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Let ©: X—C be an elliptic ruled surface defined over an algebraically closed
field k. We define an invariant ¢ of X by —e=Min{C’?|C’ is a section of x}.
Then a section C, with C:=—e is unique up to linear equivalence, and any
divisor D on X can be written uniquely nC,+z*b where b is a divisor on an
elliptic curve C. According to Hartshorne [17], we denote n*b by bf. A neces-
sary and sufficient condition of ampleness of divisors on X is known in [1],
that is:

a divisor D~nC,+56f on an elliptic ruled surface X with invariant ¢ is ample

& n>0 and degb>ne, if e=0; n>0 and degB>—;—ne, if e=—1.

Our purpose is to give a necessary and sufficient condition for divisors to
be normally generated, where a divisor D is said to be normally generated if
D is ample and I'GD)RI(D)—I'((j+1)D) is surjective, for every j=1. Our
result is as follows.

THEOREM 3.3. Let X be an elliptic ruled surface with e=0, and let D~
nCo+bf be a divisor on X. Then

D is very ample & n=1, deg b=ne+3

& D is novrmally generated.

In this case, I(D)=Ker[SI'(D)— éf(]’D)] 15 generated by its elements of degree
2 and 3. =

It is to be regreted that we cannot obtain a similar result for X with e=—1%*,

Our main tool for the proof is cohomology of invertible sheaves. If X is an
elliptic ruled surface corresponding to a decomposable locally free sheaf & of
rank 2 on C, then we can compute the dimension of cohomology of any inver-
tible sheaf on X. The result of this computation is listed in §2. But in case
X is one corresponding to an indecomposable locally free sheaf, the author
cannot complete the table. It is one of the reasons why we do not discuss
normal generation of ample invertible sheaves on X with e=-1.

* Added in proof; Recently the author obtained a similar result to Theorem 3.3 also
for X with e=—1, which will be discussed in a separate paper.
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We state our main results in §3 and prove them in the following sections.
In §7 we refer to rat10na1 ruled surfaces. We will have the same kind of
result as Theorem 3.3. ‘ ' "

NOTATIONS. Thfoughouf_ this paper, a 'bariety is a projective variety over
an algebraically closed field 2. A surface will mean a non-singular projective
surface over B, and a point will mean a closed point. For a divisor D on a
non-singular projective variety V, we denote by ©y(D) the invertible sheaf
associated to D. By abuse of notation, we sometimes use D itself instead of
Oy(D). We denote by A%D) the dimension over k of the i-th cohomology
HYV, 0y(D)) which is sometimes denoted by HOy(D)) or H*D) briefly.

§1. Previous results.

We begin by stating the definition of a ruled surface. Some of its general
properties are described in [1].

DEFINITION. A ruled surface is a surface X together with a surjective
morphism 7: X—C to a non-singular projective curve C, such that the fibre
X, is isomorphic to P* for every point y&C, and that = admits a section (i.e,
a morphism ¢: C— X such that weo=1;). An elliptic ruled surface is a ruled
surface over an elliptic curve. :

If z: X—C is a ruled surface, then it is possible to write XsP(é’), where
€ is a locally free sheaf of rank 2 on C with the property that H°(&)+0 and
for all invertible sheaves £ on C with deg £<0, we have H(e®QR-L)=0. In
this case we say &€ is normalized. This does not determine & uniquely, but it
does determine an invariant e—=—deg A2%2. Note that this definition of e is
equivalent to the previous one. We denote by e the divisor on C corresponding
to the invertible sheaf A 2&.

ProrosiTION 1.1 ([1, V, 2.6]). Let n: X—C and E be as above. Then there
1s a one-to-one correspondence between sections o: C— X and surjections &— L
—0, where L 1s an invertible sheaf on C, given by L=0*0x(C,). Under this
correspondence, J1=Ker(€— L) is an invertible sheaf on C, and N=7w+(0x(Co)R
Ox(—D)), where D=c(C), and n*N=05(Co)KRO x(—D).

From now on, let z: X—C be an elliptic ruled surface, determined by a
normalized locally free sheaf &.

THEOREM 1.2 ([1, V, 2.12, 2.15]).

