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Introduction.

Let N and R denote, respectively, the set of the positive integers and that
of the real numbers, throughout this paper. An infinite sequence of real num-
bers may be regarded as a map of NV into R, where the set N is considered
to be ordered by its natural ordering. Generalizing this, we obtain the notion
of a linearly ordered sequence with real-valued terms, as follows.

Let £ be a nonvoid countable (i.e. finite or enumerable) set of indices and
suppose {2 furnished with a linear ordering. We shall understand by a linearly
ordered sequence (with real-valued terms) defined on £, any map of the set £
into the real line R.

We are interested in finding a process by which, under certain conditions,
the terms of a linearly ordered sequence can be summed in the given order of
the indices. When we deal with summation, we shall speak of linearly ordered
series instead of sequence, in accordance with the usual wording. Our summa-
tion process for linearly ordered series will be essentially based on the integra-
tion theory, and it is convenient to begin by obtaining certain properties of
functions of a real variable.

§1. Terminology and notation.

We shall understand by a linear set any subset of R. When we speak of a
closed interval [a, b] or an open interval (a, b), we shall always suppose a and
b to be finite real numbers such that a<b. A function, by itself, will mean a
map of R into R, unless explicitly stated otherwise. In other respects, we shall
generally conform to Saks [1] in terminology and notation. Thus, a sequence
(of numbers, of sets, etc.), by itself, will signify a nonvoid countable one and so
may be finite as well as infinite. Again, if F(x)is a function and I is a closed
interval, the increment of F(x) over I will be denoted by F(I), while we shall
write F[X] for the image of a linear set X under the function F. We shall,
however, deviate from Saks [1] in using the notation F(J) in the case of an
open interval J also, this denoting the increment of F over the closure of J.

We shall often consider a linear compact set containing at least two
points. Such a set will be called CT set for short. We shall understand by
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interval spanned by a CT set,bthe minimal closed interval containing this set.
Throughout the paper, the letters Q and K will represent, respectively, a CT
set and the interval spanned by it. Plainly, both the extremities of K belong
to Q.

§ 2. Preliminaries.

Given a function F(x) and a CT set @, denote by J a generic open interval
contiguous to @, and by D the union of all intervals J. (If there is no J, then
D is the void set.) We construct a function L(x) subject to the following con-
ditions :

(i) L(x)=F(x) whenever x€ R—D,
(i) L(x) is linear in x on the closure of each J.

This function L, which is plainly uniquely determined, will be called linear
modification of the function F with respect to the set Q. The following pro-
perties of L(x) are obvious:

THEOREM 1. Let L(x) be the linear modification of a function F(x) with
respect to a CT set Q. '

(1) If F(x) is continuous on the set Q, then L(x)is continuous on the closed
interval K spanned by Q;

(i) L(x) fulfils the condition (N) of Luzin on the open set K—Q. Con-
sequently, L(x) fulfils the same condition on the whole interval K, provided that
|FLQJ|=0;

(iii) L(x) is derivable at all points of K—Q and we have, for every open
interval J contiguous to Q, the relations

F(Y=LD={ Ldx,  IFDI=ILI=] |1l dx.

For later use, we quote now the following two theorems from Saks [1], p.
227 and p. 228.

THEOREM 2. In order that a function F(x) which is both ‘conz‘inuous and
BV (i.e. of bounded variation) on a compact set E, be AC on E, it is necessary
and sufficient that F(x) fulfil on this set the condition (N) of Luzin.

THEOREM 3. In order that a function F which 1s continuous on a closed
interval I be AC on this interval, it is necessary and sufficient that F fulfil on
I the condition (N) of Luzin and that its derivative exist almost everywhere on
I and be summable on I. "

8 3. Functions which are AC on a CT set of measure zero.

