The Balayage onto Closed Sets with Respect to Continuous Function-Kernels

Hisako Watanabe

Department of Mathematics, Faculty of Science, Ochanomizu University (Received April 9, 1981)

Let X be a locally compact Hausdorff space with a countable base and G be a continuous function-kernel on X such that each non-empty open set is non-negligible with respect to G.

Under the assumption that G and the adjoint kernel \check{G} satisfies the continuity principle, R. Durier proved that, if G or \check{G} satisfies the domination principle, G or \check{G} does the balayaged principle and conversely ([2]). Further, I. Higuchi and M. Ito obtained the same conclusion without the assumption of the continuity principle ([3]).

In this paper we shall consider the balayage onto any closed non-negligible set with respect to a continuous function-kernel G satisfying the domination principle. We shall show that, if each non-empty open set is non-negligible and the convex cone of continuous potentials is adapted, then it is possible to balayage onto any closed non-negligible set. Further, we shall show that there exists a "minimum" balayaged potential uniquely up to a negligible set.

§ 1. Preliminary.

Throughout this paper we assume that X is a locally compact Hausdorff space with a countable base and G is a continuous function-kernel, i.e. an extended continuous mapping from $X \times X$ to $\mathbb{R}^+ \cup \{+\infty\}$ such that it is strictly positive on the diagonal set Δ and finite outside of Δ . The adjoint kernel \check{G} of G is defined by $\check{G}(x, y) = G(y, x)$. Evidently G is also a continuous function-kernel.

We denote by M^+ (resp. M_k^+) the set of positive Radon measures on X (resp. the subset of M^+ of the measures of with compact support). The potential $G\mu$ of $\mu{\in}M^+$ is defined by

$$G\mu(x) = \int G(x, y) d\mu(y)$$

and the energy of μ is defined by $\int G\mu d\mu$. We denote by

$$\mathcal{E}\!:=\!\left\{\mu\!\in\!M_{\,k}^{+}\!:\int\!G\mu d\mu\!<\!\infty\!
ight\}$$
 ,

 $\mathcal{F} \text{ (resp. } \check{\mathcal{F}}) := \{ \mu \! \in \! M_k^+ \colon G\mu \text{ (resp. } \check{G}\mu) \text{ is finite and continuous on } X \}$

and for a subset F of X

$$M^+(F) := \{ \mu \in M^+ : S\mu \subset F \}, \qquad \mathcal{E}(F) := \{ \mu \in \mathcal{E} : S\mu \subset F \}.$$

A subset F of X is said to be negligible if $\mu(F)=0$ for all $\mu\in\mathcal{E}(F)$. Given a subset F of X, "the property holds n.e. on F" means that the property holds on F with a possible exception of a negligible set. Suppose that G satisfies the continuity principle, i.e. if $G\mu$ ($\mu\in M_k^+$) is finite and continuous as a function on $S\mu$, $G\mu$ is also finite and continuous in the whole space. If a subset F of X is non-negligible, it follows from Lusin's theorem that there exists a non-zero measure $\tau\in \mathcal{F}(F)$. Therefore, if $\tau(F)=0$ for all $\tau\in \mathcal{F}$, F is negligible.

We say that a kernel G satisfies the domination principle, if, for $\mu \in \mathcal{E}$, $\nu \in M_k^+$, $G\mu \leq G\nu$ in X whenever $G\mu \leq G\nu$ on $S\mu$. If G satisfies the domination principle, G satisfies the continuity principle (c. f. [3, Theorem 2]). Therefore, without the assumption of continuity principle, we have

THEOREM 1 ([3, Theorem 3]). Assume that each non-empty open set is non-negligible with respect to G. The following statements are equivalent:

- (i) G satisfies the domination principle,
- (ii) \check{G} satisfies the domination principle,
- (iii) G satisfies the balayage principle,
- (iv) \check{G} satisfies the balayage principle.

PROPOSITION 1. Assume that G satisfies the domination principle and each non-empty open set is non-negligible. Then the inequality $G\mu \leq G\nu$ n. e. on $S\mu$ for $\mu \in \mathcal{E}$, $\nu \in M_k^+$ implies $G\mu \leq G\nu$ n. e. in X.

