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Introduction.

In 1962, L. Gross introduced the notion “ measurable norms” ([5]), which has
played an important part in the successive researches. R. Dudly, J. Feldman and
L. LeCam presented in [4] much generalization of this idea. They did not treat
only Gaussian cylindrical measures. This is the point improved greatly as com-
pared with the preceding one. Through this paper we shall call the notion
introduced by L. Gross “ p-measurable by projections” and the later one simply
“ y-measurable”, according to [4], where g is a cylindrical measure. If u is
the canonical Gaussian cylindrical measure on a real separable Hilbert space,
then the above two notions exactly coincide with each other. However this
fact is not trivial. Most techniques in the proof depend on the rotation-invari-
ance property rather than on the characterization of the canonical Gaussian
cylindrical measure. We notice this fact and consider the two measurabilities
in the case of rotation-invariant cylindrical measures. It will answer partially
the following question offered by A. Badrikian and S. Chevet ([2]). “ Does the
measurability always imply the measurability in- the sense of Gross?”

§1. Measurable semi-norms.

First of all, we shall present two definitions of measurability which are
interpreted in the introduction. We consider only the case of Hilbert spaces.
L. Gross proved in [6] that a measurable norm is continuous. But here we
assume the continuity of semi-norms.

Let H be a real separable Hilbert space and p(-) be a continuous semi-norm
defined on H. Let (a,, -+, a,) be a finite system of elements of H. Then by
a we denote the operator from H into R, mapping x onto the vector ((x, a,),
=+, (x, a,)), where (-, -) is an inner product defined on H. By B(R,) we denote
the Borel field on R,. A set ZCH 1is said to be a cylindrical set if there are
a, -, a,€H and BE®B(R,) such that Z=a '(B). A map p from the algebra
of all cylindrical sets into [0, 1] is called a cylindrical measure if it satisfies the
following two conditions :

(i) wH)=1.

(ii) Restrict g to the c-algebra of cylindrical sets which are generated by a
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fixed finite system of functionals. Then each such restriction is ¢-additive.
Denote by pe,..q, the restriction by the system (ay, -+, an).

For any vector space X let FD(X) be the set of all finite-dimensional sub-
spaces of X. Let P be an orthogonal projection of H with dim P(H)=n and
C=P-YD) for some D=B(P(H)). Define v by

F(PUD)=Cr) | exp{—(x, )/ dx,

where dx denotes the Lebesgue measure on P(H). Then 7 is a cylindrical
measure on H and is said the canonical Gaussian cylindrical measure. Through
the paper we denote by 7 the canonical Gaussian cylindrical measure on H.

DEFINITION. For any cylindrical measure ¢ on H, a continuous semi-norm
p(+) will be called to be p-measurable by projections if for any ¢>0 there exists
GeFD(H) such that

(N AF)+FH)z1—e

for every Fe FD(H) satisfying F|1 G, where N.={x=H ; p(x)<e} and F* is the
orthogonal complementary set of F.

REMARK. This idea was introduced by L. Gross. He called it “ measurable”
but we call it “ measurable by projections” in distinction from the next defini-
tion.

DEFINITION. For any cylindrical measure g on H, a continuous semi-norm
p(+) will be called to be p-measurable if for any e>0 there exists Ge FD(H)
such that

UPe(N)+F)=z1l—e¢

for every Fe FD(H) satisfying F1 G, where Py is the orthogonal projection of
H onto F.

The following result is trivial.

PrROPOSITION 1.1. If p(-) is p-measurable by projections, then it is p-meas- .

urable.

Let p(-) be a continuous semi-norm on H. Consider the quotient space
H/p~%0), then p(:) induces a norm on this space, denote by p*(-). Let us take
this norm p*(-) and complete H/p~*(0) with respect to p*(-). We call it the
Banach space induced by H and p(-).

Now we present the theorems, due to R. Dudley, J. Feldman and L. LeCam

([4D.

THEOREM 1.2. Let p(-) be a continuous semi-norm on H. The following
statements are equivalent.

L

4

X
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(i) p(-) is p-measurable.

(i) Let E be the Banach space induced by H and p(-), and i be the canonical
map of H into E, then i(u) can be extended to a Radon measure on E (i.e.,
(p) is o-additive).

THEOREM 1.3. Let p(:) be a continuous semi-norm on H, then the next two
statements are equivalent.