The results of this and the next section will constitute the kernel of our
whole theory.
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THEOREM 4. Given a CT set Q of measure zero, denote by | a generic open
interval contiguous to Q. In order that a function F which is continuous on @,
be AC on Q, it is necessary and sufficient that

|FLQ1I=0 and XZIF(])I<+oo

simultaneously. When this is the case, we have also ZJ}F(]):F(K), where K
means the closed interval spanned by Q.

PrRoOF. Let L(x) be the linear modification of F(x) with respect to the
set Q.

(a) Necessity. Suppose F(x) to be AC on Q. Then F(x) fulfils the
condition (N) on Q, where |Q|=0 by hypothesis. Hence we have |F[Q]|=0,
and it follows by articles (i) and (ii) of Theorem 1 that, on the interval K, the
function L(x) is both continuous and subject to the condition (N).

We shall show next that L(x) is BV on K. For this purpose, consider an
arbitrary sequence x,<x;<--+:+ <x, (neN), finite and increasing, of points of K.

It suffices to ascertain that the sum an | L(x3)—L(x;_1)| is bounded. Since L(x)

is linear on every J, we may suppose, without loss of generality, that all the
points x,, Xy, ++- , xn belong to the set Q. It follows that

3 L(x)—Lixel= 3 | Fx)—Flxi) | SV(F; Q).

But V(F; Q)< -+oo, inasmuch as every function which is AC on a bounded set
is necessarily BV on the same set.

The above results, combined with Theorem 2, show that L(x) is AC on the
interval K. The derivative L’(x) is therefore summable on K. Noting that
|Q]=0, we thus find, by article (iii) of Theorem 1, that

SIFDI=3 1Lwldx = 1L dx<+eo.

which completes the necessity proof.
It also follows, from the above arguments, that

SFE() =ES L'(x)dx = S L'(x)dx=L(K)= F(K).
J J JJ K
(b) Sufficiency. Suppose that a function F is continuous on @ and

fulfils both |F[Q]|=0 and JEIF(])] <+oo. By articles (i) and (ii) of Theorem

1, the linear modification L(x) of F(x) is, on the interval K, both continuous
and subject to the condition (N). Moreover, article (iii) of the same theorem,
together with the hypothesis |Q|=0, shows that L(x) is derivable almost every-
where on K and that

[ 110ldx =5 1161 dx =S| P <+eo.
J JJ . J
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The derivative L’(x) is thus summable on K. It follows, on account of Theorem

3, that L(x) is AC on K. Hence F(x) is AC on Q, and this completes the suf-
ficiency proof.

THEOREM 5. Let Q be a CT set of measure zero, and let J denote a generic
open interval contiguous to Q. Suppose that F and G are two functions subject
to the following conditions :

(a) F(x) is absolutely continuous on Q,
(b) G(x) is continuous on Q and we have |G[Q]|=0,
() F(J)=G(]) for every interval J introduced above.

We then have F(I)=G{) for every closed interval I with extremities belong-
mg to Q; or, what amounts to the same thing, the difference F(x)—G(x) is a
constant throughout the set Q.

 ProoF. Let K be the closed interval spanned by . Condition (a) and
Theorem 4 together imply that

SIF(DI<too and FIE)=2F()).

It follows by condition (c) that ;IG( I <-+co., This, combined with condition

(b), enables us to apply the same Theorem 4 to the function G(x), and we obtain

FUE) = S F()) =3 6()) = G(EK).

This being so, consider any closed interval I with extremities belonging to
Q. We find at once that, in the hypothesis of the present theorem, the set Q
may be replaced by the intersection @ \I. The interval K considered above is
then replaced by I. It follows, from what has already been proved, that F(I)
equals G(I), which completes the proof.

§4. Functions which are GAC on a CT set of measure zero.

We are concerned, in this section, with generalizing the foregoing theorem
to the case of GAC (i.e. generalized absolutely continuous ) functions. For this
purpose, we quote firstly the following theorem from p. 233 of Saks [1].

THEOREM 6. In order that a function which is continuous on a nonvoid
closed set E, be GAC on E, it is necessary and sufficient that every nonvoid
closed subset of E contain a portion on which the function is AC.