(@) If & 1is decomposable, then E=0,PL for some L with deg L£=0.
Therefore e=0. All values of e=0 are possible.

(b) If & is indecomposable, then e=0 or —1, and there is exacz‘ly one such
ruled surface over C for each of two values of e.
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REMARK 1.3.

(a) If ¢ is an indecomposable normalized locally free sheaf of rank 2 of
degree 0, then & is unique up to isomorphism and it is realized as a non-trivial
extension of @ by itself. "

(b) If ¢ is an indecomposable locally free sheaf of rank 2 of degree 1,
then it is normalized. So in case e==1, we may assume that &'is a non-trivial
extension of @¢(x) by O, where x is a point of C.

§2. Cohomology of invertible sheaves on elliptic ruled surfaces.

Let #: X—C be an elliptic ruled surface, corresponding to a normalized &,
and let D~nCy+bf be a divisor on X, where b is a divisor of degree m on C.
If n=0, then m;O 2(D)=S™E)R0O(H), where S*(&) is the n-th symmetric power
of & and HYX, Ox(D)=HC, nxO0x(D)). Immediately we see that for any D
with n=0, H%(D)=0.

First suppose that & is decomposable. If =0, then sn<e>®00(ﬁ>g§ (j:+5),

s0 we can compute the dimension of its cohomology groups. By Serre’s duality,
we can compute h¥D) for D~nC,+bf with n<—2. Before dealing with the
case when n=—1, we note the exact sequences :

(1) 0—>0x(—Co) —> O0x —> O¢, = Oc —>0;
(2) O——>OX(—Xy)—>OX——>0Xy§OP1——>O, where yeC(C;

tensored with ©x(D) respectively, and the resulting cohomology sequences :

1y 0— HY(D—C,) —> HYD) — H*C, ne-+5b)
—> HY(D—C,) —> HY(D) — H¥C, ne+b)
—> H{D—Cy) —> H¥D) —>0;

2 00— H"D—yf) —> H%D) —> H(P?, 0p(n))
—> HY(D—yf) —> H'(D) —> H'(P*, Op(n))
—> HD—yf) —> H D) —> 0.

Now put n=-—1 in (2), then we have HY(—C,+(b—y))=H*(—C,+5f).
After the repetition, we see that for any divisor » on C H%(—C,}+bf)=
HY(—Cy+bf). If degt <—e, then HY(—Co+V f)=H*(—2C,+¥%f) by (1)’. Since
H(—2C,+Y f)=0, H(—C,+bf)=0. By the same way, we have H*(—Cy-+5bf)=0.
Then h'(—C,+bf) is given by Riemann-Roch theorem. Now we have finished
the study in the case when & is decomposable, and get the following table.
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Table I
Dimension of cohomology of D~nCy+5f on X with ¢>0.

n m=deg b RY(D) RY(D) h¥(D)
m=ne+1 m(n+1>—§-n<n+1) 0
for . m(n+N-+2)
0='j<q | MNHED=NNED e 0 ey
n=0 Jetb0 B 0
0=m=Zne
m
2 on+M4-3)
Me+-6~0 —n(n+D+1

easy by Serre’s duality

n=—1 / 0 0 0
/

Dimension of cohomology of D~nC,+5f on X with ¢=0.

n m=deg b h%D) hY(D) h3(D)
m>0 m(n+1) 0
n=0 m=0 N’ N’ 0
m<0 0 —m(n+1)
n=-—1 0 0 0

n=-—2 / easy by Serre’s duality

where N'=§{j|0=7=<n, j:+0b~0}.

Next we deal with the case when & is indecomposable. Using the exact
sequences (1)" and (2) as above, we get the following tables.
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n m=deg b h%(D) hy(D) h3(D)
m>0 m(n—+1) 0
0 0
n=0 | m=0 n=2 ? ? 0
b~0
n=0,1 1 1
m<0 0 —m(n+1)
p=—1 / 0 0 0
n<—2 / easy by Serre’s duality
Table III (e=—1).
n m=degb h°(D) hY(D) h¥(D)
1
m=0 7(n+1)(2m+n) 0
n=0 —n<m<0 ? ? 0
1
m<—n 0 ——2—(n+1)(2m+n)
n=—1 - 0 0 0

easy by Serre’s duality

§3. Main results.