(i) p(-) is y-measurable.

(ii) p(-) is y-measurable by projections.

§ 2. Gross’s inequalities and rotation-invariant cylindrical measures.

A cylindrical measure p on H is called to be rotation-invariant if whenever
Z is a cylindrical set and U an isometric operator from H onto H, p(Z)=u(U(Z)).
Denote by d, the Dirac’s measure having the total mass 1 at the origin. Clearly,
the canonical Gaussian cylindrical measure and ¢, are rotation-invariant.

We shall start with the following lemma (cf. [2] and [8]).

LEMMA 2.1. Suppose that H s infinite dimensional. Let p be a rotation-
nvariant cylindrical measure on H. Then there exists a Borel probability measure -
o, on [0, c0) such that

*) e =] _1a( 5 )do (D 0,(10D(A)

= ([ oexo(— 55 V1) ST o+ 0, 10D A)

for every ASB(R,) and for every finite system (ey, -, e,) " H such that (e, e;)
:5“‘.

REMARK. In the above lemma, we denote by 7, the canonical Gaussian
measure on R,, by ||| the usual norm on R, and by m, the Lebesgue measure
on R,.

Now we are in a position to prove the several inequalities, which proved by
L. Gross in the case of 7.

LEMMA 2.2. Under the hypothesis of Lemma 2.1, there exists a non-negative
Sfunction @(r) defined on [0, co) such that

opeen( D=\ DEIMAANS)dr+0,({0)3A),

where S,={x; x€R,, |x|<r}.

RrooF. By virtue of Lemma 2.1, we have
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pereen = (], x0(— 5z 1517y oL ) dmalad o (0D A)

Define ¥(r) and ¢(t, 7) by

1 1,
)=\, c7me e X0 — g7 )don®)  and

1 1,
o(t, 7’):-——~(\/2_n__ e exp(—Wr ) .

It is easy to see that

S“_ﬁﬁo_(at_r)dr:@(t, a) for every a<[0. o)

Then

U(a)=\ o(t, a)do ()

(=288 ar)ao

a

I

gt>0
St>0

I

S:<gz>o—“a_@%;ﬁday(t)>d7’ .

Define @(r) by
om=] 28D 4q,0),

>0 or
that is,

0=\~ olt, Nda (1)
:SDOWexp(—ZLﬁrZ)daﬂ(w :
Since W(a)=|_ @()dr, we bave
teg-an D=\ UL xDdma()+ 0 ,((0D)3(A)
={ (170010121, dr )dima()+ 0,103 A)
:’ﬁ(&@mmxll,@(r)dmn(x))drw#({0}>50<A>
=" maANSIdr+0,({0)5(4).

LEMMA 2.3. Let T be a linear symmetric invertible operator of R, onto R,
and C be a closed convex centrally symmetric set in R,. If |T <1 then
ﬂel---en(T(C))_>—_#el~--en(c>-
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Proor. Clearly, we can neglect the second part of the representation of
Hey-e, in the previous lemma. In [5], L. Gross proved that m,(T(C)NS)=
mn(CNS,) for all r>0. Therefore, by Lemma 2.2, we obtain easily our con-
sequence in the lemma.

Successive lemmas are deduced from Lemma 2.3, therefore their proofs have
the same processes as the case of the canonical Gaussian cylindrical measure.

LEMMA 2.4. Let E be a n-dimensional Hilbert space and o be a Borel prob-

ability measure on [0, 00). Let p be a rotation-invariant probability measure on
E defined as follows:

p)={ ([ exo(—r 1718) ogm s )emCo)+ (1013 4)

Sfor every A€B(E), where ||-|g is the norm on E and m denotes the Lebesgue
measure on E. Let E, be a linear subspace of E and C be a closed convex
centrally symmetric subset of E, then

UO=uCNE,+E}).

PrOOF. We can assume that E,S<E. Let P be the orthogonal projection of
E onto E,, I be the identity operator of E. Define P*=]—P and T,=mP*+ P
for every integer m>1, then T, is a linear symmetric invertible operator of E.
Clearly, we have |T7|<1. If {e;; 1=i=n} is an orthonormal basis of E, then

13
the mapping x= Z}lxieiH(xi) defines an isomorphism from E onto R,. There-
=

fore, Lemma 2.3 says. that

(T (C) = p(C)
for every integer m>1.
By Fatou’s lemma we have

pllim sup T»(C) = u(C) .

