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§0. Introduction.

The important and beautiful connection between Markov processes and
analytic potential theory was investigated by many mathematicians, for instance,
Kakutani, Doob and Hunt. There is now a large literature on potential theory
for transient Markov processes. Recurrent potential theory was also developed
for mainly random walks and Markov chains. However, potential theory for
recurrent Markov processes with continuous state spaces was not studied to our
satisfaction. In 1960 T. Ueno put forward a new approach to study the recur-
rent Markov process and derived the important results on the Green potential
and capacity. He introduced the invariant measure m for the process using a
nice measure and the Green measure. Further he obtained the density function
of the Green measure relative to the measure m.

Following Ueno’s assumption, in this paper we shall show some results on
recurrent Markov processes. We derive that in § 2 there exists the equilibrium
measure for the kernel of the density by assuming symmetry of the density,
and that in § 3 the Green capacity defined by Ueno is the Choquet capacity. In
the final section we resolved the condenser problem on processes with Brownian
hitting measures completely.

§1. Preliminaries.

Let R be a separable Hausdorff locally compact space containing at least
two points and satisfying

(R.1) For each point xe R, we can take a countable base of neighborhoods
of x consisting of arcwise connected open sets,

(R.2) R is connected.

We denote by B the topological Borel field of subsets of R.

A measurable function w(t) from [0, o) to R is called the path function if
it is right continuous and has left limits. We denote by W the set of all such
functions. X(¢, w) (or simply X)) is a function on W defined by X(¢, w)=w(t),
t=0. The hitting time o4 for a set A< B is defined by
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o w)=inf{=0| X, w)e A}, if such 7 exists,

=00, otherwise.

We denote by B, the smallest Borel field of subsets of W containing
{w| X, wye A} for all A= B and t=0. For a @-measurable function ¢ taking
values in [0, o), we define the shift transformation &, by

(G, w)s)=w(s+o(w)).

From this definition we get
X(s, 0,(w)=X(s+60,(w), w).

Let #, denote the smallest Borel field on W for which the functions
{X(s); 0=s=t} are measurable. A random time ¢ is called a Markov time, if
{wlo(w)<t} € B, for 0=t<oo. It can be proved that a hitting time o, for a
closed or open set A is a Markov time, and that X(¢) is 8,,-measurable for a

Markov time o, where B,,= "\ Bss1/n-
n=1

Let {P,(:), xR} be a system of probability measures on satisfying

(P.1) Pi(FE) is a B-measurable function of x for each £ 4,

P.2) Pr({w| X, w)=x})=1 for each x=R,

(P.3) quasi-left continuity : if {¢,} is a sequence of Markov times incre-
asing monotonely with P.-probability 1, then we have

Pm({wl}bijg X(on(w), w)=X(o(w), w), oe(w)<o0})

=P,({w|o(w)<oo}),
where ow(w):lig.} o.(w),

(P.4) Markov property: for any bounded @B-measurable function F(w) and
x€E R, we have

Em<F°0tl-@t>:E.z‘(t,w)(F) a.s. (Px):

where FE,(-) is the expectation of - with respect to P,, and E,(-|8,) is the
conditional expectation with respect to the Borel field 3,.

We call the system {W, @8, P,(-)} a Markov process on R. In order to
study a broad class of recurrent Markov processes Ueno [4] introduced the fol-
lowing assumptions (X.1)~(X.5). In this paper we follow his assumptions.

(X.1) Recurrence: The process hits any set A€ B containing an inner
point with probability 1, i.e.

P.(X(t, w)eA for some 0=<t<<o0)=1, for any x€R.
We define the hitting measure hy(x, -) for the set A€ B by
ha(x, S)y=P(X(o4(w), w)ES, o4w)<0), xER, SEB.

It is to be called the harmonic measure in classical potential theory.
(X.2) For any continuous function f on A,
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haf ) ={hatx, dy)f ()

is continuous in A°=R—A, where A is a closed set in R containing an inner
point.

(X.3) Maximum Principle: For any non-negative continuous function f in
A, haf(x) is either strictly positive or 0 for all points x of any one component
of A¢, where A is a closed set in R containing an inner point.

