with order unit, 0Z\{0} is o(F;, E,)-closed and F, is isomorphic to
C(eZ\{0}). feS8,—8,and || f|0X||=<1/n imply || f|=<1/n by [4, Korollar
2.4.5]. So fe E,and f|0X=0 imply f=0, that is, fe C(6Z\{0}) with
flr(@X)=0 implies f=0. Therefore 7(0X) is o(E;, E, dense in
0Z. v /]
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- The remaining problem is whether E, is the smallest Banach
sublattice of K" satisfying I)~III). In general, it is not true. For
if E is a Banach lattice, E itself is the smallest Banach sublattice
of E" satisfying I)~III) and F is not equivalent to E,. Nevertheless
we have the following.

PRrROPOSITION 3. Let E be a separable simplex space with order
unit such that 0X\0X is a finite set {&x,, ---, x,} (W=1). Then E, is
the smallest Banach sublattice of E' satisfying I)~III).

PrOOF. For y,c0X\0X, there are compact subsets K, and K,
of 90X such that K,NK,=¢ and g, (K,)>0 (:=1,2). Let U(y,) be a
neighborhood of g, in X such that T(y,)NoX coXU{y\(K, UK,).
Since FE is separable, X is metrizable and so we consider the distance
d(xz,y) of x and ye X. Then there is a sequence {y,} in 6.XN U(y,)
such that d(y, ¥.)<l/n (n=1,2, ---), since y,60X\0X. Define the
mapping %k on [0, 1] into X by k(0)=y, and

k(t)=n(n+1){(—q]j—t>yn+1+(t—n—i—1—)yn} for 714}_1§ té%@-

(n=1,2.--).

By Theorem III.3.3 in [3], there is a function g € E such that g| K, >0,
g|K,<0and ¢|(U(y)NdX)=0. Let g,=gV(—g). Then g,(y,)>0. So
let fo=(1/9:(¥,))9.. Then f,€ E, fi(y,)=1 and fy(x)=0 for x e U(y,) N X.
Therefore f,(k(t))=0 for 0<t<1.

Each bounded upper semi-continuous affine function on 8.X is the
uniform limit of simple affine functions g, on X such that

gm(oc)———ﬁ'J ijXXAm,d#x for all zedX,

where A,; is a closed subset of X. Since f, belongs to the smallest
Banach sublattice E, of E”, it is enough to show that for any closed
subset 4 of X there are positive operators T,, T,c Q(XE) such that

(*) SxAdp,,=<T;'— i@ for all zedX.

If (@X\0X)NA#¢, put GX\0X)NA={x, ---, x,}. Let K be a compact
subset of 0X\A such that

tofK)>(L—pr, (A)J2 for any i(1i<s) .
If GX\0X)NA=¢, let K=¢. Let

h(m)-—SXAdm-i-ZSXKdm for any xe¢ X.
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Then % is an upper semi-continuous affine function on X and
SXAd#xzh(m)—ZSXKdy,, for any 2xze X.

Let >0 be a number such that

r=min {d(4, K), d(x;, A), d(x;, K); s+1=i=<n}
r=min{d(x;, z,); 1s1<j=n}

and

¢ (@edX; d, oS <o for all i,j (Li, i) .

(@) = min{l, L i, wz.)} . (A=i<n)
r
¢@=minfl, Ldw, A} , e =min{l, Ld, K)}
r r
Gf (0X\0X)NA=¢, let g, (x)=1) and
T, «f @) =2 (@;— 1)L —p;()) £ (e(p()))

+ 3% al—p,@)S (k@)
+ (1= (@) (B, (@) + 21— 0@)) £ (e(gi))
+3 8:(A1—psa) for feE,

where B;(f) is the solution to the equations
S au8)=b(f)  (=ism)
ay=3,—|(1—0,@)dp., (., is the Kronecker’s delta)
()= 3} (=1 | (L~ (@) (e(os(a))dpe,
+ 3 a\t—p@) st @i,
+ |1 —a.@)f k@M,

+2{(1— 0.0) f (W), — e () -

35

Since the relation (**) implies det (a;;)#0 and (a;;)7*=0, B.(f)
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can be obtained for any feE, fckFE implies T, fc€FE and f=0
means b,(f)=0 and B,(f)=0. So T, is a positive operator in E
since b, is a linear functional on E. Moreover we have T . f,=h
since b,(f;)=0 implies B,(f,)=0. By taking K and ¢ instead of A
and K, we get T, ,;c%X) instead of T, . such that T%,fi(x)=

SXKd/J,. By putting T,=T,,x and T,=Tg, we get the relation (*).

Therefore E, is the smallest Banach sublattice of E” satisfying I)~
ITI). /1
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