And P C)=PY(CNE,)=CNE,+FEi. Hence, in order to complete the proof, we
only have to prove that '

P-YC)Dlim sup T »(C), t.e., E\P YC)Clim inf T ,(E\C).

For any x€E\P~YC), there exists ¢>0 such that S.+PxCFE\C, where S.=
{x€E; ||x||<e}. Choose an integer m such that m>| P*x|/e. Then

T;,}x:Px—i——;:L— PtxePx+S.CE\C.
Hence we have xelim inf T ,(E\C). Thus

E\P~Y(C)Clim inf T ,(E\C).



52 M. MaEDA NSR. O.U., Vol. 31

REMARK. Given any Borel probability measure ¢ on [0, c0), there exists a
rotation-invariant cylindrical measure g on a Hilbert space H satisfying the
relation (*) in Lemma 2.1. In this case, we call g the rotation-invariant cylin-
drical measure induced by o¢. In particular, if H is infinite dimensional, the
above correspondence between ¢ and p is a bijection.

LEMMA 2.5. Let H,, H, be real separable Hilbert spaces, ¢ be a Borel prob-
ability measure on [0, o) and p, p. be the rotation-invariant cylindrical measures
induced by o on H, and on H, respectively. Let U be a continuous linear oper-
ator of H, into H,, Cy be a closed convex centrally symmetric set of some finite
dimensional subspace of H, and C be a cylindrical set with the base C, (if H, is
finite dimensional, then C denotes a closed convex centrally symmetric set of Hy).

If |UYNS1, then p(U~C)= pl(C).

ProoF. (1) Suppose that H, is a finite dimensional Hilbert space and U
is a bijection. Then H; has the same dimension as H, has. We can decompose
U as follows:

U=I-U,,

where [ is a linear isometric operator from H, onto H, and U, is a linear
symmetric invertible operator of H; such that [U|=|U,||l. Since |U,|Z1, we
have p, (U C)=p(UT T ONM= (I HC)=I{p1)(C)=p,(C). Hence the proof is
complete in this case.

(II) Consider next the case that H, is same as (1) and U is a general
form. Define (U~'(0))*=K, and U(H,)=K,. Let Pg, be an orthogonal projec-
tion of H, onto K, and V be a linear bijection from K, onto K, It is easy to
see that VePg (x)=U(x) for all x€H, and that | V|=1. Let ug, be the rota-
tion-invariant cylindrical measure on the Hilbert space K; induced by ¢, for
1=1, 2. We have

(U CON=pu( PRV HCNK2))
=Pg,(u)(VHCNK)
=pr,(VHCNK).

Since CN\K, is a closed convex centrally symmetric subset of K,, we can apply
the consequence of (I). Then

tr (VHCNK))Zpg (CNKS) .
Therefore,

(U ONZ pr (CNK)=p(CNEK+K3z)

Hence Lemma 2.4 says the conclusion.

(M) Now consider the case that H, is infinite dimensional. C is a cylin-
drical set, then there exists a finite dimensional subspace N, of H, such that
C,C N, and P#,(C,)=C, where Py, is the orthogonal projection of H, onto N,.

It is clear that ||Py,°U||=1 and that .
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pa(UHC)= (U PR(Co)))

=(Py,o U)X(Co)) -
Apply (II), then we have

Py, U HCo))Z pn (Co) 5

where py, is the rotation-invariant cylindrical measure on N, induced by o.
Since px,(Co)=p(C), we have p,(U~1(C))= po(0).

§3. Random functions.

Here we present another notion. We continue to assume that H is a real
separable Hilbert space and g is a cylindrical measure on H. Then there exists
a pair of a probability measure space and a linear random function associated
with p (see, e.g., [2] or [7]), write (2, P) and 4. A is a mapping from H’
into L%2, P; R), where H’ is a topological dual space of H, R is the extended
real number field and L%, P; R) is the space of all equivalence classes of
measurable functions defined on £ into R with respect to P. Define

A4 )zglégl A(x")(H]

for any subset ACH’, then clearly, we have
AHELNR2, P; R).

Let S be an arbitrary set. We denote by S° the polar of S and by card. S
the cardinal number of S.

LEMMA 3.1. For every real number t=0,

P(AAét)zigf{p(tSO); SCA, and card. S<coo}.