(X.4) For any continuous function f on R, the resolvent operator

Gaf (1) =E(| e (X0, wiar)

is continuous on R.
(X.5) There is no point of positive holding time, that is, there is no such
xE R that

P (¢>0)>0, o=inf {t=0| X(t)e R—{x}}.

REMARK. By our assumption (X.4) the strong Markov property, that is,
(L.1) EfF0,| B, )=Ezo(F) a.s. (Py),

holds for any @-measurable function F and a Markov time ¢. Now, we intro-
duce the Green measure

(1.2) G, A):EZGZLXA(X(t))dt), XER, AcB,

for any closed set L containing an inner point, where X, takes 1 on A4, 0 on
A° respectively.

LEMMA. 1.1. (X.1) and (X.4) imply
G(x, AASM(A, LY<oo, xER,

for any closed set L containing an inner point and any A< B with compact closure,
where M(A, L) is a constant which is depending on A and L.

This is Lemma 1.1 in Ueno [4].

Next we define the collection & which is used in the subsequent sections.
Let & be the family of all {K, L} satisfying the following conditions :

(F.1) K and L are closed subsets of R and contain inner points,

(F.2) K is compact,

(F.3) K is contained in one component of L°.
Moreover we say that {K, L} €T belongs to &, if L is contained in one com-
ponent of K°.

LEMMA 1.2, For each {K, L} €F there is a unique pair of measures pf and
pk with total mass 1 on K and L respectively, satisfying
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EC = k()= pRdDhx(x, ),

sk (Y=pE ()= pEADhx, ).
This is Lemma 2.1 in Ueno’s paper.

Applying these measures p¥, pk, Ueno [4] introduces his own Green capacity.
For {K, L} and {K’, L’} in & we make the following definitions.

(1.3) Cx,0y(K', L)y=pfhg, (K'),

(1.4) Cexr oK, L)=Cex, n(K’, L),  when K'CK,
where

(L.5) hx.o(x, E)=Py(ox <oy, X(ox)cE), EcB.

The measure hg,; is the conditional hitting probability for which the path
attains the set K before the set L.

(1.6) Cor, (K, L)=Cx, 0y (KVK', L)-Cexyr, (K, L),

when {K, L} {K’, L}, where the notation {K, L}<{K’, L} denotes {K\UK’, L}
EF.

For a sequence a=({K,, L}, {K,, Ls}, -+, {K,, L,}) of satisfying {K, L} -
{Ki, L} < {K;, Lo} {K', L'}

Clr. (K, L)=Cx, 15Ky, L)Coxy1pKey Lo)+ -+ -Coiporp (K, L)

Lemma 3.2 in Ueno [4] shows that such C{x r,(K’, L") does not depend on the
choice of . Now, fixing any {Ky, Lo €%, we call C(K, L)=C, 1»(K, L) the
Green capacity of K with respect to L. Then we introduce the measure

m()=C(K, 1) pE@xG (v, Y+C(L, K) pkdn)Gx, ).

This measure is independent of the choice of {K, L} =%, and takes positive
value for each Borel set with inner points.

Since every Green measure G(x, ) is absolutely continuous relative to m by
Theorem 4.1 of Ueno, it has a density function g,(x, y) satisfying

(1.7) Gilx, A= g;(x, yym(ay.

For the kernel N(x, y), x, y€R, the potential Ny of the measure g on R is
defined by

Neee) = | Nix, )t

A B-measurable function f defined on R is said to be superharmonic in an
open set D, if
(i) f is lower semi-continuous on D,
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(i) for every x=D and every open ball VCD with the center x

f@z| hretx, dnf ).

In particular when f satisfies condition (ii) only, we say that it is superharmoni_c
in the wide sense.

LEMMA 1.3. Let f be a non-negative Borel measurable function on R. Then
Gof 0=\ Gu(x, d»f ()

is superharmonic on L in the wide sense. (Ueno. Lemma 4.1.)

§2. Equilibrium measures on recurrent Markov processes.

In this section we add following two assumptions regarding the density
function of the Green measure.

(A.1) gi(lx, y) is lower semi-continuous with respect to x.