PROOF. Let x be an arbitrary point of the complement of $S\mu$. By Theorem 1 there exists a $\tau \in M^+(S\mu)$ such that $\check{G}\tau = \check{G}\varepsilon_x$ n.e. on $S\mu$ and $\check{G}\tau \leq \check{G}\varepsilon_x$ everywhere. Since $\check{G}\varepsilon_x$ is continuous on $S\mu$, it follows that $\tau \in \mathcal{E}$. Hence

$$G\mu(x) = \int \check{G}\varepsilon_x d\mu = \int \check{G}\tau d\mu = \int G\mu d\tau \leq \int G\nu d\tau \leq \int \check{G}\tau d\nu \leq \int \check{G}\varepsilon_x d\nu = G\nu(x).$$

Therefore we have conclusion.

The following proposition will be used frequently.

PROPOSITION 2. Assume that G satisfies the domination principle and that each non-empty open set is non-negligible. Then, for each compact set F there exists a $\tau \in \mathcal{F}$ such that $G\tau \geq 1$ on F.

PROOF. Since G is lower semicontinuous and G(x, x) > 0 for all $x \in X$, there is, for each $x \in X$, a relatively compact neighborhood U_x of x such that

$$G(z, y) > \frac{1}{2}G(x, x)$$
 on $U_x \times U_x$.

Choose finite points x_1, x_2, \dots, x_n of F satisfying $\bigcup_{i=1}^n U_{x_i} \supset F$. Since G satisfies

the domination principle, it also satisfies continuity principle. Since U_{x_i} is non-negligible by the assumption, there exists a $\tau_i \in \mathcal{F}(U_{x_i})$ $(\tau_i(1)=1)$. Then it holds that

$$G\tau_i(z) = \int G(z, y) d\tau_i(y) \ge \frac{1}{2} G(x_i, x_i)$$
 for all $z \in U_{x_i}$.

Put $\tau = \sum_{i=1}^{n} \tau_i$. Then $G_{\tau} > 0$ on F. Since G_{τ} is continuous everywhere, we can find a positive real number b > 0 satisfying $bG\tau \ge 1$ on F.

§ 2. Adapted spaces.

We assume that the convex cone of the potentials with compact support satisfies the following condition (R_{σ}) to consider the balayage onto any closed non-negligible set F.

In general, let P be a convex cone in $\mathcal{C}(X)$ and

$$P_{\sigma}:=\{\sum_{n=1}^{\infty}u_n: u_n\in P, \sum_{n=1}^{\infty}u_n\in C(X)\}.$$

 (R_{σ}) For each $u \in P$, for each real number $\varepsilon > 0$ and for each compact subset F of X, there exist a $v \in P_{\sigma}$ and a compact subset K of X satisfying

$$v \leq \varepsilon$$
 on F and $v \geq u$ on CK .

When $\{K_n\}$ is an exhaustion of compact subsets of X, it is easy to see that (R_{σ}) is equivalent to the following condition (R'_{σ}) :

 (R'_{σ}) For each $u \in P$ and for each $x \in X$ inf $\{v(x) : v \ge u \text{ on } CK_n, v \in P_{\sigma}\}$ converges to zero uniformly on any compact set as $n \to \infty$.

We denote by $u \in o(v)$ for $u \in C(X)$, $v \in C^+(X)$ if for each $\varepsilon > 0$ the set $\{x \in X : |u(x)| > \varepsilon v(x)\}$ is compact.

PROPOSITION 3. If a convex cone P in $C^+(X)$ satisfies (R_{σ}) , then, for each $u \in P$, for each $\varepsilon > 0$ and for a compact set K in X, there exists a $v \in P_{\sigma}$ satisfying $u \in o(v)$ and $v \leq \varepsilon$ on K.

PROOF. Let $\{K_n\}$ be an exhaustion of compact subsets of X. We can assume that $K \subset K_1$. Let u be a function in P. By (R_{σ}) there exist a $v_n \in P_{\sigma}$ and a $m_n \in N$ such that $m_n < m_{n+1}$,

$$v_n \leq \frac{1}{2^n} \varepsilon$$
 on K_n , and $v_n \geq u$ on CK_{m_n} .

Put $v:=\sum_{n=1}^{\infty}v_n$. Then u is continuous everywhere and $v\in P_{\sigma}$. For each n and each $x\in CK_{m_n}$, it holds that

$$u_i(x) \ge u(x)$$
 (i=1, 2, ..., n).

Hence $v(x) \ge \sum_{i=1}^n v_i(x) \ge nu(x)$ and the set $\left\{ x : u(x) > \frac{1}{n} v(x) \right\}$ is compact. Therefore we have $u \in o(v)$.