PrROPOSITION 3.1.

D~C,+bf an effective divisor other than C, on X. Then:
(a) when €20 with ¢£0,, D‘ 1 a Ssection if and only if either b~—:2

or degb=e-+1;

(b) when E=0.PO¢, D is a section if and only if degb=2;
(c) when & is indecomposable, D is a section if and only if degv=e+1.

Let X be an elliptic ruled surface corresponding to £ and
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PROFOSITION 3.2. Let X be an elliptic ruled surface with invariant e and
D~C,+5f a divisor on X. Then: o '

(@) D is a base point free section & degb=e+2; or e=2, b~—e¢ or
E=ZOPOc, 5~0; '

(b) D is very ample & degb=e+3 & D is normally generated. In this
case, I(D)=Ker[SI'(D)— é)F(jD)] 1s generated by its elements of degree 2 and
7=

3, where SI'(D) is the symmetric algebra of I'(D) over k.
THEOREM 3.3. Let X be an elliptic ruled surface with e=0 and D~nC,+bf
a divisor on X. Then ’

D is very ample & n=1, degb=ne+3

& D is normally generated.

In this case, I(D)=Ker[SI (D)—»é}ol (yD)] s generated by its elements of
P
degree 2 and 3.

§4. Proof of Proposition 3.1.

We can prove (a) and (b) easily. We demonstrate only (c). First we discuss
the case when e=-—1. Suppose that C,+bf is a section, by Proposition 1.1 we
have the exact sequence

0 —b & b+x —>0.

This extension of %-+x by —b is non-trivial, since & is indecomposable. Hence
Extt(@c(0+x), 0c(—0)=H'(Oc(—2b—x)) must have a non-trivial element, and
hence we have deg b=0. Conversely suppose that deg =0, then we can take
a non-zero element §=Exti(O(b+x), ©:(—))), and we get a non-trivial exten-
sion & of b+x by —b corresponding to §&. By Remark 1.3, & is normalized,
therefore I'(&’) has a non-zero element, which determines an injective map
Oc—&. Then the quotient &/0. is an invertible sheaf by the normality of &’
and &'/0.= N\ =0sx). So we see that &’ is a non-trivial extension of O@(x)
by ©¢c and & =¢&. The surjection e—b+x—0 gives rise to the section D.
Next we discuss the case when e¢=0. Suppose that C,+bf is a section. By
the same way as above, it is seen Exti (b, —b)#=0. So we have degb=1. Con-
versely assume that deg =1, then there exists a non-zero element < H%®b), and

it determines an injective map a: O¢ @—iﬁ. Let B8 be the map 5—2b induced
by a. We can choose an element £,#0 of Hom ,(H°(2b), k)= H*(—2b) such that
Image[ H(B): H(b)— H*(2b)]JCKer &, Let the following exact sequence be the
non-trivial extension of b by —b corresponding to §EExty(b, —b)=H'(—2b).

(3) 0—> —b—>& —>b—>0.

We consider the commutative diagram induced by (3)
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H%0c) H(—2b)
H%a) H(BY
H(b) H (1),

where H%(B)' is the dual of H%B). Since d(1)=&, we have H(f) (&)=r(t)=0.
This implies that 7 cannot be injective, so Ker y=HC, &)#0. On the other
hand, there exists an invertible sheaf £ of degree 0 such that &’®.r~¢&. Hence
for any invertible sheaf ¥ of degree <0 H(&'QM)=H(EQMRL-)=0 by the
normality of & So we see that &’ is also normalized and £€'=¢& by Remark 1.3.
The surjection £€—b—0 gives rise to the section D. '

§5. Proof of Proposition 3.2.

Before starting the proof, we make some remarks on divisors on C and
state a generalized lemma of Castelnuovo.

REMARK 5.1. Let C be an elliptic curve over k, and b a divisor on C. Then:
(a) b is free from base points & degh=2;
(b) 9 is very ample & degb=3 & b is normally generated.

LEMMA 5.2 (Generalized lemma of Castelnuovo [2]). Suppose L is an inver-
" tible sheaf on a variety V such that I'(L) has no base points. Let F be a
coherent sheaf on V such that H{(FR(—iL))=0, Sfor every i=1. Then the map
NFRG—D)L)RQ(L)—T(FRi.L), for every i=1 is surjective.