(A.2) symmetry: gi(x, 3)=g1(y, %)
holds almost everywhere relative to m. Then we obtain

THEOREM 2.1. There exists the sequence {un} of measures such that grpn
tends to one monotonely on L¢ as n—oo,

Proor. Let C, be compact subsets of L°¢ such that C, approach to L°
For every x=L°¢ we choose a closed ball B,(x) with center x and radius » con-
tained in L°. To simplify the notation let = be the hitting time for the set
B.(x)*. Then we have P,(z<or)=1 because of the right continuity of paths.
Applying (1.2) we get

Gt B =Ea( || “Lo,cor X))

2 Bo((| 2o cor X0)2)
=FE,(7).

Since P,(r>0)=1 from the right continuity of paths, we see E,(r)>0. There-
fore

2.1) Gr(x,B{x)>0.
Now we can take x=C, and Br(x)CCOn for a sufficiently large number n and so
nG e, (x)ZnGr(x, B/x)),

where C, denotes the interior of the set C,. Thus by (2.1) nGiXe,(x) tends to
infinity. Setting f,=1AnG¥; (x), where a Ab=min{a, b}, we obtain f, {1 as
n—0C0.

Furthermore such f, is non-negative and superharmonic on L°¢ because
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GiXc,(x) is so by Lemma 1.3, Fatou’s lemma and (A.l1). Hence f, is excessive

as well known (Dynkin [2]. p. 16). Here a Borel measurable function g is

called excessive on L° if Q'g(x)=g(x) and ltim Q'g(x)=g(x) for every x=L°
-0

where

Q' (x, E)=P (X EE, o.>1), EeB.
Then

@2 Gutx, By={"Q"x, Bydt

and the semigroup property

(2.3) Q=QQ", s5,t>0

hold by the Markov property. In view of (2.2) and (2.3), we have
Q' fr()=nQ'Gr(x, Cn)

=)
0

=n|Q(x, an| @', Cds
=n{ Q**(x, C)ds

) 1
=n({"@x, cas—{ @'(x, Cas)
=nGrlx, Cyp).

Since nGr(x, Co.)=M(C,, L)< by Lemma 1.1, we get
1 °° 8 ¢ 8 —
lim n(SO 0%(x, Cn)ds-—SoQ (x, Ca)ds)=0.

Therefore _
2.4) Eim Qtfn(x)=0, xeL®

holds as desired.
Choose a positive number # arbitrarily. Then (2.3) implies that

([t ra@rawar= @ rumar—{ @ fatxrat .
By letting r—co and noting (2.4), we have
[ori—aramar={ @t
That is,
@.5) e(L =N = (' Qtfatrar
Set pp=n(fr—Q""f,). Then using (2.5), we get

GLgan(x):nS:'”Qt Falx)dt .
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On the other hand since

1 1
0 0

i/n In /m
a|, @ fwdizal @ rawdtzm| " Q' andt

for n=zm, Grp,(x) is also nondecreasing in n. And we have

1/
0

2.6) GLgpn(x):nS thfn(x)dt;nS:/nQ‘ Fa(x)dt .

Now Q'f.(x) approaches increasing to f,(x) ast | 0 because f, is excessive, so
by letting n T co in the identity (2.6) we have lim Goo.(x)=fn(x) and therefore
-0

lim Groa(x)=1 as m T oo. That is, Grea(x) T 1.
Let p, be the measure on L¢ given by p,(dx)=¢.(x)m(dx). Then by (1.4)

Gron(x) = Golx, d9)pn(»)={ £,(x, VM@ ga ()= 2,05, 3)ptaldy)

This completes the proof of the theorem.
Applying (1.5) and the strong Markov property we have

Gulx, EY=Guux(x, B+ {he.s(x,d3)Gay, B)
for xR and E€B. By (1.7) the fundamental identity

@7 2,05 D=2rxt, 9+ | hra(x, g 2, 9)
is obtained almost everywhere in y relative to the measure m.

THEOREM 2.2. There exists a Radon measure p such that

g u=hg 1=P.(6x<or), a.e. m) on L°.

PROOF. By Theorem 2.1 there is a sequence of measures {v,} on L° such
that g,v, 71 on L% Set

o= 1= a2, .