THEOREM 7. We may weaken the condition (a) of Theorem 5 to the follow-
ing form: (a*) F(x) is GAC on the set Q.

Thus, let Q be a CT set of measure zevo, and let | denote a generic -open
interval contiguous to Q. Suppose that F and G are two functions such that the
above condition (a*) as well as the following two conditions ave fulfilled :
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(b) G(x) is continuous on Q and we have |G[Q]|=0,
() F()=G(]) for every interval | introduced above.

We then have F(I)=G() for every closed interval I with extremities belong-
ing to Q, so that G(x), too, must be GAC on Q.

PROOF. Let us denote by K the closed interval spanned by the set Q, and
by L(x) and M(x) the linear modifications of F(x) and G(x), respectively, with
respect to ). These two modifications are continuous on XK on account of article
(i) of Theorem 1. An interval (closed or open) contained in K will be tem-
porarily called interval of constancy, if the difference L(x)—M(x) is a constant
on the whole of it. For example, every interval J of our theorem has this pro-
perty, in virtue of condition (c).

This being premised, let S be the union of all open intervals of constancy.
S is then a nonvoid open set contained in the interval K and, as such, decom-
poses into its component open intervals, which we shall denote generically by
H. We are going to show that every H is an interval of constancy. For this
purpose, it is clearly sufficient to verify that every closed interval A situated in
a fixed component H is an interval of constancy.

There exists, for such an interval A, a positive number d such that any two
points' p and ¢ of A both belong to one of the open intervals of constancy,
provided only that |p—gq|<d. Indeed, if the contrary were true, we could ex-
tract from A two infinite sequences of points, say <{p,> and <g,>, such that
liin | pn—qn| =0 and that, for each n= N, no open interval of constancy would

contain both p, and ¢,. We may, without loss of generality, suppose that both
these sequences converge to a common limit, say &, belonging to A. Since £ H,
there would exist an open interval of constancy containing & Both p, and ¢,
would belong to this interval for n sufficiently large, and we should thus arrive
at a contradiction.

Writing A=[e«, B], suppose that a=ux,<x ;< - <xp=pf. It follows im-
mediately from the above that, if max (x;—x;_;) is sufficiently small, each of
the »n intervals [x.;, x;] is contained in an open interval of constancy. The
difference L(x)—M(x) must therefore be a constant on the whole interval A.

We have thus confirmed that every component interval H of the union S of
all open intervals of constancy is itself one of these intervals. As we may
observe, all the intervals J of our theorem are contained in S.

Let us write E=K—S, so that E is a CT set of measure zero contained in
Q and spanning the interval K. Moreover, the open intervals contiguous to this
set E are no other than the components H of S. ’

Now, every H being an interval of constancy, so must be the closure of H,
too, by continuity of L(x)—M(x) on K. If, therefore, E consists merely of the
extremities of K, then L(x)—M(x) will be a constant on the whole interval K,
and the conclusion of our theorem will follow directly. Consequently we may,
in what follows, assume E to contain at least one interior point of K, and it
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suffices to derive a contradiction from this assumption.

All points of E that are interior to K must then be accumulation points of
E; in fact, the contrary would lead at once to absurdity. On the other hand,
the function L(x) is GAC on the set E, by condition (a*) of our theorem. As
is plainly possible, let us take now, in the interior of K, a closed interval K,
whose extremities belong to E and whose intersection with E is a perfect set.
It follows by Theorem 6 that this intersection ENK, contains a portion on
which L(x) is AC. We then can choose in K, a closed interval K, whose ex-
tremities belong to £ and whose intersection with E is a perfect set. Writing
P=EN K, for short, we find easily that '

(1) P is an infinite CT set contained in E and, as such, is of measure zero;

(2) the function L(x) is AC on this set P;

(3) the function M(x) is continuous on P and we have M[P]=0;

(4) every open interval B contiguous to P is also contiguous to E, so that
L(B)=M(B). '

These properties of the set P, combined with Theorem 5, ensure that the
difference L(x)—M(x) is a constant, say k, on the whole set P. On the other
hand, this difference is continuous on the interval K and further, on account
of the above property (4), all open intervals contiguous to P are intervals of
constancy. It follows immediately that L(x)—M(x)=~Fk all over the interval K,
defined above. But property (1) requires that K,, being the interval spanned by
P, should contain infinitely many points of P, and hence, of E. This evidently
contradicts the definition of the set F, and the proof is complete.