PROOF OF PROPOSITION 3.2 (a). Assume that D is free from base points,
then D[CO:e—I—B is either trivial or base point free on C,. In the latter case,
we have deg D|¢,=—e-+m=2 by Remark 5.1, where m=degb. In the former
case, that is b~—¢, we restrict D to the section D itself. Since D|p~2b+e~—e¢,
we get either deg(—e¢)=e=2 or —e~0. Conversely if D is a divisor with
deg b=e+2, then Proposition 3.1 shows that D is a section. We have only to
prove that for any point Pe X, there exists a section s of I'(D) such that (s),
does not contain P. Let y=n=(P). Using the exact sequence (2) in §2, we
get the surjection

HX, D) — H(P?, Om(1)) — 0,

because HY(D—yf)=0 in the previous tables. There is a section 5€H(Op(1))
such that (5),y. By the above surjection, there exists a section s/'(D) such
that s|z,=5. Then s is what we want. Next we assume that D~Co+-(—e)f
and e=2. Because D is a section by Proposition 3.1 and D-C,=0, there are no
base points of I'(D) on C,. When P& C,, we choose an effective divisor be | —e|
'so that it does not contain z(P), then Co+bf=|D| does not contain P. It
follows that D has no base points. Finally in case X=P'X(, it is clear that
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C, is free from base points.

PrROOF OF PROPOSITION 3.2 (b). If D is very ample, then by Remark 5.1
degb=¢+3. We have only to show that if degb=e-3, then D is normally
generated. First suppose Xz P*XC, then by Proposition 3.1 there exists a
section C'=C,+b0f with degt’=e¢+1. We consider the exact sequence

4) 0—0x(—C") Ox Oc 0
tensored with D, and resulting cohomology sequence
5) 0—TI(6—Y)f) —1I'(D)—>I'(C, ¥'+2+b) —> 0.

Tensoring I'(D) to (5) and 2D to (4) respectively, we have the commutative
diagram

0 —> ['((6—0))Q(D) —> ['(D)®* —> I'(t +e+)R[(D) —> 0

«) £ r\

0 —> I['(Co+(20—V)f) — I'2D) — ['(C, 2(t’+e+b)) —> 0.

The map 7 is surjective because b +e-+b is ample with normal generation by
Remark 5.1. We can apply Lemma 5.2 to & for (b—b’)f is free from base points
and H¥(D—1(0—0)f)=0, i=1, 2. So we see that « is surjective, and therefore
B is surjective. We also obtain the surjective map

I'(tD)RXI'(D) —> I'(X, (++1)D), for every t=2,

by Lemma 5.2. Since D is ample this shows the projective normality of D.
Next in case X=P'xXC, we must use another technique, because there is no
sections of type C’. Let m be the degree of 6. Since D is free from base
points by Proposition 3.2 (a), it induces the morphism ¢p: X— P¥, where N=
h'(D)—1=2m—1. ¢p is factored by the following two morphisms;

idpiX@y: P'XC ., P*XP™,
where ¢ is the closed immersion corresponding to a very ample divisor b on
C, and
s: P*xPm1ic., PV,

where s is the Segre embedding. The projective normality of D is shown by
the next lemma.

LEMMA 5.3. Let V be a variety in PN via f and W a variety in P¥ via g.
Let ¢ be the commposition fXg: VXWSPYXPY, and s the Segre embedding
P¥ X P¥YC, P, where L=(N+1)(M+1)—1.

Then for every integer t, the restriction I'(Opi(t))—1(OpL(t)|vew) is surjec-
tive if and only if both ['(©pn(t))—T'(@pn(t)|y) and ['(©pu(t))— T (Opu(t)|w) are
surjective.
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Now to complete the proof, we need some notations and propositions, which
are due to [3]. Let V be a variety and % an invertible sheaf on V. Let U be
a subspace of I'(X, n). We define n(U, H) by n(U, M)=Min{m=1| for every
jzm, U¥—I'(jH) is surjective}. We denote Ker[S/(U)—I'(jm)] by U, n)

and é)lj(U, ) by I(U, H).
s

PROPOSITION 5.4. Let Y be a non-singular projective curve over k. Let L
be an invertible sheaf on Y and U a subspace of I'(.L). Assume that U is very
ample. We define i(.L) and p as follows:

(L)y=Min{m=1|h'(j.L)=0, for all j=m} ;
p=Max{i(.0)+2, n(U, .L)+1}.
Then I(U, .L) 1s generated by I, (U, .L), ---, I, (U, ).

