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Introduction. Let X be a locally compact Hausdorff space with a
countable base and G be a continuous function-kernel on X. Further,
assume that any non-empty open set is non-negligible. Then it is
well-known that the following assertions are equivalent:

(i) G satisfies the domination principle,

(ii) @G satisfies the balayage principle,

(iii) @ satisfies the domination principle,

@iv) G satisfies the balayage principle. (cf. [4])

Here G is the adjoint kernel of G defined

é(x, y)#G(y, x) for z,yeX.

We recall that G satisfies the domination principle if Gu<Gv for
p e Mf with XGyd;K + oo and for v € M} whenever the same inequali-

ty holds on the support supp ¢ of ©#. We say that G satisfies the
balayage principle if for every g e M} and for every compact subset
F of X, there is ve M% with supp vC F' such that

Gv<Gp on X and Gyv=Gy n.e. on F,

where “Gv=Gg n.e. on F'” means that the set {x e F; Gv(x)~=Gu(x)}
is negligible. '

Further, with respect to familiar kernels, for example the New-
ton kernel in R*(»=3) or the Green kernels on domains in R*(n=3),
every (e My is balayable on any closed set F, i.e., there exists
vy € M* with supp vyC F' such that Gv<Gp¢ on X and Gv=Gx n.e. on F,

On the other hand, we can find kernels with respect to which
any p< My is not balayable on any closed set F', although they
satisfy the domination principle (cf. [2]).

In this paper we shall ask necessary and sufficient conditions
for a kernel G and a closed set F' in order that any pe M; is
balayable on F.

§1. Preliminary. Throughout in this paper, let X be a locally
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compact Hausdorff space with a countable base and G be a continuous
function-kernel, i.e., a continuous function from X x X into R* U {+ «}
in the extended sense satisfying 0=G(zx, y)<+ < if z#y and 0<
G, )<+ if z=y. We denote by M* the set of all positive
Radon measures on X and by Mi the set of all positive Radon
measures on X with compact support. For pe M* and x€ X put

Gpu(w): = |Gla, 1))

and denote by Gu the function a2—Gu(x). The adjoint kernel G of
G is the continuous function--kernel defined by

G(x, y): =G(y, 2)
Further we use the following notations.
&= {# € Mz; SG,ud/,c< + oo}
& ={pe Mi; G is finite and continuous},
ﬁ/’ ={¢e Mi; Gy is finite and continuous},
—{/z € Mf; Gy is locally bounded},
—{;z e M%; Gp is locally bounded].
For a closed set F'
MY (F): ={pe M*; supp £ F}, where supp ¢ is the support of .
Similarly,

ﬁv“(F): ={pe ﬁv‘; supp uC F}, 5?(17’): ={pe é; supp pCF)

and so on.

A Borel set B is said to be negligible if u©(B)=0 for all ne &.
Let f, g be Borel measurable functions on X and F be a subset of
X. We write

g=f n.e. on F (resp. f=g n.e. on F)

if the set {xeF; f(x)<g(x)} (resp. the set {xeF; f(x)=gx)}) is
negligible.

Hereafter we assume that G satisfies the domination principle
and each non- empty open set is non-negligible. Then G also satisfies
the domination principle and, both G and G satisfy the balayage
principle.

§2. A sublattice of C(X). We define
S: ={éz‘1/\---/\érn; z',-eg?v', neN},

where Gr,A--- AGr, is min {Gr, Gr,, -+, Gz,}. It is evident that S
is a min-stable convex cone in C(X). Further we define, for v ¢ X,
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Ax): ={ye X; a>0, u(x)=au(x) for every ue€ §} .