§5. A theorem connected with the Denjoy integration.

The following theorem will not be used later on; but we shall prove it
here, because it is closely related to the interesting problem of generalizing the
Denjoy integral. ‘

THEOREM 8. Suppose that F(x) is a function which is GAC on a closed
interval K, and that G(x) is a function which is, on this interval, (i) continuous,
(ii) subject to the condition (N), and (iii) approximately derivable almost every-
where.

If Fi(x)=G(x) almost everywhere on K, then the difference F(x)—G(x) is
a constant on the whole interval K, so that G(x) also turns out to be GAC on
this interval.

Proor. Let A be the set of all interior points of K at each of which both
F(x) and G(x) are approximately derivable, so that |K—A|=0 by hypothesis.
We fix a positive number ¢ and we consider an arbitrary point, say &, of this
set A. Writing

[=F(§)=G(&)
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for brevity, we find at once that, in the interior of K, there are arbitrarily short
closed intervals, say C, containing the point & and satisfying the inequalities

F(C)
“lcr

G(C)

11<E and W

—1 ’ <e.
These conditions together imply that |F(C)—G(C)| <2|C]|e.

Since £ is an arbitrary point of A, the aggregate of the above intervals C
covers A in the Vitali sense. By Vitali’s covering theorem, therefore, we can
extract from this aggregate a countable disjoint sequence of intervals C,, Cy, -
whose union S fulfils |A—S|=0. We now write J, for the interior of the
closed interval C, for n=1, 2, «----- , so that

L F(J2)— G <2|]ale.

We then have |K—D|=0 for the union D of these intervals J,; in fact, clearly
K—DcC(K—-A\(A—-S)J(S—D), where each summand set is of measure zero.
The set D just defined is open and its components are precisely the intervals
T, Jay ooeeee . Again, the set K—D is a CT set of measure zero and spans the
interval K. We shall write Q=K—D
Let us associate with each Jn the number g, determined by

|Jal0n=F(Jn)—G(Ja);

this condition, together with the inequality mentioned above, shows that |d,| <2e.
This being so, let us define, on the real line R, a function ¢(x) by the follow-
ing condition :

o(x) =0, for x&J, and ¢(x)=0 for xeR—D.

Thus defined, ¢(x) is a bounded function which is measurable (and hence sum-
mable) on every finite interval. Let @(x) be an indefinite integral of ¢(x); then
@(x) is absolutely continuous on K and we have, for every J,,

O(Jn)=Jal0n=F(Jn)—=G(Jn).

We also have |@(K)|<2|K|e on account of the inequality |d,]|<2e.

Thus, if we write H(x)=F(x)—®@(x), we see directly that this function H(x)
is GAC on K and fulfils the condition H(J,)=G(/J,) for every /.. By hypothesis,
furthermore, G(x) is continuous on K and satisfies the condition (N) on K, so
that |GLQ]|=0 in particular, where Q=K—D (see above). We therefore have
H(K)=G(K), in virtue of Theorem 7. It then follows that F(K)—G(K)= O(K),
where |O(K)| =< 2|K|e as already mentioned. We thus obtain the inequality
| F(K)—G(K)|=2|Kle, and this implies the equality F(K) G(K), since ¢ is an
arbitrary positive number.

If I is an arbitrary closed interval lying in K, then, in the above proof for
F(K)=G(K), we may plainly replace the interval K by I throughout. We thus
derive F(I)=G(I), which completes the proof.
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§ 6. Order isomorphism and equivalent functions.

