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§1. Introduction.

In 1952, Berlin and Kac? proposed the spherical model, which is a continuum
modification of the Ising model of a ferromagnet. In this model, one-, two-, and
three-dimensional lattices of infinite extent can be extensively discussed. The
one- and two-dimensional spherical models do not exhibit phase transition, whereas
the three-dimensional model does.

In 1977, N. Nagai, Y. Ohkawa, M. Shingu, S. Yagi and G. Iwata® improved
the spherical approximation by Berlin and Kac. They rewrote the partition
function of an Ising system as a multiple integral, and divided the integration
space by a set of concentric spherical surfaces and sets of parallel planes into
small domains. The two factors constituting the integrand of the multiple inte-
gral were separately averaged over a domain, and the product of the averaged:
two factors was summed up over all domains. If the integration space is divided
only by a set of spherical surfaces, their approximation is equivalent to the
spherical approximation by Berlin and Kac.

For an illustrative example of their method, they computed the partition
function for the two-dimensional square lattice where only nearest neighbor
spins interact with each other and no external field is present, by using a set
spherical surfaces and only a set of planes. While the spherical approximation
predicts no phase transition, their method gives a phase transition in the vicinity
of the exact transition point.

To improve the approximation by N. Nagai et al.,, we add further a set of
quadratic surfaces to a set of spherical surfaces and a set of planes, and divide
the integration space by them. By this method we campute the partition func-
tion, the specific heat, magnetization and susceptibility for the two-dimensional
square lattice with nearest neighbor interaction and no external field. The
partition function and the specific heat are compared with those by the exact
method, the spherical - approximation and the improved spherical approximation
by N. Nagai et al. Among those three approximations our results are the closest
to the exact ones.

By the way, we compute Curie temperatures of three-dimensional anisotropic
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Ising systems with the use of the improved spherical approximation by N. Nagai
et al.,, and investigate the influence of anisotropy on Curie temperature.

§2. Division of the integration space.

The partition function Z of an Ising spin system consisting of N Ising spins
x. situated at N lattice points r of a lattice may be expressed as the sum

Z=2""Yexp [—;— rzr) Kir—r")xx.+h ? xr] (L

where the first >} means the summation over each variable x, on 1 and —1, the
lattice point r ranging over the whole lattice, —K(r—r’)x,x, representing the
interaction of the Ising spins x, and x,., divided by the product of the Boltz-
mann constant and the absolute temperature, and —hx, representing the inter-
action of the Ising spin x, and an external field divided by the same product
as above. The factor 2-¥ is inserted for later convenience.

The sum (1) may be transformed into a multiple integral

Z:S--- SA-BdX @

by_ virtue of the property of the delta function

(et D= 3 (3= +3x+D)

where
1
A=exp [5 S KE—1)x,%0+ thr]

B=116(x,2—1)
dX=dxdx,- dxy.

To improve the approximation by N. Nagai et al.,, we divide the integration
space by a set of spherical surfaces

R=3x?, 0<R<o, (3)
a set of planes
L=>x., —oo<L L<oo 4

and a set of quadratic surfaces
Q:Mrrlxrxrv ’ —OO<Q<OO- (5)

The concrete form of M, will be given later.
We regard the multiple integral (2) as the sum of the product of <{A-B)
and 2 over all sets of R, L, Q, that is,

z={"ar{" aL{ aQca-By@ ©)
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where

A-By={ - |4 BAR—Zx, 5L~ £2)0Q— E My 3,7, )d X

.Q:S o (OR= S 2L~ 2 2)0Q—E M %2, )d X

{A-B) represents the average of A-B over the domain which is defined by a
set of R, L, Q, and 2 is the volume of the same domain.

The basic approximation in our method is to replace <A:-B) by {A)XB). If
the average {A-B) is taken over the domain which is defined by a set of qua-
dratic surfaces '

S=Kr—r")x.x , —o0S<o )

and a set of planes defined by eq. (4), (A-B) is exactly equal to (A)<{B>, be-
cause the factor A contains the quadratic form > K(r—r’)x.x,, and the linear
combination X x,., so that A is constant over the domain defined by S, L. There-
fore if we add a set of quadratic furfaces @ in (5) which resemble S=
D K(r—r)x.x. to a set of spherical surfaces R in (3) and a set of planes L in
(4), our approximation will be improved better than when only spherical surfaces
and planes are used.

To define M.,., we divide the lattice into m sublattices or blocks each of
which has n=N/m lattice points. M,, is defined to be equal to K(r—r’) except
that M,..=0 if r and r’ belong to different blocks. Then eq. (5) is written as

Q=3 3 My 51555 ®)
where M;; is the interaction matrix in a block and x,; is the spin of the j-th
lattice point in the 1-th block. The summation with respect to j and j’ is taken
over the lattice points in a block, 1 being summed up over all of the blocks.