Since G satisfies the domination principle, it satisfies the continuity
principle; for pxe Mk, Gy is finite and continuous everywhere when-
ever Gu is finite and continuous on supp . Using Lusin’s theorem
and the continuity principle for G it is easy to see that for each
non-negligible set N there is a non-zero measure yegz‘ with supp
p#C N and that A(x)={y e X; b>0, Ge,=bGe,}, where ¢, is the atomic
measure at «. Since for every compact set K there is z'eﬁ' satls-
fying Gr=1 on K, we can find s, € C(X) with s,=3>2, Gz- (z, eﬁ')
and s,>0 on X. Then it is easy to see that

2.1) A)={y e X; u(y)/s(y) =u(@)/so(x) for all ueS}.
We define
A(K): =$LGJKA(90) for a compact set K.
Using (2.1) we can easily prove the following proposition.

ProposSITION 1. Let K be a compact subset of X and suppose
that y¢ A(K). Then there is a meighborhood U(y) of y such that
Uy NAK)=¢.

PROPOSITION 2. Let K be a mon-neigligible compact set and F
be a compact set with A(K)NF=¢. Then, for each w,€ S there exist
oy, Vo €S such that 0=uy—v,=w, on X,

(2.2) uo_vosz on K a%d u()""'vo:O on F-

Proor. First, we shall prove that for each x e K there exist
u, v € S such that

(2.3) u—v=0 on F and ulx)—v(x)>0.
Suppose that no pair of funections u, v in S satisfies (2.3). Then
(2.4) u—ov=0 on F' for u,ve S implies u(x)—v(x)=0 .

In fact, if there are u,, vleSV such that u,—+,=0 on F and wu,(x)—
v,(2)<0, then u=wu, and v=wu,Av, satisfy (2;3) and this follows a
contradiction. Thus u—v=0 on F' for u, vc S implies u(x)—v»(x)=0.
Put

(§—§)F: ={Ur—Vr; ueSv', VE §) ,

where u, and v, are the restrictions of u, v to F' respectively. A
positive linear functional @: u,—vz—u(x)—v(x) is a lattice homomor-
phism on the sublattice (S—S); of C(F') and @ in not zero. There-
fore there exist positive real number b and y € F such that



48 H. WATANABE NSR. 0.U., Vol. 33

v(y)=b0(w) for all ve(S—S),. (cf. Hilfssatz 4 in [1])
Particularly
u(y)=b@(v)=bu(w) for all ueS.

Thus we have ye A(z) and this is a contradiction. Therefore there
exist u, v e S satisfying (2.3). Since S—S is a lattice, we can assume
that x—v=0 on X. Since for any 2¢ K we can find u,, vﬁeg such
that 4,—v,=20 on X, u,—v,=0 on F' and u,(x)—v,(x)>0, there exist
w', v e S such that w'—v'=0 on X, w'—v'=0 on F and w'—v'=w, on
K. Then (uw'—v")Aw,=u,—v, (U € §, v, € ,§) is a function satisfying
(2.2).

§3. Balayage on closed sets. Let F' be a closed subset of X.
We say that g is balayable on F' with respect to G if there exists
ye M*(F) such that Gv=Gu¢ n.e. on F and Gv=Gr on X, and say
that v is a balayaged measure of ¢ on F. Since X has a countable
base, it is easy to prove the following proposition.

PROPOSITION 3. Let F be a closed subset of X. If every pe Mf

with supp pNF=¢ is balayable on F, then every pe Mf is balayable
on F.

We fix an increasing sequence {K,} of compact sets with X=
Uz, K, and K,CK},, for every ne N, where K;,, is the interior of
K,,,. Since X\A(K,) is open by Proposition 1, there is an increasing
sequence {0,;}; of compact sets satisfying X\A(K,)=U7,O0,;. Put

H:=K,,
H: =K U(K,N0,) ,

(31) I.{az = Kl U (Kz N 013) U (Ks N 023) ’
H:=KNKN0)UENO)U - UK,NO, ) ,

Then {H,} is an increasing sequence of compact sets.

THEOREM 1. Let F be a closed subset of X. The following three
assertions are equivalent;

(a) Ewvery pc Myf is balayable on F.