Let A and B denote nonvoid linear sets in this section. If x<y whenever
x€A and ye B, we write A<B and we say that A precedes B. This relation
may simply be expressed by a<B, in case A is a singletonic set {a}, and by
A<b when B={b}. ‘

We shall mean by A<B that either A<B or A=B. If M is any nonvoid
aggregate of nonvoid linear sets, this relation < is evidently a partial ordering
for M, and will be called its natural ordering. In particular, I is linearly
ordered by its natural ordering, iff (i.e. if and only if ), of two arbitrary distinct
elements of Y&, one necessarily precedes the other. This certainly occurs when
Mt consists of the components of a nonvoid open set in R.

THEOREM 9. If E and E’ are two arbitrary linear sets which are nonvoid
and closed, then every increasing map of E onto E’, supposed existing, is neces-
sarily continuous.

By an increasing map we always mean one which is strictly increasing.
The proof of this theorem is immediate and may be omitted.

THEOREM 10. Given two nondense CT sets Q and Q’, denote by J a generic
open interval contiguous to Q, and by W the aggregate of all the intervals ].
Further, let J' and W be defined similarly for Q'. We suppose that i and W’
are order isomorphic with respect to their natural linear orderings.

If ¢ is an order isomorphism of M onto W', there exists an increasing map
0(x) of Q onto Q', such that, for any two points u, v of Q and any interval
JEM, the relation u<J<v is always equivalent to u'<J' <v’, where u'=0(u),
V'=0), J'=¢(]).

This map 0 is uniquely determined and must, of itself, be continuous.

Proor. Writing [a, b] and [a’, b’] for the closed intervals spanned, respec-
tively, by @ and Q’, we set firstly 8(a¢)=a’ and 6(b)=0b’. Let us consider next
an arbitrary point £=@Q other than ¢ and 4. We shall denote generically by A
any of the intervals JeWt fulfilling /<& and by B any of the intervals JeM
fulfilling £<J, so that we always have A’<B’, where we write A’=¢(A) and
B’'=¢(B). The set Q' being nondense, it is readily seen that there is a unique
point £’=Q’ satisfying the relation A'<&'<B’ for every pair A, B. We now
define 6(&)=¢&". ‘

We verify, without difficulty, that the map 6(x) thus defined fulfils the
requirements of our theorem. Finally, the uniqueness of 6(x) is obvious, and its
continuity is a direct consequence of Theorem 9.

REMARK. It is obvious but noteworthy that, with the notation of the theo-
rem, the relation J=(u, v) is always equivalent to J'=(u’, v’).
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THEOREM 11. Given two CT sets Q and @', and given an increasing map
0(x) of Q onto Q’, suppose that F and @ are two functions fulfilling the
condition F(x)=@(x’) for all x=Q, where we write x’=0(x) for short. Then
the function F is continuous on Q, iff the function @ is so on Q.

REMARK. The functions F and @ of the theorem are, so to speak, equivalent
to each other under the map 0(x).

PrROOF. The map 6(x), together with its inverse map, is continuous on ac-
count of Theorem 9, whence the assertion follows at once.

THEOREM 12. Suppose that, in the foregoing theorem, both Q and Q' are
especially CT sets af measure zero. The function F is then AC on Q, iff the

Sunction @ is so on Q’. Furthermore, we may replace here the property AC by
GAC.

PrRoOF. Both #(x) and its inverse map are increasing as well as continuous,
and we have |Q|=|Q’|=0 by hypothesis. Hence, by Theorem 2, these maps
are both absolutely continuous. In view of their biuniqueness, we find immediately
that absolute continuity of F on Q is equivalent to that of @ on Q’.