PROPOSITION 4. Let P be a convex cone in $C^+(X)$ satisfying (R_{σ}) . Then for each $u \in P_{\sigma}$ there exists a $v \in P_{\sigma}$ with $u \in o(v)$.

PROOF. Let $\{K_n\}$ be an exhaustion of compact subsets of X and u a function in P. Since $u = \sum_{n=1}^{\infty} u'_n \ (u'_n \in P)$ converges uniformly on K_n , we can write

$$u = \sum_{n=0}^{\infty} u_n$$
, $u_n \in P$, $u_n \le \frac{1}{8^n}$ on K_n $(n=1, 2, \dots)$.

By Proposition 3 there exists a $v_0 \in P$ with $u_0 \in o(v)$. For each $n \ge 1$ there exists a $w_n \in P$, $2^n u_n \in o(w_n)$ and $w_n < 1/4^n$ on K_n . Put $v_n := u_n + w_n$ $(n=1, 2, \cdots)$. Then $2^n u_n \in o(v_n)$, $v_n \ge 2^n u_n$ and

$$v_n \le \frac{1}{4^n} + \sup_{x \in K_n} 2^n u_n(x) \le \frac{1}{4^n} + \frac{1}{4^n} = \frac{1}{2^n}$$
 on K_n .

Put $v:=\sum_{n=0}^{\infty}v_n$. Then $\sum_{n=0}^{\infty}v_n$ converges uniformly on each K_n and $v\in P_{\sigma}$. Let ε be a positive real number. Choose r with $1/2^r \le \varepsilon$. Since $2^n u_n \in o(v_n)$, there exists a $m_n \in N$ such that

$$2^n u_n \leq \varepsilon v_n$$
 on CK_{m_n} $(n=0, 1, \dots, r)$.

Put $m := \max\{m_1, m_2, \dots, m_r\}$. Then

$$2^n u_n \leq \varepsilon v_n$$
 on CK_m $(n=0, 1, \dots, r)$.

Hence

$$u = \sum_{n=0}^{\infty} u_n = \sum_{n=0}^{r} u_n + \sum_{n=r+1}^{\infty} u_n$$

$$\leq \sum_{n=0}^{\infty} \frac{\varepsilon}{2^n} v_n + \sum_{n=r+1}^{\infty} \frac{v_n}{2^n} \leq \sum_{n=0}^{\infty} \varepsilon v_n = \varepsilon v$$
 on CK_m .

Therefore $u \in o(v)$.

Let P be a convex cone in $C^+(X)$ satisfying (R_σ) . We denote by $C(X, P_\sigma)$ the set of all continuous real-valued functions f on X such that there exists a $g \in P$ with $|f| \leq g$. If $C(X, P_\sigma) \supset \mathcal{K}(X)^{1}$, $C(X, P_\sigma)$ is an adapted space in C(X); it is a linear subspace H of C(X) satisfying the following conditions (a_1) , (a_2) and (a_3) :

- (a_1) each $v \in H$ is written $v = v_1 v_2$ with $v_1, v_2 \ge 0$ and $v_i \in H$ (i=1, 2),
- (a_2) for each $x \in X$ there is a $v \in H$ with $v \ge 0$ and v(x) > 0,
- (a_3) for each $u \in H$ with $u \ge 0$ there exists a $v \in H$ with $v \ge 0$ and $u \in o(v)$.

¹⁾ We denote by $\mathcal{K}(X)$ the set of all continuous real-valued functions on X with compact support.

It is well-known that each positive linear functional φ on an adapted space H in C(X) is represented by a positive measure μ on X, i.e.

$$\varphi(v) = \int v d\mu$$
 for all $v \in H$ ([1, 34.6 Theorem]).

Let G be a continuous function-kernel on X and put

$$\check{P} := \{ \check{G}\tau : \tau \in \check{\mathcal{I}} \}.$$

Then \check{P} is a convex cone in $C^+(X)$. If \check{P} satisfies (R_σ) , we obtained by Propositions 3 and 4 that any function in \check{P}_σ is contained in o(v) with some $v \in \check{P}_\sigma$. Further, if each non-empty open set is non-negligible, there exists, for each compact subset of K of X, a $f \in \check{P}$ such that $f \geq 1$ on K. Therefore, it is easy to see that the space $C(X, \check{P}_\sigma)$ is an adapted space in C(X).