PROOF. Let S be a finite subset of A. Since A is the associated random
function with g, we have u(tS)=P(As=t) for all t=0. Hence

P(/IAét)zigf{,a(tS"); SCA, and card. S<+ oo},

PROPOSITION 3.2. Let p be a rotation-invariant cylindrical measure on H,
(2, P) and A be a probability measure space and a random function associated
with .

(1) Let u' be a continuous linear operator of H' into H’ such that |u'|£1.
For any t=0 and for any subset ACH’, we have P(A,S)SEP(Ay 5 X1).

(L) Let Q,, Q, be two orthogonal projections of H’ such that Q.,(H')C
Q«H’). For any ez0and for any subset CCH’, we have P(Aq,cy>e)= P(Aq, ;> ¢).

Proor. (1) By virtue of Lemma 3.1, we can (and do) suppose that A is
finite. Let u be the adjoint of u’. Lemma 2.5 says that pu(tA")=pu(u"'(tA%).
Therefore,
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P, S D=t A%)
< p(u= (£ A7)
=t (A))
= Pl ZD).

(1) Since QH")CQy(H’), we have Q;=0Q;°Q,. In order to apply (1), we
take uw'=Q,;, A=Q,(C) and t=¢. Therefore,

P(Agyr=e)= P(Ag,oqyer=e)=P(dg,r=¢).

Hence P(AQ1(0)>€)§P(AQ2(0)>€).

LEMMA 3.3. Let p be a rotation-invariant cylindrical measure on H, (2, P)
and A be a probability measure space and a random function associated with p.
Let A be a directed set, (mo)aca be a dirvected family of orthogonal projections
of H' such that (wo(x’))aca converges to x' for each x’€H’, and C be a closed
convex cem‘mlly symmetric subset of H'. Then

P(Acéf):llm P(Axa(c)ét)
for any t>0.

ProoF. It follows from Proposition 3.2 that

P(A.<t)<lim inf P(A; =t
Hence it is sufficient to show that

lim sup P(Az o SHSP(A=1).

Now we recall the fact that every rotation-invariant cylindrical measure is of
type 0, i.e., the linear random function A is continuous from H’ into L° equipped
with the topology of convergence in probability. Thus (A(7w(x’)))acs converges
to A(x’) in L° for every x’H’. Let S be an arbitrary finite subset of C. It
is also obvious that (4., cs))aes converges to Ag in L°. Then

lim sup P(A, =S P(As=1).

Therefore, since P(4;, o,St)EP(Adz,s»=t), we have
lim sup P(4; > =t)SP(As=t).

Hence, by Lemma 3.1,
lim sup P4z orSt)SP(Adc=t).

LEMMA 34. Let p be a rotation-invariant cylindrical measure on H, (2, P)
and A be a probability measure space and a random function associated with p.
Then the following statements are equivalent.
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(1) Given any >0, there exists K,€ FD(H’) such that P(A. «c;>¢)<e for
all Le FD(H’) satisfying L1 K., where mnp is the orthogonal projection of H’
onto L.

(ii) Given any >0, there exists K. FD(H’) such that P(A,,Ksl<c>>s)<s.

ProoF. It is clear that xKéL(H’)'_‘Jn-L(H’). Then it follows from Proposition
3.2 that -
P(AEK::-(C)>6)§P(A7TL(C)>8) .

Therefore we only have to show that (i) implies (ii). Let {M?},.-.... be a
chain of increasing finite dimensional subspaces of H’ such that \U M? is dense

in A’ and \YM?DK,.. By Lemma 3.3, we have
n

P(/InKL(c')—S)——llm P(/InM mKum— €).

Observe that
Ty gl =T yPnK L -
By (i), we have
P(/lnMgnKElcc>>8)<€ .
This implies that
‘ P(/IrMnnKlw) e)>1—e.
Therefore, we have
P(AIK¢<C>__5)>1——5
and so, |
‘ P(AnK;L<c>>6)§6 .

REMARK. Note that the following two conditions are equivalent.

(i) Given any e>0, there exists a family {f,}CL%R2, P; R) such that
P(fo>e)=e for all a.

(ii) Given any &>0, there exists a famlly { fa}C:L"(.Q P; R) such that
P(fo>e)<e for all a.