To deduce the latter half of the assertion, it suffices to assume F to be
GAC on Q and to show the same property of @ on Q. We can express the
set Q as the union of a sequence of sets Qi Qs -+ on each of which the
function F is AC and, by continuity of F, each set @, may be supposed to be
CT. Then the set 60[Q.] is also CT, and it follows, from what was already
proved, that the function @ is AC on A[Q,]. Since Q’ is the union of the sets
0[Q,] and since @ is continuous on Q' in virtue of the preceding theorem, we
conclude that @ is GAC on Q’, which completes the proof.

Throughout the rest of this paper, we shall mean by a [linearly ordered set,
one which is nonvoid and countable. The following theorem might perhaps be
a known result; we shall, however, give an outline of its proof, because we
cannot, at present, ascertain the locality of the possible relevant literature.

THEOREM 13. Given any linearly ordered set 82, there always exists a linear
CT set Q of measure zero, such that 2 is order isomorphic with the aggregate
M of the open intervals contiguous to Q, where we regard Y as linearly ordered
by its natural ordering.

PROOF. Supposing, as we plainly may, the set £ to be infinite, let us enu-
merate all the elements of £ in a distinct infinite sequence, say ., @y, *-+-
Two distinct elements w;, w; of £ will be termed to be adjacent, if there is no
w, such that w,<w,<w; or w;<w,<wp.

Let us write U=[0, 1]. It is sufficient to construct within U a disjoint
infinite sequence of open intervals Jfi, fp, -+ whose union occupies almost all
points of U and for which the relation J,<J, is always equivalent to w,<aw,,
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the indices p, ¢ being arbitrary.

Suppose H,, -+ , H, to be a finite disjoint sequence of open intervals con-
tained in U, and let &, p, g denote arbitrary positive integers =<n. The sequence
Hy, e , H, will, for the nonce, be termed to be n-admissible, if it satisfies the

following conditions :

(i) the relation H,<H, is always equivalent to w,<w,;

(ii) H, and H, abut each other (i.e. have one extremity in common), iff @,
and w, are adjacent ;

(iii) the left-hand [or right-hand] extremity of Hy coincides with that of

U, iff ws is the leftmost [or rightmost] element of the linearly orderved
set L.

In order to comstruct the aforesaid infinite sequence of open intervals Jj,.
Joy e , we fix a positive number 1<1 and we proceed by induction. Let us
choose firstly a l-admissible interval J; with length |J;|>2]U]| =24, as is clearly
possible. When we have determined the n intervals J;, Jo, -+ , Jn, We choose
the next interval J,,; in the following manner. There certainly exist open
intervals (or, perhaps, an open interval) J such that the sequence J;, ----- y Jus
J is (n-+1)-admissible, as we may see without difficulty. Every such interval
J is clearly contained in one and the same closed interval ICU disjoint with

Juy e , Jo. Of course, this interval I is uniquely determined. We now take
for J,.; an arbitrary J of the above kind with length |J|>A|1].
The sequence [y, J5, -+ thus obtained fulfils all our requirements. The

detailed verification of this may be left to the reader.

§7. Summation of linearly ordered series.

Suppose f(w) to be a linearly ordered sequence defined on an indexing set
2; in other words, let £ be a linearly ordered set (nonvoid and countable, as
already remarked) and let f be a map of £ into the real line. We are concerned
with the summation of the linearly ordered series Ew flw), where @ ranges over
the set 2.

DEFINITION. Given 2 and f as above, let us associate with £ an arbitrary
linear set Q satisfying the conditions of the foregoing theorem. We shall say
that the linearly ordered series > f(w) is Luzin convergent, if there exists at

® .

least one function F(x) subject to the following three conditions and if, further,
two such functions F necessarily differ, over the set @, only by an additive
constant.

(i) The function F(x) is continuous on the set Q;
(ii) the tmage F[QJ] is of measure zero:. |FLQ]|=0;
- (ili) we have F(J)=f(w) for every w2, where J is that open interval
(contiguous to Q) which corresponds to the index w under the order
isomorphism of the foregoing theorem.
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When the above is the case, we define the Luzin sum of our series by the
formula :

S flw)=F(K),

where K means the interval spanned by the set Q. Clearly, the increment F(K)
does not depend on the choice of the function F. .