PROPOSITION 5. Assume that \check{G} satisfies the domination principle, \check{P} satisfies (R_{σ}) and that each non-empty open set is non-negligible. If $\check{G}\tau \leq \check{G}\lambda + u$ on S_{τ} for $\tau \in \mathcal{E}$, $\lambda \in M_k^+$ and $u \in \check{P}_{\sigma}$, then the same inequality holds everywhere.

PROOF. Let $u \in \check{P}_{\sigma}$. Since the convergence of $u = \sum_{n=1}^{\infty} \check{G} \mu_n \ (\mu_n \in \mathcal{F})$ is uniformly on $S\tau$, for each $\varepsilon > 0$ there exists a $m \in N$ satisfying

$$\sum_{n=1}^{m} \check{G}\mu_n + \varepsilon > u \quad \text{on } S\tau.$$

Choose $\tau_1 \in \check{\mathcal{T}}$ with $\check{G}\tau_1 \geq 1$ on $S\tau$. Since $\check{G}\tau \leq \check{G}\lambda + \sum_{n=1}^m \check{G}\mu_n + \check{G}\tau_1$ on $S\tau$ and \check{G} satisfies the domination principle, the same inequality holds everywhere. Hence $\check{G}\tau \leq \check{G}\lambda + u + \varepsilon \check{G}\tau_1$ on X. As ε tends to zero, it follows that $\check{G}\tau \leq \check{G}\lambda + u$ on X.

§ 3. The balayage onto closed sets.

Assume that each non-empty open set is non-negligible. Under the assumption that the convex cone $\check{P} = \{\check{G}\tau : \tau \in \check{\mathcal{F}}\}$ satisfies (R_{σ}) , we shall consider the balayage of a positive measure μ onto any closed non-negligible set F.

THEOREM 2. Assume that G satisfies the domination principle and \check{P} satisfies (R_{σ}) . Let F be a non-negligible compact set and μ be a positive measure such that for all $u \in \check{P}_{\sigma}$ is μ -integrable. Then there exists a positive measure ν with $S\nu \subset F$ satisfying the following conditions.

- (i) $G\nu \leq G\mu$ on X,
- (ii) $G\nu = G\mu$ n.e. on F,
- (iii) each $u \in \check{P}_{\sigma}$ is ν -integrable.

PROOF. Put

$$C(F, \check{P}_{\sigma}) := \{ f \in C(F) : \exists u \in \check{P}_{\sigma}, u \geq 0, -u \leq f \leq u \text{ on } F \}.$$

Then $C(F, \check{P}_{\sigma})$ is an adapted space in C(F). Remark that $C(F, \check{P}_{\sigma}) \supset \mathcal{K}(F)$. For each $f \in C(F, \check{P}_{\sigma})$, put

$$Q(f) := \inf \{ \mu(\check{G}\lambda) - \mu(\check{G}\tau) + \mu(u) : \lambda \in M_k^+, \ \tau \in \check{\mathcal{F}}(F), \\ u \in \check{P}_{\sigma}, \ f \leq \check{G}\lambda - \check{G}\tau + u \ \text{on} \ F \}.$$

Take $v\!\in\!\check{P}_\sigma$ such that $-v\!\leq\!f\!\leq\!v$ on F. Then $Q(f)\!\leq\!\mu(v)\!<\!\infty$. Further, assume that $\check{G}\lambda\!-\!\check{G}\tau\!+\!u\!\geq\!f$ on F with $\lambda\!\in\!M_k^+$, $\tau\!\in\!\check{\mathcal{G}}(F)$ and $u\!\in\!\check{P}_\sigma$. Since $-v\!\leq\!f\!\leq\!\check{G}\lambda\!-\!\check{G}\tau\!+\!u$ on F, it holds that $\check{G}\tau\!\leq\!\check{G}\lambda\!+\!u\!+\!v$ on F. By Proposition 5, the same inequality holds everywhere. Hence $-\mu(v)\!\leq\!\mu(\check{G}\lambda)\!-\!\mu(\check{G}\tau)\!+\!\mu(u)$. Therefore $-\infty\!<\!-\mu(v)\!\leq\!Q(f)$. Since the mapping $f\!\mapsto\!Q(f)$ is a sublinear functional on $C(F,\,\check{P}_\sigma)$, there exists, by Hahn-Banach theorem, a linear functional ν on $C(F,\,\check{P}_\sigma)$ such that $\nu(f)\!\leq\!Q(f)$ for all $f\!\in\!C(F,\,\check{P}_\sigma)$. If $f\!\leq\!0$, it holds that $\nu(f)\!\leq\!Q(f)\!\leq\!0$. Hence ν is positive. Since ν is a positive linear functional on the adapted space $C(F,\,\check{P}_\sigma)$, ν is a positive measure on F such that each $f\!\in\!C(F,\,\check{P}_\sigma)$ is ν -integrable. Let $\lambda\!\in\!M_k^+$. Since $\check{G}\lambda$ is a positive lower semi-continuous function, it holds that