Let C be a closed convex centrally symmetric bounded subset of H’ and C°
be the polar of C. Define a semi-norm pgo on H as follows:

peo(x)=inf{2]2A=0, x=AC"

for all xeH. Clearly pgo(x) is continuous.

PROPOSITION 3.5. Let p be a cylindrical measure (not only rotation-invariant)
on H and C be a closed convex centrally symmetric bounded subset of H'. Then
the following statements ave equivalent.

(i) peo is p-measurable by projections.

(ii) Given any >0, there exists K. FD(H’) such that P(/lrLcc)>e)<a for
all Le FD(H') satisfying L1 K..

PrOOF. It is easy to see that
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P(Az por Se)=p(zz'(eC?)

=p(eC'NL+L"Y).
Obviously, we have

{xeH; pelx)<e}CTeC'C{xcH; peox)=e}.

Thus the desired conclusion follows immediately.

§4. Two measurabilities.

In this section, we prove the main theorems which show the equivalence of
two measurabilities of continuous semi-norms with respect to rotation-invariant
cylindrical measures. At the beginning, we introduce the following two notions.
Let H be a real separable Hilbert space as ever, ¢ be a cylindrical measure on
H, (2, P) and A be a probability measure space and a random function associ-
ated with ¢. Let C be a subset of H’. It is called a g-continuity set with
respect to A if there exists a version of /4, say A, such that A(x, ) (x€H’, v Q)
is continuous relative to x on C for almost all wef. Also, it is called a
p-bounded set with respect to A if there exists g(w)eL%R2, P; R) such that
| flx, w)| = g(w) for almost all we R, for all f= A(x) and for all x=C.

Now, let us start with the next lemma.

LEMMA 4.1. Let p be a rotation-invariant cylindrical measure on H and
(2, P) and A be a probability measure space and a random function associated
with p. Let C be a compact convex centrally symmetric subset of H’'.

If C is a p-continuity set, then pco is pu-measurable by projections.

REMARK. Recall that pgo is a continuous semi-norm.

PrROOF. Let D be a countable dense subset of C. The assumption that C is
a p-continuity set with respect to 4 implies the existence of the version A(x, w)
of A which is continuous on C for almost all w=2. It follows from the com-

pactness of C that
124V, s [ Ax—y, @) Se})=1

for all e>0. This induces the following :
(**) Given any >0, there exists a >0 such that
P({w; sup [A(x—y, w)|>e})<e.
Y

(z,y)EDXD
lz=yil<d

D is relatively compact in H’. Then, we have a subspace Fe FD(H’) such
that sup( inf |x—yll)<d. Let = be an orthogonal projection onto F and
xeD yEFND

7t=I]—x, where I is an identity operator. It follows from Proposition 3.2 that

Pw; sup [Hz'(x—y), w)|>e})
i Vnizs?
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=P({w; sup |Ax—y, ®)|>e}).
YIEDxD
-y lI<d

For any xD, we have ye FN\D satisfying ||x—y|<é and n*y=0. Therefore
we obtain
P(Apio>e)=P(A 1p>¢)
=P(w; sup [Ax—y, 0)|>e).

(x,y)EDX
llxzy|l<5

Then (**) implies that for any ¢>0 there exists a finite rank orthogonal pro-
jection m such that

P(A 1:>e)<e.

Using Lemma 3.4 and Proposition 3.5, we can complete the proof.

The following lemma has been proved by A. Badrikian more generally ([1])-
But, here we offer only the part which is necessary for successive arguments.

LEMMA 4.2. Let p be a cylindrical measure on H, (2, P) and A be the
associated paiv of a probability measure space and a random function. Let p(-)
be a continuous semi-norm on H, E be the Banach space induced by H and p(-),
and i be the canonical map of H into E. Assume that i(y) can be extended to a
Radon measure on E. Set A={x€H; p(x)=1}°, then A is a p-continuity set
with respect to .

_ PrOOF. Let i(p)=v, and let % be the transpose of i. Then /% is the

associated random function of v. By the assumption, v can be extended to a
Radon measure on E. The theorem of L. Schwartz ([7]) says that there exists
a P-Lusin measurable E-valued function ¢ defined on £ such that the equiva-
lence class of <p(-), x’> is equivalent to A-'*i(x’) for every x’'€FE’, where we
denote by <-, > the canonical bilinear functional defined on EX E’. Since ‘i is
injective, we can consider E’ as the linear subspace of H’ and also A as the
unit ball of E’. Therefore, this implies the conclusion.