§3. Computation of ~Z.

We compute the partition function Z by replacing <AXB)>R2 by (A>Q-
<{B>82/2.
Using the representation of the delta function
1 c+too
5(x):——.—S e“du
271 Je-ie

we get

2= [0R=2 298~ S x)0Q— ST My 31,7054 X

= %m exp[-g—R—}—%Q—i—wL—l—m In f(u, v, w)]dudvdw )
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0={ - [ exp[ 3 BKC—r)rr, +h D xJaR—S 20 L—E %)
{HQ—EE My 21,571,504 X

_ @mNre ‘ r s 1 .
_'4(2—7”)3_8.“ egp[§E+7Q+tL—7h; det <7’.+SM—K)_

(t—nh)?
: 2 ,,rf(r+sM—K >]

+ drdsdt ' _ ‘ _ (10)
<B>Q=S ---SIZ5<x,2—l)-5(R—Z}xrz)B(L—Exr)é(Q—Z 3 M5 20,550 5)d X

:—4(2171)3-“5 exp [% R—};%Qb—i—wl—l—m-ln‘g(u, v', w)]a’udvdw (11)

where
1 w2 L
flu, v, w)y= exp[—fln det (u+vM)+—~—2( u-l—vM ) ]
g(u, v, w):Su-Sexp[——%—Zj)xij Y ]Z,)ZVI 1,,,—w;931,j]
TLda, 3xt,—1). . ' (13)

The function g(u, v, w) is independent of 1. The lines of integration with respect
to u, v, w, r, s, t are parallel to the imaginary axis. (1/(r+sM—K)),,, represents
the (r, r’) element of the inverse of the matrix »+sM—K. It is necessary that
the eigenvalues of the matrix r-+sM—K and the matrix u-+vM have positive
real parts.

The inverse of £ will be computed by the following expression.

(14)
C being of a finite order in N. '
Using the expressions (10), (11) and (14) we get

z="ar(" arL|” doer0-<B>2/2

C

= ) yexp [NW ldudvdwdrdsdtdu'dv dw'dRdLdQ

_utr—w' R v+s—v' Q AL
We=—"—§t+t—3 yTwti-wiy

. .
+—n—ln gy, v, w)

(t—h)*

L ~—Indet (r+sM—K)+ oN

2N

> <r+ SM“K)rr’,

—%mﬂu', v, w'). ' : (15)
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With »n fixed, we make N tend to 1nﬁn1ty and have, by the use of the
method of the steepest descent,

hm —]lvln Z=Min MaX’W (16)
P A

since u, v, w, r, s, t are complex variables, while u’, v’, w’, R, L, Q are real
variables.

Eliminating u’/, v/, w’ we get

N 1 (t— h)2 T
W=—r In det (r-+sM— K )+ z(——)

r+sM—K
1 1
—l——n—ln g(u, v, w)—;lnf(u-H', v—l—s, w—1t) a7
F=MinW

78,0

since we get u+r=u’, v+s=v’ and w+t=w’ from the extremum conditions
with respect to R, Q, L

Hereafter we restrict ourselves to treat the two-dimensional square lattice
with nearest neighbor interaction.

We divide the lattice into blocks each of which contains 2X2 lattice points
as shown in Fig. 1. M is written as

4
0
= 1
=K 1 (18)

W N =

O HO
= O O =N
—_ O O =W

0

where K is the exchange interaction divided by ksT. K can be omitted in (18)
if @ and corresponding integration variables s, v and v’ are suitably redefined.

3|14

I

Fig. 1. The lattice divided into blocks each
of which contains 2x 2 lattice points.

We get

fu+r, v+s, wtt)=exp [-—%ln (u+r)2{(u+r2—4(v+s)%

1 (w+t)? 4 ] (19)

2 utr+20w+s)
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-2u

8

g(u, v, w)= (e**+2+44 cosh 2w+e* cosh 4w) (20)
1 1

1 _
Nz( r+sM—K )rr’ T or4+2s—4, (1)

where A=4K=4]/kpT. ] is the exchange interaction.
Substituting egs. (19), (20) and (21) into (17), and eliminating ¢, we get

.1 Ky (wER?
| W= N Indet (r+sM—K) U+ 2)
——g—+1n (v, w)+%ln o(u+r, v+s) (22)

where

) 1 : 1/4
I, w)= [§<e4v+2+4 cosh 2w-+e~* cosh 4w)]

o(u+r, v+s)=[(u+7r)?{(u+r>—4v+s)} V1.
" Using replacements
7’:2077 ) 3:205 5 uZZOM N UZZO’E N hzloﬁ

we rewrite (22) and get

ol 1 (wHAh)?R A _
We— A0 =5 st g TR ¢l w)
—i—%ln o(a+7, v+5) (23)
F=Min W
. e
where
vy < =_1_ . 1 \‘ s _5
A7, s)_N In det(r—f—sM 20).