Observe that such g, is concentrated on K. Then it follows from the funda-
mental identity (2.7) and the assumption (A.2) that

(2.8) gota(x)=hg g, va(x) a.e. (m)on L°.
Therefore by letting n—oo in (2.8) we have
(2.9) gittnl hxtl  a.e. (m) on L°.
Next it will be shown that sup ¢4(C)<co for every compact subset C of L°.

Let G be a compact neighborhood of C. Combining (A.2) with (1.7) we get
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(2.10) [, g00m@n=[6103, Gpatay)

=| Gi(y, GOl

Since G.(y, G) is lower semi-continuous on L° by the assumption (A.1) and
Fatou’s lemma, we can set mig G.(y, G)=d. Let y, denote the point giving the
KIS

minimum value to G.(y, G) on C. Then there is an open ball such that B.(y,)
CG because G is a compact neighborhood. G.(y,, B,(y,)) is positive by (2.1)
and hence

@11 0=G1(yo, O)ZG1(y0, Biye))>0.
Now
[ grmn(omidnz 3.0
by (2.10) and
[g.aom@ns § he dom@an=mG <o

follows from (2.9). Consequently sup p,(C)<co as desired.

By the result shown above, there is a Radon measure ¢ on L¢ and strictly
increasing sequence {n;} of positive integers such that Un; converges vaguely
to p#. Again we take a compact subset C of L¢ arbitrarily. Then we have

2.12) [ guttn om0 = Gy, a0,
By applying the identity (2.9) to the left part of (2.12), we get
2.13) tim { g (0om(an) = b, clem(ds)

On the other hand we can consider G (x, C) as the limit of the increasing
sequence of simple functions on K since G.(x, C) is a B-measurable function on L°.

Namely setting f,= éaix,gi, where Z)nlEi:K, a;=0, we obtain f,(x) 1 Gr(x,C)
on K. Then

lim 33 aupe (B9 =|_Gulx, Chprndn).
By Lemma 1.1 we have lim SKGL(x, Opnfdy)<co and hence
J—oo

(2.14) tim | Gz, Opafdn=lim lim 33 a.pa (B
jooo JK J i ~o0 §=1 J

Jjooo neco

=lim lim 3 a.p . (Es)

f—co jsoo $=1
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. n
=lim > a;pu(Es)
n—co §=1

= Gu(x, Optan).
Consequently it follows from (2.13), (2.14) and (A.2) that

[ A 1(em(@) = Gux, Outdn)
={ | 2.0, putanmay

=chLy(X)m(a’x) ,

which completes the proof of the theorem.

"We say the measure ¢ on a domain D the equilibrium measure on KCD
when for the kernel U(x, y) the potential Up equals to a constant value a on
K7, where K7 is the set of points which are regular for K. By Theorem 2.2
g,p=1a.e. im) on K". That is, p is the equilibrium measure for the kernel
g,(x, ¥) in the wide sense.

§3. Some properties on the Green capacity of Ueno.

The objective of this section is to show that the Green capacity C(K, L)
defined by Ueno is the Choquet capacity.

THEOREM 3.1. For {K, L} and {K’, L} in F if {KNK’, L} is contained in
G, then
C(KVK', L)+ CKNK', L)=CK, L)+ C&K', L).

This property is called strong subadditivity.
Proor. By (1.5) and (1.6)

CK', L)y=C(K, L)-Cex, (KK, L)-Cexyrr, (K, L)

_ CK, L)C¢xur, (K, L)
Cexukr, 0y(K, L)

Therefore applying (1.4) to Cxyxr, (K, L) and Cixyx., (K, L), we have

CK, L)pf " hi, 1(K")
/JfUK' hi, 1(K)

3.1) CK, L)+CK’, L)=C(K, L)+

=K', D[ @0Puox<on+ | sFo% @0Puox <on).

Now oxux=0x/ANog and oxng =0xV og and so

(32) P. (UKOK'<UL)+P- (O'KUK' <O'L) §P. (0'K<0'L)+P. (O'Kf<O'L).
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Consequently (3.1) and (3.2) imply

C(K, L) + C(K', L)z C(KIK’, L)S#fUK'(dX)(Pz(GKnK' <o)+ Po(0xur <0oL))

= CKIK', L) Cixurr, y(ENK', L)+Cixur 0y (K\VK', L))
= C(KNK', L)+C(K\VK’, L)

as desired.