Now we are in a position to prove the main theorem.

THEOREM 4.3. Let H be a real separable infinite dimensional Hilbert space
and p be a rotation-invariant cylindrical measure on H with ¢,({0})=0, where
o, is the associated Borel probability measure on [0, o) (cf. Lemma 2.1). Let
(2, P) and A be the pair of a probability measure space and a random function
associated with p, and p(-) be a continuous semi-norm on H. Then the following
statements are equivalent.

(i) p(-) s p-measurable.

(ii) Let E be the Banach space induced by H and p(-), and i be the canoni-
cal map of H into E. Then i(y) can be extended to a Randon measure on E.

(iii) The set C={xcH; p(x)=Z1}° is a compact and p-continuity set.

(iv) p(-) is p-measurable by projections.
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PROOF. Theorem 1.2 says the equivalence of (i) and (ii). Also Proposition
1.1 says that (iv) implies (i). Then it is sufficient to prove that (ii)=>(iil)=>(iv).
It is easy to see that the set {x&H; p(x)=<1}° is convex centrally symmetric
and pge=p. Therefore, by Lemma 4.1 we have (iii)=>(iv). Next we shall show
that (ii) implies (iii). By Lemma 4.2 we can say that C is a pg-continuity set.
Using the function ¢ which appeared in the proof of Lemma 4.2, we can also
say that C is a p-bounded set. A. Badrikian and S. Chevet proved that a
bounded and g-bounded set is 7-bounded ([2]). Furthermore, it is well known

that a bounded and y-bounded set is relatively compact (see, e. g., [3]). Hence
C is compact.

In [2], A. Badrikian and S. Chevet investigated about the relation between
the canonical Gaussian cylindrical measure 7 and a rotation-invariant cylindrical
measure g with ¢,({0})=0. They have the following:

(***) Let X be alocally convex Hausdorff space over R, and u be a weakly
continuous linear operator from H into X. Then u(y) can be extended to a
Radon measure on X if and only if u(y) is extensible to a Radon measure on X.

It follows from (***) that- the notion “7y-continuity set” is equivalent to
“ p-continuity set ” for any compact convex centrally symmetric sets. Therefore

we have the next corollary, which is an immediate consequence of the above
results.

COROLLARY 4.4. Let p(-) be a continuous semi-norm on H and p be a
rotation-invariant cylindrical measure on H with o¢,({0})=0. Then, for p(-), the
following all measurabilities are equivalent to one another:

(i) 7-measurable, (ii) y-measurable by projections, (iii) p-measurable, (iv) p-
measurable by projections,

Next, let us consider the case of 0,({0})=#0. First, suppose that ¢,({0})=1.
For any continuous semi-norm p(-), we can say that p(-) is both p-measurable
and p-measurable by projections. Thus we only have to consider the case of
o,({0})=a (0<a<l). By the definitions of both rotation-invariant cylindrical
measures and measurabilities with respect to y, we obtain the next lemma. The
proof is trivial and so it is omitted.

LEMMA 4.5. Let py, p. be two rotation-invariant cylindrical measures on H
and p(-) be a continuous semi-norm on H. Define ps by p(Z)=au(Z)+buZ)
for every cylindrical set Z of H, where a and b are positive real numbers satis-
fyving a+b=1. Then p; is the rotation-invariant cylindrical measure on H.

Furthermore, if p(+) is both py-measurable (resp. p-measurable by projections)
and pomeasurable (vesp. po-measurable by projections), then p(-) is also ps-meas-
urable (resp. ps-measurable by projections).

“0,({0})=a” implies that
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prorenA={_1o(5 oD+ adi ),

where notation is same as in Lemma 2.1. Take p, by

1 A
@ep-en D=7\ 1a(5)dou(®
and p,=0d,. Then we have p=—a)u;+ap,. Therefore we can apply the
above lemma to p. Notice that p, is the foregoing type of rotation-invariant
cylindrical measure, i.e., 0,,({0})=0. Furthermore, if a continuous semi-norm
p(+) is p-measurable, then p(-) is also p;,-measurable. Thus we have

THEOREM 4.6. Let p be a rotation-invariant cylindrical measure on H and
p(+) be a continuous semi-norm. Then the two statements are equivalent.

(1) p(+) is p-measurable.

(ii) p(-) is p-measurable by projections.
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