(b) &, is balayable on F for each x € CF.

(¢) Let {an} and {t,} be sequences of measures m & (F ) Assume
that Gk>éo ——G?:nzO n.e. on F for some re & and GO' —Gz'n__
éon_l an_l n.e. on F for every ne N. Further, if 11mn_,°°(Gan Grn) =
n.e. on F, then lim,_..(Go, (@) —Gr,(®)=0 for every x<CF.
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Proor. (a)=(b): Trivial.
(b)=(c): Let « be an arbitrary point in CF and vy, be a balayaged
measure of v, on F. Then v,(N)=0 for any negligible set N. Since

SGVMlux — Svadxg SGexdx:éx(m) <o,
we have, by the Lebesgue’s convergence theorem,

0= Slim (Go, —Gr)dv, =1lim S(éan —Gr,)dv,

n—oe n=>00

:limSGvﬁd(on—z-n) :limSGamd(an—rn)

=lim (Go, () — Gt (2)) .

(e)=(a): It suffices to prove that every pe M} with supp ¢#N
F=¢ is balayable on F' by Proposition 3. Let g€ M} be arbitrary
with supp gNF=¢ and {H,} be the increasing sequence of compact
sets defined by (3.1). Put J,:.=H,NF for each neN. Since G
satisfies the domination principle, G satisfies the balayaged principle.
Let v, be a balayaged measure of g on J, with respect to G. Then
Gyv,=Gp¢ n.e. on J,, Gv,<Gpr on X and supp v,CJ,. Since {v,} is
vaguely bounded, we can find a subsequence {»,} of {v,} which
converges vaguely to ve M*(F). We use also {»,} instead of {v,}.
Then

(3.2) Gv=liminf Gy, <Gy
and hence
(3.3) SGvdag SGydo for every o€ M5 .

Especially, if
3.4) S Gudrn= SGpdx

for every xeﬁ'(F), we have (3 4) for ne €(F') by Lusin’s theorem
and the continuity principle of G. Consequently Gv=Gg¢ n.e. on F.
Thus it will be seen that v is a balayaged measure of ¢ on F. We
fix an arbiyrary A€ Ca (F') to prove the equality (3.4). Since G\ is
continuous, we can find an increasing sequence {f,} of continuous
functions with compact support satisfying

fp:éh on K,, f,=0on CK,,, and ngpgéx on X .

Since
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n—0

1im§ Fodv, = S fodn

there is a sufficiently large number n,=p such that
(3.5) \f,a0> 0., —-% .

We remark that

Jo,=(EKNF)UENFNO,, ) U UEK,NFNO,_,,,,)
U---N(K,,NFNO,, .., -

Put
B,:=J,,NK, and B;:an\K .

Then both B, and B, are compact and it holds that A(B,) N B,=¢.
By Proposition 2, there exist u,, v, € S such that

0<u,—v,<Grn, u,—v,=Gxr on B, and u,—v,=0 on B .

Sinece S—S is a lattice, we may assume that w,—v,<u,.,—v,,, for
every p€ N. Both u, and v, belong to S, it is well-known that there
are 0,€ M*(J,,)) and z,€ M*(J,,) such that

Y

Y
Go,=u, n.e. on J, , Go,=u, on X

and

éz'pzvp n.e. on J, , éz'pgvp on X (cf. Proof of Theorem 3
in [6], Proposition IL.3 in [3]).

Then apeé, 'c,,eé},
(3.6) éa —ér :va n.e. on B, and éo —ér =0 n.e. on B,.