THEOREM 3.2. (i) Suppose {K,, L}y F for each n and K, 1 K where {K, L}
eF. Then ‘

IimC(K,, L)Y=C(K,L).
(ii) Suppose {K., L} =F for each n and K, | K where {K, L} =F. Then

lim C(K,, L)=C(K, L).

PROOF. (i) By definition (1.4) the capacity can be expressed as
3:3) C(K, L= O, L) | (@0)Pulor, < 02)

By the hypothesis o, | 0k, so {0k, <o.} T {ex<o.} and hence P.(ox, <o)
P.(6x<o). Consequently it follows from (3.3) that C(K,, L) C(K, L) as
desired.

(ii) As before we have

3.4) C(Ky, L)= C(K;, L)Sp’zfl(dX)Px(aKn< o).
For any x< K, by the hypothesis o=lim o, exists, and so from the quasi-left
continuity (P.3) we get
P, (lim X(og,)=X(0), 6 <00)=P (0 <0).

Then since P,(ox<o0)=1 by the recurrence (X.1), we have P, (¢ <oo)=1 and
hence
(3.5) P (lim X(og,)=X(0))=1.

Next we will prove that

3.6) P(X(o)eK) =1 on K.

Suppose now Py(X(e)&K = () K») >0. Then Po(X(0)& K, for some no=1)>0

and so (3.5) implies P,(X(og,)& Ky, for some n=n,=1)>0. Therefore P,(X(og,)
& K, for some n=1)>0, but this contradicts X(ox,)E K, and so (3.6) holds.

By (3.6) we have P. (¢ =ok)=1 and hence P.(og, | 6x)=1 on K;. Thus we
get

3.7 P.(0g, <oy for all n and ox>0.)=0 on K.
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Since there exists ¢ =lim P. (ox,<oy), it follows from (3.7) that

=0

0 =lim P. (0g,<or)=P. (ﬂ{UKn<UL})

=P.(og, <o for all n)
=P.(0g,<or for all n and ox<oy)
=P.(0x<o0L).

Trivially § =ZP. (6 x <o) holds and hence we have

IimP.<O'1{n<O'L):P.(O'K<O'L) on K].

Consequently from (3.4) C(X,, L) | C(K, L) as desired.

Let £ be the class of all compact subsets of R. Then a function C is called
a Choquet capacity provided :

(i) if A, BeX and ACB, then C(A) = C(B);

(ii) given AeX and ¢>0 there exists an open set GDA such that for
every Be £ with ACBCG one has C(B)—C(A)<e.

(iii) C(AUB)-FC(ANB) = C(A)+C(B) for all A, BEX.
Combining Theorem 3.1 with Theorem 3.2, we can conclude that our Green
capacity satisfies the conditions of the Choquet capacity.

§4. Condenser measures on Markov processes with
Brownian hitting measures.

We say that a Markov process has Brownian hitting measures, if it satlsﬁes
(X.4) and

(X.B) For any closed set LR with an inner point and x< L¢, h(x, *)
coincides with the classical harmonic measure of L viewed from x with respect
to the connected component of L¢ containing x.

In this section we consider the case in which the state space is a two
dimensional Euclidian space R2. It can be proved that (X.B) combined with
(X.4) implies (X.1), (X.2), (X.3), (X.5) and the continuity of path functions.

Let D be a domain with compact boundary 0D of positive logarithmic
capacity. The classical Green function g?(x, y) of D is given by

1
@D g »=log =~ honlx, de)log 1+ 1), %, 3D,

where 7p(x) is a non-negative continuous function of x and converges to 0 if
x€D tends to a regular point of the boundary 0D. By making use of (4.1), for
any closed set LR with an inner point we define gZ(x, y) by

“.2) g7, )=log 11— hu(x, d2)log 2o+ al),

where



84 K. KitamMURrRA NSR. 0.U., Vol. 82

ro(x) =7p(x), if x belongs to a connected component D of L¢,
=0, otherwise.
Then it is known that
g¥(x, y)=gP*(x, y), if x and y belong to the same component D, of LC,
=0, otherwise, excepting on the set of irregular points of dL.