We regard F as a function of 2, and 4. Computation of A(7, §) is given in
Appendix A.

The specific heat, magnetization and susceptibility are given respectively by

Cu _p@F  M_L10F 4y 1 &F
kB_ 082(2), m_Zo aﬁ ’ mz_zo 352

- (25)

where m is the magnetic moment of a spin. Computation of 9°F/02%, 0F/oh and
0*F/0h* is given in Appendix B.
§4. Resﬁlts.

We have computed the partition function, the specific heat, magnetization
and susceptibility for the two-dimensional square lattice with nearest neighbor
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interaction and no external field. ,

In Fig. 2, logarithm of the partition function per spin is shown. Curves by
some other methods are also illustrated. It is clear that our result is closer to
the exact solution than that by N. Nagai et al. Computing F in (24), we get
two branches corresponding to two solutions of w: w=0 and w=0, which are
given from the condition W /0w=0. The method of the steepest descent forces
us to employ the maximum values of F as the true F. We regard the cross
point of the branches'as Curie point. In case of method by N. Nagai et al. the
branch without a fold is consistent with the spherical approximation. While the
curve by spherical approximation deviates from the exact one with increasing
A, OUr curve converges to the exact one with increasing .

1.0 1.5 20 .
. >\o ' ‘
Fig. 2. F=limN'InZ vs. 20=4]/kpT.
——————— ‘ Onsager’s exac method
————— The method by N. Nagai et al.
. Present method

While the exact Curie po'irit' is 0.567 in unit of 4J/kgp, that by N. Nagai et
al. is 0.618 and ours is 0.604. The ratioes of respective Curie points to the exact
one are 1.09 and 107. o

Réspective specific heat curves are shown in Fig: 3. It is clear that our
result is closer to the exact one than that by N. Nagai et al. is.

~ Magnetization and susceptibility are shown in Fig. 4 and 5.

We have investigated the influence of anisotropy on Curie point with the

use of the method by N. Nagai et al.
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Fig. 3. Specific heat vs. temperature
Onsager’s exact method
Spherical approximation

The method by N. Nagai et al.
Present method
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Fig. 4. Mognetizat‘ionbvs. temperature.
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Fig. 5. Susceptibility vs. temperature
given by present method.
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For the three-dimensional lattice with nearest neighbor interaction and no
external field, we assume the lattice to have the interaction J,.in the x—y plane
and the interaction J; between the two nearby planes. The behavior of Curie
point against /f;/J, is shown in Fig. 6. Here 2, is (4/o-+2/:)/ksT., where T, is
Curie point. The three-dimensional lattice can be regarded as the two-dimen-
sional one in case of J;/Jy=0. .Curie point in the isotropic limit (J,/J,=1) is
0.734 in unit of 6J/kp5, which is a little lower than the value 0.752% obtained
from the high temperature susceptibility series.

b
1.0 : :
Josf 1
S
a 1 3 1 1
0 0.60 065 0.0 0.75

1/

Fig. 6. The influence of anisotropy on Curie point.
a: 0.567 (Onsager’s Exact Method)
b: 0.752 (High temperature susceptibility series)

§ 5. Discussion.

Our method, which inherits the merits of the spherical approximation, may
open a wider scope of applicability to a system with or without an external
field when the size of a sublattice is increased, although analysis may become
more exacting. :

Appendix A. Computation of A(7, 3)

Since the interaction matrix K(rér’) is real and symmetric, it is diagonalized
by a unitary matrix

Uru::/l—N_ exp [Zi—i:r-u] , Nt=NVe, . (A1)

Here d is the dimension of the lattice, and r and u are d-dimensional vectors
which indicate actual and reciprocal lattice points respectively. The eigenvalues
of K(r—r’) are given by '

2= 2K exp [ff—:x-‘u] (A2)
where the summation is taken all over the lattice points.

Let us divide the lattice into s sublattices or blocks each of which contains
n=N/m lattice points, and put r=j+n*1 (n*=n'%). Then the reciprocal lattice
is divided into 7 blocks each of which contains m=N/n lattice points, so u=
p+m*q (m*=m'?). Here the components of the vectors.j and q take integers
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from 0 to n*—1, and those of the vectors | and p take integers from 0 to m*—1.