$$\nu(G\lambda) = \sup \{ \nu(g) : 0 \le g \le G\lambda \text{ on } F, g \in \mathcal{K}(F) \}$$

$$\le \sup \{ Q(g) : 0 \le g \le G\lambda \text{ on } F, g \in \mathcal{K}(F) \} \le \mu(G\lambda).$$

Especially, put $\lambda = \varepsilon_x$. We have

$$G\nu(x) \leq G\mu(x)$$
 for all $x \in X$.

Let $\tau \in \check{\mathcal{I}}(F)$. Since \check{P} satisfies (R_{σ}) , there exists, by Proposition 3, a $w \in \check{P}_{\sigma}$ such that $\check{G}\tau \in o(w)$. For each $\varepsilon > 0$ there exists a compact set $K \subset F$ such that $\check{G}\tau \leq \varepsilon w$ on CK. Take $g \in \mathcal{K}(F)$ such that $0 \leq g \leq \check{G}\tau$ and $g = \check{G}\tau$ on K. Then $\check{G}\tau \leq \varepsilon w + g$ on F. Consequently

$$\nu(-\check{G}\tau) {\leq} \nu(-g) {\leq} Q(-g) {\leq} \varepsilon \mu(w) {-} \mu(\check{G}\tau) \, .$$

Hence $-\nu(\check{G}\tau) \leq \varepsilon \mu(w) - \mu(\check{G}\tau)$. As ε tends to zero, we have

$$-\nu(\check{G}\tau) \leq -\mu(\check{G}\tau)$$
.

Therefore $\nu(\check{G}\tau) = \mu(\check{G}\tau)$ for all $\tau \in \check{\mathcal{I}}(F)$. Hence $G\nu = G\mu$ n.e. on F.

A positive measure ν on F satisfying (i), (ii) and (iii) is called a balayaged measure of μ onto F with respect to G.

§ 4. The minimum balayaged potentials.

In this section we assume that each non-empty open set is non-negligible. In § 3 we have considered the balayage onto any non-negligible closed set. But a balayaged measure is not necessarily unique. We prepare the following dominated convergence theorem to see that the minimume balayaged potential is determined uniquely.

THEOREM 3. Assume that G satisfies the domination principle and \check{P} satisfies

 (R_{σ}) . Suppose that the sequence $\{G\mu_n\}$ of potentials of positive measures is dominated by a potential $G\nu$ of a positive measure ν such that each $u \in \check{P}_{\sigma}$ is ν -integrable. Then there exist a $\mu \in M^+$ and a subsequence $\{\mu_{n_j}\}$ of $\{\mu_n\}$ satisfying the following conditions:

(i)
$$\lim_{j\to\infty} G\mu_{n_j} = G\mu$$
 n.e. on X ,

(ii)
$$\lim_{j\to\infty}\int G\mu_{n_j}d\tau = \int G\mu d\tau$$
 for each $\tau \in \check{\mathcal{F}}$,

(iii) each $u \in \check{P}_{\sigma}$ is μ -integrable.

PROOF. If $\tau \in \mathcal{F}$, it holds that

$$\mu_n(\check{G}\tau) = \tau(G\mu_n) \leq \tau(G\nu) = \nu(\check{G}\tau) < \infty$$
.