PROPOSITION 5.5. Let V be a variety and M a very ample invertible sheaf
on V. Let Y be a non-singular member of | M| and L the restriction of M to
Y. We define U the image of the restriction map ['(V, M)—I'(Y, £). Assume
that I(U, L) is generated by its elements of degree 2, ---, p. Then I(M)=
K(H), M) is generated by I (M), -, [(M), where v=Max{y, n(l'(M), M)+1}.

Now we return to the proof of the proposition. Since D is very ample, we
can choose a non-singular irreducible curve Y= |D|. We consider the following
exact sequence

0 Ox D D|y 0.

Let U be the image of the restriction map H°(D)— H*(Y, D|y).
First we claim n(U, D|y)=2. We use the commutative diagram

)= URI'(D) 0
B 7
r'en) I'2Dly) HY(D)=0.

Because D is normally generated, § is surjective. So y is also surjective and
we obtain the surjection U®*—I'(2D|y). To show that ¢,: U®—[(tD|y) is
surjective for every t=3, we use the induction on ¢ and the following commu-

tative diagrams :
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I'((t—1)D)YRI(D)

I(t—1)D|)QI(D) —0

Jo 7’
I'(tD) = [(tD|y) ——=0;
, ¢
I'((t—1)D)RQU = I'(tD]y)
905—1®1U
LoF
U®t

Since p’ is surjective, 7’ is also surjective and therefore ¢ is surjective. For
¢:-1Q1y is surjective by the induction hypothesis, ¢, is surjective. Next we
claim i(D|y)=1. In the exact sequence

HY(tD) —> HXY, tD|y) — H¥(t—1)D), iz1;

the two outside cohomology are vanishing, hence the middle one is vanishing
also. So we get that I(U, D|y) is generated by its elements of degree 2 and 3,
by Proposition 5.4. Consequently Proposition 5.5, we conclude that I(D) is
generated by its elements of degree 2 and 3.

§6. Proof of Theorem 3.3, examples and’pro‘blevm‘s.

Proor oF THEOREM 3.3. Assume that D is very ample, then it is clear
that n=1 and D-Cy=3 by Remark 5.1. Conversely we assume that D~nCy,+bf
with =2 and degb=ne+3. The proof of the projective normality of D is
similar to the previous proof in case n=1. Consider the following two com-
mutative diagrams :

0 —> ['(D—Co)RI'(D) — I'(D)?* — I'C, n:4+9R (D) — 0

) s 7l

0—>I'(2D—Cy) Ir'epy —I'C, 2(n2+-5))

0,

0 —> I'(D—Cy)®* —> I'(D)YRI'(D—Cy) —> I'(C, ne+H)RI'(D—Co) —> 0

& - e 7

0 — I'2D—2C,) I'2D—C,) I'C, 2n—1)42b) — 0.

Since I'(C, n2+HRI(C, (n~—1):+5)—I'((2n—1)2-+2b) is surjective by Lemma 5.2,
7’ is surjective. By the induction hypothesis 8’ is surjective and by the pro-
jective normality of ne-+b,7 is surjective. Therefore both @ and § are surjective.
The surjectivity of the map ['(tD)RI'(D)—I'((t+1)D), for every t=2, is given
by Lemma 5.2. Since D is ample, we conclude that D is normally generated.
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Mimicking the proof of proposition 3.2, we can prove the rest of the theorem
easily. .

EXAMPLE 6.1. Let D~C,+bf be a divisor on X=P'xC. When deg b=3,
D is normally generated and and I(D) is generated by its elements of degree 2
and 3 but not only by those of degree 2. If degb=4, then I(D) is generated
by its elements of degree 2.

