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1. Introduction

The present author has defined the topological index Zyg,

M Zo= 3 (G, b),

for characterizing a graph G as the sum of the non-adjacent number, p(G, &),
which is the number of ways for choosing % disjoint lines from G, or the num-
ber of k-matchings in G [1]. The set of numbers p(G, k)’s can easily be ob-
tained by the aid of the Z-counting polynomial

@ Qe(x)= 3 p(G, B)x*,

for which several recursion relations have been found [1, 2]. With this poly-
nomial Z, can be expressed as

(3) ZG:QG(D .

These quantities, Zg, p(G, k), and Q¢(x), have been shown to be closely
related to a number of chemical and physical properties of certain series of
molecules [1, 3-6]. They can also be applied to the coding and classification
of molecules [7]. It was pointed out that the Z; values of path graphs {P,}
and cycle graphs {C,}, respectively, from the Fibonacci and Lucas numbers [1,
2]. These series of numbers have been known to be associated with the
Chebyshev polynomial, one of the most typical orthogonal polynomials.

Recently several authors have independently proposed the matching poly-
nomial*

@) Me(x)= 2 (=1*p(G, k)x"~**

k=0

by using the p(G, k) numbers for a given graph both from chemical and graph-
theoretical points of view [8-10]. It is obvious, however, that

* Ajhara [8] calls Mg(x) as the reference polynomial, while Gutman et al. [9, 11]
prefer to use the term acyclic polynomial. The term “ matching polynomial” is due to
the suggestion by Harary [12].
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®) Me(x)=x"Qe(—x7?)
(6) Qe(x)=(—iv%)"Ms(i/~/%) .

The matching polynomial for a tree graph is identical to the corresponding
characteristic polynomial '

() Pg(x)=(—1)"det (A—=xE)

=My(x). (Getree)
Note also that

) Ms()=i"Z¢

for all graphs, 7.e., the sum of the absolute values of the coefficients of the
matéhing polynomial is equal to the topological index.

Recently Gutman discovered that the matching polynomials of certain series
of graphs are closely related to some of the orthogonal polynomials, such as
Hermite, Laguerre, and associated Laguerre polynomials [137]. All these findings
are the outcomes of the important features of the non-adjacent numbers, p(G, &)’s.
In this report the graphical and combinatorial aspects of several orthogonal
polynomials will be surveyed.

2. Recursion Relations

Two different kinds of subgraphs of a given graph G are defined as fol-

lows [2,5]:

G , G-£ GoeZ

G—! is obtained from G by deleting a given line [, and GO! is obtained by
deleting / together with all the lines adjacent to /.
The inclusion-exclusion principle ensures the following relation,

(10) PG, B)=p(G—I, &)+ p(GOL, k—1).
It is straightforward to get the recursion relations,
(11.1) Qe(x)=0Qs-1(x)+x Qger(x)
(11.2) Ze=Zg-1+Zseor

(11.3) Mo(x)=Me-(x)—Mesei(x) .

Next consider the following three graphs in which the numbers of the lines
joining the subgraphs A and B are, respectively, three, two, and one, as
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G(n) G(n-1) G(n-2)

The subgraphs A and B may be joined each other to give C as

O O =

G(n) G(n-1) G(n-2)

For these series of graphs we get the following relations,

(12.1) Qe (X)=Qgcn-1(X)+ % Qacn-2(x)
(12.2) Zemy=Zen-v+Zam-»
(12-3) MG(n)(x)'—'x'Ma<n-1)(x)*—MG(n—z)(x) .

Consider a graph with a wheel structure as

where more than two lines radiate from a point p toward the perimeter of the
graph. Divide these lines into two groups of lines {/;} and {m;}. Then con-
sider the following three subgraphs

G-{4} G- {m | G-{4}- {m}

With these subgraphs another set of the recursion formulas can be obtained.
(13.1) QG(x>:QG—(Li)(x>+QG—-(mj)(x)_'QG—Ui)—(mj}(x>
(13.2) ZG:ZG—(L,;}+ZG~(mj)‘_ZG~(li}—{m

j)

(13.3) MG<X):MG—(li}(x)"l'A{G-—(mj)(x)_MG—(li}—(mj)<x) .
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3. Chebyshev Polynomial

The -Chebyshev polynomials of the first and second kinds are defined for
non-negative n as

(14) T ,(cos G)=cos né (1st kind)

(15) U,(cos 0)=sin (n+1)8/sin .  (2nd kind)

It is convenient to define the modified polynomials C,(x) and S,(x) as [14]
(16) Ca(x)=2Tn(x/2) or Tu(x)=Cn(2x)/2