Now det (F+5M—K/A,) is equal to det (U '(#+5M—K/2,)U). Since M is
the interaction matrix in a block, it is diagonalized by a small (nXn) unitary
matrix

1 27 . '
L= g—exp [——Lnf i+ q] : (A3)
The eigenvalues are
1 12
0q= ;?—z? K(y) exp[ Zn: y-q] (A4)

where the summation is ‘taken all over the lattice points in a block. Then M
is transformed as :

U MU ) =040 32 <01 e(P) 10" por<a” [V "> (A5)
where [ : ‘
: . 1 ‘. . ql__q p .
{qle(@lq >=;Z}‘ eXp[zZW( T NE -J]. (A6)

Hereafter we consider a two-dimensional square lattice with nearest neighbor
interaction. We divide the actual lattice into m=N/4 blocks.. Each block has
2X2 lattice points. Then there are four blocks in the reciprocal lattice space,
each of which is assigned by a vector such as

q=0,0, O, &0, @D. (A7)

From (A5), (U *MU )y is zero if p=xp’. Namely it is diagonal in a reciprocal
lattice block as shown in Fig. 7. The matrix U '(F+3M—K/A,)U is also of the
type of Fig. 7. By reconstructing the rows and columns suitably, the deter-
minant of such a matrix is calculated to be

a; bl albl"'
Qs b2 ...... cldl“' O ] eeenn
. ] e a; bi ......
C dy Qsby -+ Codyoreer
Cz_ dz' ...... — 0 Czdz"‘ ...... :H . (AS)

......

..............................

(0,0) (0.1) (1.0)(1,1)

(0.0)
(0.1)
(1.0)
(1.1)

Fig. 7. The matrix diagonalized in each block.
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After some calculation we get

IF+§M—2E

0

Zl;IGp (A9)
where

f—(%—g)@os 0,4-cos 0,) —iSsin @, —iSsinf, O

1§ sin 6, F—(%—§>(cos 6,—cos8,) 0 —i5sinb,
G,=

) (A10)
1§sinf, 0 7’+(§—~§)(cos f@,—cos @,) —i5sin b,

0 i5sin@, i5sin b, F—l—(%—§)(cosz91—i—cos 6,)

T T
01377}—7151, 62:\/—%172’
py and p, being the components of the vector p.

From (A9) and (Al10), we get

A, 5)= %m det(7+§M—§—{
0

1
-—Nln];[ Gp

1 vm-1 vm-1

=% p%o p;oln Gp,p,(0,, 05, 7, 5). (All)

Taking N to infinity, we have

1 (s o
A, s)_Wgogoln G(0,, 0, 7, )d6:d0, .

(A12)
If 7 and § are given, integration is carried out numerically.

Appendix B. Computation of 32F/d22, 0F/oh and 0*F/0h*

To compute 02F (o, 1)/02%, 0F (2o, h)/0h and 82F(,, h)/0h® systematically we
replace 7, 3, @, , w, Ay, A BY X1, Xa,

-, X5 04, &y respectively. Since F(ai, as)
is the extremum of W(x,, x,, -

, X5, @, &), it is given by solving the equations

ow ow ow
e =0, EC_z__o’ ...... , B —0.
Therefore,
OF W dxi | oW _ oW
b, > ox: da, " oa, ~ da, (B
oF FW  axi , OW . oW
da,da,, =3 dxda, oa, ' oada, =T+ da,0a, (B2)

(u=1, 2; v=1, 2).
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To compute Y in (B2) we consider the following six equations

0 /6W)_ o'W ox; ow
da, \0x,/ T 0x0x; Oa, da, 0%,
LA oW 0x; ow
aa,,\ax)_; 0x:0%x; Oa, T 0ct, 0%, =0
............................................. (B3)
0 /8W>_ o'W ox; o'W —0
0, \0x5/ T 0x;0x5 oOa, d0a,0xs
82W axi -
z«c) 0x0a, Oa, Y=0
If we put
oW o'W 0x4
Wij——Wji—m, Wa,,i—“Wiay*‘m: Xi= Ja, (B4)
we can write (B3) in a matrix form:
Wn Wi “'Wls 0 Xl “‘Wla,
W21 W "'W25 0 Xz ‘*Wza,,
B = L (B5)
Wi Wee "'Wss 0| Xs —Waa,,
WapiWaye = Wa,s =1 LY ) L0
From (B5), we get
Wu Wis "‘W15 W:a,
Wll le st Wlﬁ
Wa Wa WZaV
) KRR Wor W (B6)
We Wes oWy W || | 000000
Wit Wiy - Wi
Wa/lIWaluz' Waps 0

Putting pg=y=1 in (B2), we get a formula for Cy; putting pg=y=2 in (B2)
we get X; and putting p¢=2 in (Bl1) we get M.

References

[1] T.H. Berlin and M. Kac, Phys. Rev. 86 (1952) 821. ‘

[2] N. Nagai, Y. Ohkawa, M. Shingu, S. Yagi and G. Iwata, Natural Science Report
of the Ochanomizu Univ. 28 (1977) 59.

[3] C. Domb, Adv. in Phys. vol. 9, no. 33 (1960) 149.