Since each $u \in \check{P}_{\sigma}$ is written as $\sum_{i=1}^{\infty} \check{G}\tau_{i}$ where $\tau_{i} \in \check{\mathcal{F}}$, it holds that $\mu_{n}(u) \leq \nu(u)$. Since for each $f \in C(X, \check{P}_{\sigma})$ there is a function $u \in \check{P}_{\sigma}$ satisfying $|f| \leq u$, we have $|\mu_{n}(f)| \leq \nu(u) < \infty$. Since the set $\{\mu_{1}, \mu_{2}, \cdots\}$ is bounded under the topology $\sigma(C(X, \check{P}_{\sigma})^{*}, C(X, \check{P}_{\sigma}))$. Hence $\{\mu_{1}, \mu_{2}, \cdots\}$ is relatively compact under the topology $\sigma(C(X, \check{P}_{\sigma})^{*}, C(X, \check{P}_{\sigma}))$ c. f. [1, 23.11 Theorem]). Put

$$A_n:=\overline{\{\mu_n,\,\mu_{n+1},\,\cdots\}}$$

and take $\mu \in \bigcap_{n=1}^{\infty} A_n$. Then μ is a positive continuous linear functional on $C(X, \check{P}_{\sigma})$ and hence a positive measure on X such that each $f \in C(X, \check{P}_{\sigma})$ is μ -integrable. Since X has a countable base, the adapted space $C(X, \check{P}_{\sigma})$ is separable (c. f. [4, Proposition 6]). We can choose a subsequence $\{\mu_{n_j}\}$ of $\{\mu_n\}$ such that

$$\lim_{j\to\infty}\mu_{n_j}(f)\!=\!\mu(f)\qquad\text{for all }f\!\in\!C(X,\,\check{P}_\sigma)\,.$$

Especially

$$\lim_{j\to\infty} \mu_{n_j}(u) = \mu(u) \quad \text{for all } u \in \check{P}_{\sigma}$$

and

$$\lim_{i\to\infty}\mu_{n_j}(\check{G}\tau)\!=\!\mu(\check{G}\tau)\qquad\text{for all }\tau\!\in\!\check{\mathcal{G}}\;.$$

Further, since $\lim_{j\to\infty} \mu_{n_j}(g) = \mu(g)$ for all $g \in \mathcal{K}(X)$, $\lim_{j\to\infty} G\mu_{n_j} \ge G\mu$. For each $\tau \in \check{\mathcal{F}}$ it holds that by Fatou's lemma

$$\tau(G\mu) \leq \tau(\lim_{j \to \infty} G\mu_{n_j}) \leq \lim_{j \to \infty} \tau(G\mu_{n_j})$$
$$= \lim_{j \to \infty} \mu_{n_j}(\check{G}\tau) = \mu(\check{G}\tau) = \tau(G\mu).$$

Consequently

$$\tau(G\mu) = \tau(\underline{\lim}_{j\to\infty} G\mu_{n_j}) = \lim_{j\to\infty} \tau(G\mu_{n_j})$$
.

Hence $G\mu = \underline{\lim} G\mu_{n_j}$ n. e. on X.

Let $\{K_n\}$ be an exhaustion of compact subsets of X.

THEOREM 4. Assume that G satisfies the domination principle and \check{P} satisfies (R_{σ}) . Let F be a non-negligible closed subset of X and μ be a positive measure on X such that each $u \in \check{P}_{\sigma}$ is μ -integrable. Then there exists a balayaged measure ν of μ onto F satisfying

(4.1)
$$\int G \nu d\tau = \lim_{n \to \infty} \int \check{G} \lambda_n d\mu \quad \text{for each } \tau \in \check{\mathcal{G}} .$$

Here λ_n is a balayaged measure of τ onto $F \cap K_n$ with respect to \check{G} .

PROOF. Since for each $\tau \in \check{\mathcal{F}}$ $G\mu$ is τ -integrable, the set $Q := \{x \in X : G\mu(x) = \infty\}$ is negligible. Put

$$F_n: = F \cap K_n \cap \{x \in X: G\mu(x) \leq n\}$$

and let ν_n be a balayaged measure of μ onto F_n with respect to G. Then $G\nu_n \leq G\mu$, $G\nu_n = G\mu$, n.e. on F_n . Remark that the energy of ν_n is finite. By Theorem 3 there exists a subsequence $\{\nu_{n_j}\}$ of $\{\nu_n\}$ such that $\{\nu_{n_j}\}$ converges to vaguely a positive measure ν and $\lim_{j\to\infty} G\nu_{n_j} = G\nu$ n.e. on X, $\lim_{j\to\infty} \int G\nu_{n_j} d\tau = \int G\nu d\tau$ for all $\tau \in \check{\mathcal{T}}$ and $G\nu \leq G\mu$. Simply we use $\{\nu_i\}$ instead of $\{\nu_{n_j}\}$. Further, let $\{\lambda_m\}$ be a balayaged measure of τ onto $F \cap K_m$ with respect to \check{G} . Then $\check{G}\lambda_m = \check{G}\tau$ n.e. on $F \cap K_m$ and $\check{G}\lambda_m \leq \check{G}\tau$ everywhere. Consequently the energy of λ_m is finite. Since $\check{G}\lambda_m = \check{G}\tau$ n.e. on $S\nu_i$ for all $m \leq i$ and $\nu_i \in \check{\mathcal{T}}$, it holds that, for each $\tau \in \check{\mathcal{T}}$