Our principal results depend on the following two lemmas due to Ueno [4].

LEMMA 4.1. For each {K, L} in &F, pF is the equilibrium measure of K
with respect to the classical Green kernel g of the component.

LEMMA 4.2, For any closed set L>R with an inner point, we can take the
classical Green kernel gh(x, y) for g,(x, v) in (1.7), or

Gr(x, E):SEgL(x, Ym(dy), E<B, x€R.
These are Theorem 5.1 and Theorem 5.2 in Ueno [4]. Then we obtain

THEOREM 4.1. For {K, L} in &F, p¥ is the equilibrium measure of K with
respect to g, in the wide sense.

ProoOF. By Lemma 4.2, we have

[ gserComan={6.0, EyeEay)

" =[ gtpfoman),  E<B.

Therefore g, uf=g*u¥, a.e. (m) on L° Consequently it follows from Lemma
4.1 that g,pf=a, a.e. (m) on K. This completes the proof of the theorem.

The preceding theorem shows that uf is essentially the equilibrium measure
on Markov processes with Brownian hitting measures.

Lastly we discuss the condenser problem on a Markov process with Brownian
hitting measures on R% Let {K, L} be a pair of sets in & and let U(x, y) be
a potential kernel. A signed measure v is called the condenser measure corre-
sponding to K, L if v is concentrated on K\/L, Uv=« on L™ and Uv=a+f
on K7, where «, 8 are constants.

For transient Markov processes whose state spaces are over three dimen-
sions, Chung and Getoor [1] studied the condenser theorem within the frame-
work of probabilistic theory. Moreover for the two dimensional Brownian mo-
tion, the condenser measure was obtained by Port and Stone [3]. Here we
concretely give the condenser measure on a Markov process with two dimen-
sional Brownian hitting measures.
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THEOREM 4.2. For the logarithmic potential kernel k(x, y):logwi—-ﬂ,
pE—pk is the condenser measure corresponding to K, L. Then we have a=
k(pf—pp<a+pB on R* for some a=0, B>0.

PrOOF. Integrating the identity (4.2) by pf, we can write

(er@nec, »={utang e, »+ e, dre »-| eEanrm.

Since

(ur@on, dore, »={ur@are, »

by Lemma 1.2, it follows that

(e —pR)dx)k(x, y)=g"pi(y)—\ pEdnrux).
K

We may set —SaKy}f(dx)rL(x):a, for 0K is compact and 7.(x) is continuous on

L°. Then we get
[(ur—pRxdnr(x, =g pE () +a.

By applying Lemma 4.1 to this, we see

g(pf—y,%)(dx)k(x, Y=a+B on K’

for some constant 3. Moreover from the definition of the classical Green func-
tion,

.3 (er@ngrc, w={ rE@ngis, »=0 on Lr

holds. Therefore

[ ~pp@nk(x, =a on L.

That is, pf—pf is the condenser measure. Then it is trivial that a < k(puf—uz)
<a+p, a=0, >0 follows on R*.

In the Jordan decomposition of the condenser measure vy, let v* and v~
denote, respectively, the positive part and the negative part of v. Then Chung
and Getoor indicated that v* is the equilibrium measure of K and v~ is its
balayage onto L. We say that the measure v on L is the balayage onto L of
the measure g on K, if for the potential kernel U, Uy=Uy holds on L". Now
we show the similar property of the condenser measure on the Markov process
with Brownian hitting measures.

Lemma 4.1 tells us that pf is the equilibrium measure with respect to g”.
Therefore it is enough to show gfuf=g*uk on L”. By (4.2) and Lemma 1.2,
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we have

#1ukty) = | k) {log 2 —{hatrd, 2 log =+ 7t}

I

1 1 .
[ 1tan) 10 T — aFhudnhux, dz) og p— +{ ey

1 . 1 .
[ bty tog =~ pf hutaz) tog = | ko)

= ukdoro).

Since SaL;z}g(dx)rL(x):O from the definition of 7, we see gfuk=0 on R2

Therefore by (4.3) the desired result glufk=g*uf=0 on L" is obtained.
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