EXAMPLE 6.2. Let C be an elliptic curve in P? defined by y;yi=y3—y,v3
We put —e~0p(1)|]o. Let Y be the cone over C with vertex P,=(1:0:0:0).
If we blow up the point P,, we obtain an elliptic ruled surface XCP?XxP?,
which is isomorphic to P(€) where £€=0,E:. Let s be the Segre embedding
from P*XP® to P'*. We may choose coordinates X, Xos, Xos, -+ X33 of P
such that s*X;;=x;y, where x,’s are the coordinates of P*® Since s*@pui(l)|x
~Co+2(—e)f is normally generated by Proposition 3.2, we get the following
commutative diagram

P2 pP? C——S——> pi (Xorzy =iyt Xigt Xon 0 Xoot Xog 1 Xor 0 Xio 0 Xoa)
|p
- X -’LEL’ P® (Xoazy =00yt Xigt Xoot Xpg 2 Xig)

where D~C,+2(—2)f and p is the projection. Then /(D) is generated by the
following eighteen conics and one cubic.

X1 X1o=X0eX11, Xo:X1s=X0s X1, X01Xeo= X2 X1z,

Xo1 Xos=X0s X123, Xo1Xss=Xo3X13, XooX13=X03X12,

Koo Xos=Xos Xos, XoaXss=XosXos, X11Xoe=X3,

X1 Xos=X1sX15, X1u1Xss=X1s, X2 Xos=X15 X0,

X2 X3s=X15 X505, XKoo Xes=X3s,

Xos Xoo= X1 X11— Xo1 Xssy  X1sXoo= X1 — X11 Xes,

Xos Xoo=X1X11— X12Xss, ngXZZ:XwXH—XHX%,

XOSX?,Z:XSl——XmX%a.

PROBLEM 6.3. Let X be an elliptic ruled surface with ¢=0 and D a very

ample divisor on X. Find a necessary and sufficient condition so that /(D) is
generated by its elements of degree 2. '

PrROBLEM 6.4. Let X be an elliptic ruled surface with e=—1 and D a divisor
on X. Find a necessary and sufficient condition for D to be normally generated.
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§7. Projective normality of ample invertible sheaf on rational ruled
surfaces.™

By a rational ruled surface, we understand a ruled surface = : X— P!. Since
any locally free sheaf of rank 2 on P' is decomposable, for each ¢=0 there is
exactly one rational ruled surface X, with invariant e, given by &€=0pP0Op(—e).
Then we can compute A% D) for any divisor D nCo+mf on X, where mf is the
divisor corresponding to the invertible sheaf =n*©p(m), and we obtain that if
m=ne—1, then AY(D)=h*D)=0. Using this, we have the following.

~THEOREM 3.1. Let X, be a rational ruled surface and D~nCy+mf a divisor
on X. Then the following four conditions are equivalent to each other:

(i) n>0 and m>ne;

(ii) D is ample;

(iii) D is very ample;

(iv) D 1is normally generated.

In this case, I(D)=Ker[SI'(D)— éof(jD)] 1s generated by its elements of degree 2.
=

ProoF. The equivalence of (i), (ii) and (iii) is in [1]. It is sufficient to
show that D is normally generated when D satisfies the above three conditions.
We can choose a non-singular irreducible curve Y& | D], since D is very ample.
Let g be the genus of Y and .£ be the restriction of D to Y. Then we have
deg £=2g-+2 by Adjunction formula and the condition (i). So £ is ample
with normal generation and I(.L) is generated by its elements of degree 2 by'
[4]. We consider the exact sequence,

0 Ox D Djy=r—0

tensored with (¢—1)D, for =1, and the resulting commutative diagram with
exact rows

0 — I'((t—1)D)RL'(D) — ['(tDYRI(D) — ['(t LYRQ]I(D) — 0.

) £ 7\

0 ['(tD) r'@+1)D) — I'(+1)L) — 0.

v is surjective by the projective normality of .£. When t=1, « is surjective, so
is B. When t=2, « is surjective by the induction hypothesis, so g is also sur-
jective. It follows that D is normally generated. Finally by Proposition 5.5,
we conclude that /(D) is generated by its elements of degree 2.

* The author would like to express her thanks to Mr. M. Homma to whom she owes
the result of this section.
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