The epithet “Luzin” in the above ‘terfninology indicates the importance of
the condition (N) of Luzin in our theory.

The following theorem is a direct consequence of Theorems 10 and 11.

THEOREM 14. The above notion of Luzin convergence, as well as the value
of the Luzin sum, depends neither on the choice of the set Q nor on that of the
relevant ovder isomorphism.

Suppose given a linearly ordered set ,Q_of indices and a map f(w) of £ into
the real line. We are going to consider a few particular cases of Luzin con-
vergence of the linearly ordered series X f(w).

This series will be‘called absolutely convergent, if X |f(w)| <+oco. The fol-

lowing theorem results immediately from Theorems 4 and 5.

THEOREM 15. Ewvery linearly ordered series which is absolutely convergent,
is Luzin convergent, and its Luzin sum coincides with its ordinary sum.

‘Let Q be any linear CT set of measure zero, such that £ is isomorphic
with the aggregate of the open intervals contiguous to @ (see Theorem 13).
We shall call the linearly ordered series > f(w) to be Denjoy convergent, if there

. [}

exists a function F(x) which is GAC on the set @ and for which the relation
F(J)=f(w) holds for every w< {2, where J means the open interval corresponding
to @ under the above order isomorphism. By Theorems 10 and 12, we see at
once that this definition does not does not depend on the choice of the set Q or
of the relevant order isomorphism. Evidently, a linearly ordered series is Denjoy
convergent, whenever it is absolutely convergent,

The function F(x) appearing above must be. continuous on Q, since it is
GAC on Q; we have further |F[Q]|=0, since Q is of measure zero and since
every function which is GAC on a set must fulfil the condition (N) of Luzin on
the same set. Thus F(x) satisfies the conditions (i)~(iii) in the definition of
Luzin convergence. This, in conjunction with Theorem 7, leads at once to the
following result :

THEOREM 16. Every linearly ordered series which is Denjoy convergent, is
necessarily Luzin convergent.

With the same notation as above, let L(x) be the linear modiﬁcatio‘ﬁ ('see
§2) of the function F(x) with respect to the set Q. Evidently, L(x) is GAC
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on the closed interval K spanned by Q and derivable almost everywhere on K.
The derivative L’(x) is then Denjoy integrable on K and we have

S f@=FE) =\ Ldx.
This explains our terminology “Denjoy convergent”.

THEOREM 17. Every infinite series 2, a, whosz terms a, are real numbers
n=1

and which converges in the ordinary sense, is always Denjoy convergent and its
Luzin sum coincides with its ordinary sum.

PrOOF. Let S be the ordinary sum of the series under consideration and
let us write

D= O I, where J,= ( n—1 n >,

nel n ’ n+l
n(n+la, if x€/,, So(t)dt if x<1,
gD(.X)Z . F(x): )
O 1f XER—D’ S lf le

We readily see that the function F(x), thus defined, is GAC on the unit interval
U=[0, 1] and fulfils the relation F(J,)=a, for all nN. Moreover, the set

Q=U-—D is closed and countable, and spans the interval U. The series i}lan

is thus Denjoy convergent, and its Luzin sum equals its ordinary sum, since
F(U)=F1)—F@)=S. This completes the proof.

Let it be remarked finally that we are, at present, unable to decide whether
or not the following assertions are true:

(1) There exist linearly orderved series which are Luzin convergent without
being Denjoy convergent.

(i) Let f(®) and g(w) be two maps of a linearly ovdered set 2 into the real
line, and let us write h(w)=f(®)+glw). If the series X f(w) and X glw) are

both Luzin convergent, then so is the series > h(w) also and we have the equality
S h@)=f@)+ 3 ).

It is easy to see that the above assertion (ii) holds good if we replace there
the Luzin convergence by the Denjoy convergence.
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