17 Sp(x)=Un(x/2) = or Un(x)=S.(2x).

By applying the addition theorems of the trigonometric functions to Egs.
(14) and (15), one gets the following recursion formulas

(18.1) Ta(x)=2xT pn_1(x)—T p-2(x) (n=2)
(18.2) Un(x)=2xU - 1(x)—U p-o(x) (n=2)
which give

(19.1) Cr(x)=xCp-1(x)—Cp-s(x) (n=2)
19.2) Sa(x)=xSn-1(x)—Sn-s(x) . (n=2)

Now all these polynomials with any n value can be calculated from Egs. (18)
and. (19) with the following initial values:

(20.1) To(x)=1 Ty(x)=x
(20.2) Uy(x)=1 Ui(x)=2x
(21.1) Co(x)=2 Cix)=x
(21.2) So(x)=1 Si(x)=x.

In Tables 1 and 2 are given these Chebyshev polynomials for smaller n values.
By using the de Moibre’s theorem, Egs. (14) and (15) can be converted into
the closed forms

(22.1) T ()= {(x+/22=1)"+(x —+/x*—1)"} /2

(22.2) Un()={(x++22=D)"*—(x—/x2—1)"*1} /2+/x2—1.

Let the two roots of the following quadratic equation
x?—x+1=0

be a=(1-++/5)/2 and B=(1—+/5)/2. Then by substituting x=:/2 into Egs.
(22), one gets

(23) 2T/ 2)=Cp@)=1"(a"+ ") /2=1"Ly,
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Table 1.
n Pn MPn(_x) = Un(x/Z) = Sn(x) -Un(x) ZG
] 1: 1 1 1
1 'Y b 2x 1

x% -1 ax? - 1 2

x" - 2x 8x3-4x 3

4 2 4

x* - 3x% 41 16x% - 12x% + 1 5

5 3

X7 - 4x7 + 3x 32x” - 32x7 + 6x 8

7 3

6x> + 10x> - 4x  128x’ - 192x° + 80x° ~ 8x 21

»®
1

[ = ]
AN
N
FaVaN
6 M’ %8 - sxt 4 ex® -1 64x5 - sox? + 24x% - 1 13
NA

Table 2.
n Cn Mcn(x) = 2Tn(x/2) = Cn(x) Tn(x) ZG
0 ¢ 2 1 2
1 [ ] x x 1
2 O x2 -2 w2 <1 3
3 A x3 - 3x 2> - 3x 4
4 D x4—4x2+2 8x4—-8x2+l 7
5 Q % - 5x% + s5x 16x5 « 20x° + 5% 11
6 O %% - 6x* + 9x? - 2 32x8 - gax? + 18x% - 1 18
7 Q x! = 7x5 + 14x° - Tx  64x! - 112x° + 56x° - 7x 29
o N . _ .
(24) Un(i/2)=S@)=i"(a" ' — ") /+/ 5 =i"Fn,

where F, and L, are, respectively, the well-known Fibonacci and Lucas num-
bers, with the following properties:

(25) Fo=Fp +Fn,, F=F=1I%
(26> Ln:Ln—1+Ln—2; L1:1; L2:3-

It has been shown by the present author that the topological indices Zg’s

* Although another definition (Fy=F,=1) is currently used, it will be clear that the
present definition gives better graphical representation of the Fibonacci numbers.
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of path graphs {P,} and cycle graphs {C,}, respectively, from the Fibonacci
and Lucas numbers [1, 2].

Note that the recursion formulas of Z;'s of these series of graphs take the
form of Eq. (12.2), which implies that the corresponding matching polynomials
recur as Eq. (12.3), which is exactly the same as that of Eq. (19) including the
set of the initial values in Eq. (21). Thus we have the relations

@27 Mp, (x)=Un(x/2)=Sx(x)
(28) Me,(x)=2Tn(x/2)=Cn(x) .

This means that the matching polynomial of a path graph P, is identical
to the second kind of the Chebyshev polynomial with the degree n, while that
of a cycle graph C, is to the first kind (See Tables 1 and 2). Once we know
these relations, we can derive a number of recursion formulas of these ortho-
gonal polynomials by using the graph-theoretical aspects of the matching poly-
nomial. For example, suppose that the two path graphs, P, and P,, are joined
by a line [ to give a longer path graph P,.,. Then the application of the
relation (11.3) to P4, gives

(29) Mp,, . (x)=Mp,(x)  Mp (x)—Mp,,_(x)-Mp,_,(x).
For the case where m and n are equal we have
(30 Mp,,(x)={Mp,(x)}*— {Mp,_(x)}*.