Slnce G satisfies the domlnatlon principle, it holds that 0<Ga —Gz'p_
G\ n.e. on X, 0<Go ——Gz',,SGh on CF and Go —GZ',,SGcrp,Ll—Gz'p+1
n.e. on F. By (3.6) we have

3.7) lim (Ga ——Gz‘) G\ n.e. on UJ

If there is yec F satisfying y¢ Us-. J, with ye A(z). Since G(z, z)=
Ge,(2)=bGe (z)<—|—oo the set {z} of one point is non- neghglble and
hence hmﬂ,_,co (Gop(z) Gz',,(z)) G)\,(z) Consequently lim,_. (Ga,,(y)—
Gz'p(y)) Gk(y) Thus we have

lim (éap—éz'p)=th n.e. on F'.

pP—ro0

By the assumption (¢) we have
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lim (éo,,(w)—éz-p(x))zék(w) for every x2e€CF'.
p—roo

From (3.5), (8.6) and Fatou’s lemma it follows that

| Séhdvzlim S f,dv=lim inf (S Fuldv,, _%)

P00 P00

>lim inf (S(éo,,— Ge)dv,, —_1_>
e P

—lim inf (S(éap—érp)dp—%o—)

Pp—c0

> 8 lim inf (Go,— Gr,)dp= Sémp :
e
Consequently, using (3.3), we have the equality (3.4) for every
N (F). Thus we have proved that v is a balayaged measure
of # on F.

We can prove the following theorem as the same method of
the proof of Theorem 1.

THEOREM 1’. Let F be a closed subset of X. The following as-
sertions (a") and (¢’) are equivalent;

(a') Ewvery pre & 1is balayable on F.

(¢") Let {o,} and {z,} be sequences of measures in g(F) As-
sume that O<Ga —Gz‘nSG)\, n.e. on F for some )\,eé a/nd Go —
Gz'ngG?othl—GT,hL1 n.e. on F for every ne N. Iflim,_. (Gan—Grn) 0
n.e. on F, then lim,_., (éan—érn)———o n.e. on X.

PROPOSITION 4. Let F be a non-negligible closed subset of F' and
L be a measure in Mg, If p is balayable on F, then, for every
?»eggv’ and every posztwe real mumber ¢, there exist m,e N, {0o,}C
(F) and {t, }C;,Q’(Fﬂ n) Such that

O_S_Ga,,—érpgéx n.e. on X,
jlim (éap—érp)zék n.e. on F\A(K,)

(3.8)

(Hm S(éap—sz'p)d# <e.
p—>00

PrROOF. We use the increasing sequences {H,}, and {O,,}, of
compact sets defined in (38.1). Since, for a sufficient large number
n, AFNH)N(FNO,,)=¢ for every peN, we can find, by Proposi-
tion 2, sequences {u,,}, and {v,,}, in S satisfying

Upp— UV —_—G?\; n.e. on FnO,, and u,,—v,,=0 n.e. on FFNH,.

Slnce Upp € S and w,,e S, there are o),¢ & (FN(H,UO0,,) and 7,,€
& (FN H,) such that



52 H. WATANABE NSR. 0.U., Vol. 33

éa' —Gz'm,sz n.e. on FFNO,, and éo;p—é =0 n.e. on FFNH,.

We remark that (Ga,,,, GTM,)/\(GN Ganp/\(Gk—i—Gz'np) Gz-m,, Let us
choose om,eg(F N(H,UO0,,)) satisfying

Gonp:Ga;/\(GerGrnp) n.e. on FN(H,UO,,) .
Then

éﬂnp=éfnp=é>\, n.e. on N0, , Go, —éz-np:O n.e. on F'NH,.

Hence O§éam,—Gz'M,_<_ G n.e. on X. Further

lim (Go,,—Gr,,) =G n.e. on U 0,,=F\A(K,) ,

p—roo

lim (éaw—éfw)zO n.e. on FNH,

P—0

and
0<lim (éaw—éz—w)géx n.e. on F'.