$$\begin{split} \int G \nu d\tau = & \lim_{i \to \infty} \int G \nu_i d\tau = \lim_{i \to \infty} \int \check{G} \tau d\nu_i = \lim_{i \to \infty} \lim_{m \to \infty} \int \check{G} \lambda_m d\nu_i \\ = & \lim_{i \to \infty} \lim_{m \to \infty} \int G \nu_i d\lambda_m \,. \end{split}$$

From Proposition 1, it follows that the inequality $G\nu_i = G\mu = G\nu_{i+1}$ n.e. on $S\nu_i$ implies $G\nu_i \leq G\nu_{i+1}$ n.e. on X. Consequently

$$\int G\nu_i d\lambda_m \leq \int G\nu_{i+1} d\lambda_m \quad \text{for all } m \in \mathbb{N}.$$

Similarly,

$$\int \check{G} \lambda_m d\nu_i \leq \int \check{G} \lambda_{m+1} d\nu_i \quad \text{for all } i \in N.$$

Therefore $\lim_{m\to\infty}\lim_{i\to\infty}\int G\nu_id\lambda_m$ also exists and is equal to $\lim_{i\to\infty}\lim_{m\to\infty}\int G\nu_id\lambda_m$. Since $\int_{CF_i}G\nu_id\lambda_m \leq \int_{(G\mu>i)}G\mu d\lambda_m$, $\int_{CF_i}G\nu_id\lambda_m$ converges to zero as $i\to\infty$. Hence we have

$$\begin{split} \lim_{i \to \infty} \lim_{m \to \infty} \int & G \nu_i d\lambda_m = \lim_{m \to \infty} \lim_{i \to \infty} \int & G \nu_i d\lambda_m \\ = \lim_{m \to \infty} \lim_{i \to \infty} \left\{ \int_{F_i} & G \nu_i d\lambda_m + \int_{CF_i} & G \nu_i d\lambda_m \right\} \\ = \lim_{m \to \infty} \lim_{i \to \infty} \int_{F_i} & G \nu_i d\lambda_m \\ = \lim_{m \to \infty} \lim_{i \to \infty} \int_{F_i} & G \mu d\lambda_m = \lim_{m \to \infty} \int & G \mu d\lambda_m \,. \end{split}$$

Therefore we have the conclusion.

From (4.1) it follows that

COROLLARY 1. The potential $G\nu$ of a balayaged measure ν satisfying (4.1) is uniquely determined up to a negligible set.

COROLLARY 2. If $G\lambda \ge G\mu$ n.e. on F, then $G\lambda \ge G\nu$ n.e. on X.

PROOF. From (4.1) it follows that, for each $\tau \in \mathcal{F}$

$$\int G \nu d\tau = \lim_{m \to \infty} \int \check{G} \lambda_m d\mu = \lim_{m \to \infty} \int G \mu d\lambda_m \leq \lim_{m \to \infty} \int G \lambda d\lambda_m$$
$$= \lim_{m \to \infty} \int \check{G} \lambda_m d\lambda \leq \int \check{G} \tau d\lambda = \int G \lambda d\tau.$$

Hence $G\nu \leq G\lambda$ n. e. on X.

References

- [1] G. Choquet, Lectures on analysis II, New York (Benjamin), (1969).
- [2] R. Durier, Sur les noyaux-fonctions en théorie du potentiel, Rend. Circ. Mat. Palermo (2) 18 (1969), 113-189.
- [3] I. Higuchi and M. Ito, On the theorem of Kishi for a continuous function-kernel, Nagoya Math. J. 53 (1974), 127-135.
- [4] H. Watanabe, Balayages of measures and dilations on locally compact spaces, Natur. Sci. Rep. Ochanomizu Univ. 22 (1971).

Added in proof

It is easy to see that, if a convex cone P in C(X) satisfies (R_{σ}) , P_{σ} also does (R_{σ}) . Using this, we can proof more easily Proposition 4 by the same method used in the proof of Proposition 3.