The following recursion relations for the U polynomial are automatically ob-
tained :

€IV Umsn(X)=Un(x)-Un(x)=Um-1(x)Un-1(x)
(32) Usn(x)={Un(0)} *— {Un-1(x)}*.

By using Eq. (9), Eq. (29) can be transformed into

(33) Zpin=Zp, - Zo, 4 Zon 2o,
(34) Fosn=Fn - Fo-tFp_ - Fn_y.

Similarly the relation (11.3) is applied to a cycle graph C, to give

(39) 2T (0)=Un(x)=Unr-s(x)  (nz=2)*
(36) Ca(x)=5n(x)—Sa-2(x), (n=2)*
both of which can be transformed into

(37) ' Ly=Fu+Fuo. (n22)

Next add up the both sides of Eqg. (36) separately for the even and odd =

* 1f we extend Egs. (35) and (36) down to n=0, we need to have
2T (x) =U,(x) 2T (x) =2Uq(x)
and C1 (x) :Sl (x) CO(x) ZZSO(X) .
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terms, and we are left with the following equations :

(38.1) Con(%)+Con-s(x)+ ++ +Co(2)=S2,(x)+So(x)

(38.2) Con+1(2)+Con-1(x)+ =+ +Co(x)=San+1(x),

which give the recursion relations of the Chebyshev polynomials [15],
(39.1) 2{T 30 (X)+Ton-2(x)+ -+ +To(x)} =Usn(x)+Uo(x)

(39.2) 2{T 3p+1(x)+Tan-1(x)+ -+ +T1(x0)} =Uspsa(x) .

Similar treatment on the relations (19) gives

(40.1) % {Con(1)—=Con-o(%)+Con-o(x)— -+ +(=1)"Co(x)}
=Con+1(x)+(—=1"Ci(x)

(40.2) % {Can+1(%)—=Can-1(x)+Con-o(x)— -+ +(—1)"Cs(x)}
=Can+a(xX)+(—1"Co(x)

(40.3) X {S2a()—=Sen-2(x)+Ssn-o(x)— -+ F(=1)"Se(x)} =Sza+1(x)

(40.4) % {San+1(2)—=San-1(x)+Sen-s(x)— -+ +(—=1)"S:(x)}

=Ssn+2(X)H(—1)"Se(x),

which give rather new types of the recursion relations of the Chebyshev poly-
nomials :

(41.1) 26 {T 2n(x) = Ton-o(x)+ Ton-u(x)— »+- +(—1)"To(x)}
=Ton(x)+(—1D"T(x)

(41.2) 20 {T 20+1(2) = Tan-1(x)+Ton-s(x)— =+ +(—1)"T1(x)}
=T on+o(x)+(—1)"To(x)

(41.3) 2% {Usn(2)=Usn-o()+Usn-o(x)— -+ +(=D"Uo(x)} =Usn+1(x)

(41.4) 2x{U 3n1(x)=Usn-1(x)FUsp-s(x)— -+ +(—1)"U(x)}
=Ugn42(X)+(—=DUo(x) .

4. Graphical Representation

Since all the Chebyshev polynomials, T, U, S, and C, are shown to be
associated with either of the path or cycle graph through the matching poly-
nomial, the recursion relations (29)-(39) can respectively be given their graphical
representations as in Figs. 1-3, where the relations among the Fibonacci and
Lucas numbers are also shown.
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) m+n Eqs. (29)-(34)
1——2—- —o—m—z—ro‘———o- -g——l Fm+n Um*n
m o " "
1 2 m n 2 1 men
+ }
T_i._...h_;:l n:i”“_i_; Fm..l.Fn_] Um—“Un—1
Fig. 1.

Eqs. (35)-(37)

1l n ]l n
2/_\n-1 2/ \n-l 17 Tn-Z
Ln = Fn + Fn-2
2Th = Un - Un-2
Fig. 2.
(3O O o ¢ =MW+
Lan = Lan-2 *Lang = ==+ (Mg = Fon * (:N"Fg

Toan *Ton2 * Ton4+ o+ + Tg = (Uypt Ug)/2

03 (OO A - - A

LZI"H-] - LG__1 + e "‘(’l)nL] = an,,.,
U2n+1/2

T2n+l + Tzn_1 + PP + T'
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5. Orthogonal Polynomials

The Hermite polynomial is defined either as

(42) Hn(x)=(—1)" exp (x*) dd;n exp (—x%).
or as
43) ho(x)=2"""%H,(x/+/2) [14].