Accordingly lim, .. lim, .. (éaw—érw)zO n.e. on Fn(U:. H, and
hence
(3.9) lim lim (Go,,—G7,,)=0 n.e. on F.

n—oo P—0o
Let v be a balayaged measure of ¢# on F. Then v is a measure
satisfying v(IN)=0 fox\'/ every negligible set N. Remarking that

om,eé(F) and 7,,€ < (F), we obtain, by (3.9) and the Lebesgue’s
convergence theorem,

0= Slim lim (Go,,—Ge,,)dv=1im Slim Go,,—Cr,)dy

n—00 P—0 n—o0 Jp—oo

—lim lim S(éaw — Gz, )dv=lim lim S(é% —Gr,dp .

n—co P—oo n—00 P—>o0

Consequently, for any e>0 there is n,€ N such that

lim S(éono,p—éfw)dp@ .

p—o00

Put 0,,: =0, and 7,,: =7,. Then the sequences {o,} and {r,} satisfy
(3.8).

PROPOSITION 5. Let F bg a closed set and x be a point in CF.
Suppose that for each e & (F') and each real mumber ¢>0 there
exist n,€ N and sequences {o,} and {t,} of measures satisfying

(i) Ao, }Cg omd {z'p}c,%(Hn NF),
(ii) 0<(Ga —Gz'p)<Gk n.e. on X,
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(i) lim,..(Go,—Gr,) n.e. on F\A(K,),
@iv) lim,_. (Gap(x) Gz',,(x))<e
Then ¢, 1s balayable on F with respect to G.

Proor. Let vy, be a balayaged measure on H,N F with respect
to G. Then v, e MT(H,N F') satisfies

Gv,<Gg, on X and Gy,=Ge, n.e. on H,NF.

Since {v,} is vaguely bounded, we can choose a subsequence {v,;} of
which converges vaguely to ve M*(F'). It holds that

(3.10) Gy=lim inf Gy, ,=Ge,

j—o0

Let v e é(F) be arbitrary and ¢ be an arbitrary positive real number.
Then we can choose n,€ N, {op} and {z,} sat1sfy1ng G)~(1v). Remark;
ing that for any j=mn,v,;€ g(H NF), t,€ =iﬂ(FﬂHno)C,Q”(Fﬁ H,)
and CK, N (H,, ﬂF)CF\A( ng) we obtaln

S Condy, <Sllm inf (Go,—Gz,)dv,,
0Ky,

Pp—ro0

<lim inf S(éap—éfp>d»nj

P—r00

=lim inf (SGvnjd(ap =)

pP—>00

<lim inf <SGexd(0p —T p)>

p—roo
=lim (éap(x) — Gv'cp(x)) <e.

Further, as j— o,

XGMZ»< lim inf SGMZ:J <lim supSG?udv

j—oo J—oo

<lim supS G?»dv ;H1lim supg éxdunj
Kn CK,

oo jooo
<S éxdp+s§ Séxdu—!—a .
Kn

Consequently

llmg Grdy,, Sému .

J—o0

On the other hand let us »,. be a balayaged measure of \ on H,,
with respect to G. Then, puttlng Ui H,,=H,

lim Gh —Gk n.e. on HNF and hence n.e. on F'.

j—co

From )\ € 57(17) it follows that éxglim,._m Gij n.e. on X. Especially,
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Gvkglimj%o é)»nj on CF and hence é?\,;—lim,-_m éhni on CF. Thus we
have

SGvdh - gé)\,dv —lim Séxde —lim Sé?\,njdvnj

j—oo Jooo

—lim | Ge,dn,, =lim Gn, ()=o) = | Ge.dn .
Since ve. g (F') is arbitrary, we obtain Gv=Ge, n.e. on F. There-
fore, by (3.10), v is a balayaged measure of ¢, on F with respect
to G.

Using Theorem 1 and Propositions 4, 5, it is easy to prove the
following theorem. '

THEOREM 2. Let F' be a non-negligible closed set. Any y\gM}{
is balayable on F if and only if every xcCF, for every ne & (F)
and for every real number &>0 there exist my€ N and sequences
{o,} and {7,} of measures satisfying (i)~ ({iv) in Proposition 5.
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