In Table 3 are given the H,(x) and h,(x) for smaller n values. The recursion
relations have been known as

Table 3.
n X M, (x) = h_(x) H
n Kn n n(X)
0 ¢ 1 1
1 Py x 2x
2 e X2-1 ax? < 2
3 é x3 - 3x 8x3 - 12x
4 2 - ex? s 3 16x? - 48x% + 12
5 3 5 3
5 . x” ~ 10x™ + 15x 32x7 -~ 160x™ + 120x
6 x® ~ 1sx? 4+ 45x% - 15 64x® - agox? + 720x2 - 120
[n/2]
My (x) = § (_l)k____n_!___z xh-2k
n k=0 (n-2k) ! kt 2
[n/21 o
= -1% () (2k-1) 11 xn2k
kzo (ZK)
n 2, a% 2
H (x) = (-1} exp(x”)=——(exp (~x“)
dx
. _ o=n/2
h (x) =2 Hn(x//z—)
(44) Hy(x)=2xHp_y(x)—2(n—1)Hy-5(x)
(45) ha(x)=xhp ((x)—(n—Dhy-o(x).

Suppose a complete graph K, and its matching polynomial, which has
already been shown by the present author to recur as

(46) Mg (0)=xMg,_(0)—(n—DMg, (x) [11].

Note that Egs. (45) and (46) have just the same form. The latter can be derived
by a successive application of the recursjon_relation (13). It has .also been shown
that the closed form of Mg, (x) is given by ' T
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B n! n-2k
47 M= 2 (D' @ —apyraree = B
which is identical to A,(x) [13], namely,
(48) Mg (x)=hn(x)=2"""*H,(x/+/2).

Gutman has also shown that the matching polynomials of the complete
bipartite graph K, . and K, . are, respectively, equivalent to the Laguerre and
associated Laguerre polynomials as

(49) Mg, (x)=(—1)"La(x?)

(—D"nl x™m

(50) Mg, (x)= p— Lz ™x%. (mzn)
Table 4.
n Kon M ) = (DM )
n,n
0 é 1
1 I x? -1
2 M xt - ax® + 2
3 B% x6—9x4+18x2~6
4 % x8 - 16x°% +.72x* - 96x2 + 24
W G0 = 7 1 __'iz_x2n-2k
n,n k=0 {(n-k)!}“ k!
Table 5.
m n Kon M‘Km,n(x} Lx_n
2 1 v x3‘ - 2x 2% - 4
3 1 \I/ x - 3x? —ex + 18
3 2 W x5 - 6x3 + 6x - 3x2 + 18x -~ 18
4 W - 8x? + 12¢? 12x% « 96x + 144
min;m,n) m! nl min-2k

Mg 1= Lo C ¥ BT (KT KT ¥

n =
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In Tables 4 and 5 are given smaller K, , and K, , graphs and the correspond-
ing polynomials.

By a successive application of the recursion relation (13) to Egs. (49) and
(50) Gutman has derived the following recursion relations of the Laguerre and
associated Laguerre polynomials:

(51) Ln<x>:nLn-1<x>+%L:L<x>

Lypi(x)=@n+1—x)La(x)—n"La-s(x) [13].

6. Discussion

The matching polynomials for typical series of graphs are thus shown to
be closely related to some of the orthogonal polynomials as summarized in Table
6. This fact suggests that the non-adjacent number p(G, k) is not only an im-
portant graph-theoretical quantity but also may have some key role in the mathe-
matical structure of the quantum mechanical eigenvalue problems. The Legendre,
Laguerre, and Hermite polynomials are known to be the typical solutions of the
Schrodinger equations for the problems where a wave-like particle is trapped
in a potential well of various forms. The differential equations to be satisfied
by the Chebyshev and Legendre polynomials are very similar, 7. e.,

Table 6.

Orthogonal Polynomial Graph

Chebyshev (lst kind} an Cn Cycle graph Cn
Chebyshev (2nd kind) U,r S, Path graph LY
Hermite Hn, hn Complete graph Kn
Laguerre L Complete bipartite graph X

n n,n

Associated Laguerre Lm—n Complete bipartite graph 'Km n
r

Legendre Pn ———
(47.1) (I—x®)Ti(x)—xTH(x)+n*T ,(x)=0
47.2) A—xUMx)—xUp(x)+n2U ,(x)=0
(47.3) (1—x?)Pp(x)—2x Pp(x)+n(n-+1)Pr(x)=0

However, no eigenvalue problem has been known whose solution takes the
Chebyshev polynomial, whose matching polynomial is identical to the Legendre
polynomial. These questions are open.
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