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Summary.

A graph G=(V, E) is called a complete semi-bigraph and denoted by K’(/, m)
if the vertex set can be partitioned into two subsets V; (| Vil=0and V, (| V.| =m)
such that [u, v]e& E for every u, veV, (u#v), and [v,, v, E for every v,V
and v,€ V..

THEOREM. Let G=(V, E) be an wundirected 2-connected graph with n=3
vertices and satisfying the following:

Lu, v]eEE o du)+dv)=n—1.

n-+1 nwl). In

Then G is either hamiltonian or a complete semi-bigraph K’( 5 g

particular, if n is even, then G must be hamiltonian.

1. Introduction.

We use the terminology of [1, 2], unless otherwise stated. Let G be a
simple graph of order n=3. We denote by V, E and d(v) respectively the set
of all vertices, the set of all edges and the degree of a vertex v in G. G is
called hamiltonian if it contains a cycle of length | V|=#n where | V| means the
order. Various sufficient conditions for a graph to be hamiltonian have been

given in terms of the vertex degrees of the graph. We will need the following
known results.

ORE’S THEOREM [4]. If G=(V, E) satisfies the conditions:

Lu, v]€E = dw)+dv)=|nl, (L)

then G is hamiltonian.

PosA’s THEOREM [1, 2]. Let G=(V, E) has n=3 vertices and satisfies the
following conditions :

(i) for any k (1§k<

”_1) it holds

[{veV:dw)SkH <k
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(ii) for odd n it holds

{vev: dm= ”gl}}g ”;1.

Then G 1s hamiltonian.

We recall that G=(V, E) is called 2-connected if G— {v} is connected for
every veV,

DIrRAC’S THEOREM [3]. If G is a 2-connected graph with n vertices in which
the degree of every vertex is at least d (1<d§~g—>, then G contains a cycle
with the length not less than 2d.

We can not weaken the condition (1) to the following:
*) [u, vl€E o d(u)+d(wv)=|n|—1,

because there exists a counter example, that is, a graph constructed by a com-
plete graph K,., and a vertex v, adjacent to only one vertex in K,_;.

It is known that any hamiltonian graph is 2-connected. Hence it seems
natural to restrict our consideration to 2-connected graphs only. The purpose
of this paper is to investigate 2-connected graphs satisfying (*).

We shall call G=(V, E) a complete semi-bigraph if there is a partition of
V into two subsets V,={u,, ---, u;} and Vo,={v,, -+, vn} such that [u;, u;JEF
and [u;, v;]€E for any i, j. Such a graph G will be denoted by K’(l, m) or

".m. Clearly every complete bigraph is a complete semi-bigraph, and K’(l, m)
is not hamiltonian if [>m.

THEOREM. Let G=(V, E) be an undirected 2-connected graph with n=3
vertices and satisfying the following :
*) Lu, vI€E o d(u)+d(v)Zzn—1.

n+1l n—1
27 2

Then G 1s either hamiltonian or a complete semi-bigraph K’( ) Hence

if n is even, then G must be hamiltonian.

2. Notations and proofs.

Let G=(V, E) be a graph. We denote by dg(v) the degree of a vertex
veV if it is necessary to emphasize that v is considered as a vertex in G and
by ['¢(v) the set of vertices in G adjacent to v. For a subset ACV, {A> denotes
the induced subgraph by A4, i.e. the graph with vertex set A whose edges are
all those edges in E which connect two vertices in A. For an integer

k(1=k< ”;1

) we decompose V into two subsets A, and B, defined by

Ar={veV: dw)=k}, B,={veV: d(v)>k}.
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LEMMA 1. Let G=(V, E) be a 2-conmected graph with n=3 vertices and

. o . . —1
satisfying the condition (*). If there exists an integer k (1__<__k<nT> such that

| Axl=F, (2)

then (A, is a complete graph, {B,> is hamiltonian and moreover G is hamiltonian.

ProoF. We write simply A, B instead of A,, B, respectively. Then
|Al=F and |B|=n—*Fk. Let A={vy, vy, ==+, Vs}.

Step 1. For any two vertices v;, v; in A, we have [v,, v;]€E because of
de(v)+ds(v;)£2k<n—1 and (*). Hence (A)> is a complete graph K,.

Step 2. As d(v;)=Pk for v, A, we know that

dG(Uz>:k_1 or dG(Ui):k . (3)

Since <{A) is K,, by (3) each vertex v;€ A is adjacent to at most one vertex
in {B). Since G is 2-connected, there exist at least two edges joining <A)
to <{B> such that all the end vertices are different. We can write them,
without loss of generality, by [v,, u.], [vs, us] where u,, u,= B. Since any
ue B (#u,;) can not be adjacent to v, and u, can not be adjacent to v, we get

de(uyzn—1—%k for ucB (4)

by our hypothesis (*).
(I) The case of n=9. When u< B is regarded as a vertex in G, we have

by (4),
X de(wz(n—k—1(n—Fk),

and when u is regarded as a vertex in <{B),

2 deWzn—lk—1)(n—k)—k (5)

is satisfied, because there are at most % edges joining {(A) to <(B).
Suppose that u, v in B (u#v) are not adjacent to each other and put

dep(wW=n—k—D—a, da(v)=(n—k—1)—§. (6)

Now' for these u and v let us consider a graph G’=(B, E’) satisfying the fol-
lowing conditions : ,

(i) it is a subgraph of the complete graph K,_.(B, If),

(ii) [u, v]EE,

(iii) E’ consists of all edges of F except o edges at u and 8 edges at v.

If we compare |E’| with the number of edges in <B) and take account of (5)
and (6), it follows that

2{a—1)+(B—D+1} =k. (7)

On the other hand because of n=9 and k<nT—4, we get



78 S G NARA . """ NSR. 0.U., Vol. 31

k+2 3 ' 3 n—1 n—9

_kTa S, oy 9 33— >0
(n— k 2) 5 ‘n Zk S}n 5 g 3 ;4“ =0
which implies ' ,
n— oz £T2 (8)

2
Thus using (6), (7) and (8) we obtain
dp(W)+dp(v)=(n—k)+n—k—2)—(a+p=n—k.

Moreover, since n=9 and k<—7£2_—1—, we have |B|=5>3. Therefore we can

apply Ore’s theorem to the graph_'<‘B> and know that {(B) is hamiltonian.
(II) The case of n=8. Decompose the set B into

B, ={veB: I';(v)"NA#0} and B,={veB: v B}.

Then | B,|=2 follows from that G is 2-connected. Every ve B, is adjacent to
all vertices in B—{v}, because dg(v)=n—k—1 by (4) and moreover v is not
adjacent to all vertices in A by the definition. If | B;|=|B,|, <B) is hamiltonian.

We shall show that n=6. Assume n<6. Then we get k=2 and |B|=3,
because £=2 and k=|A|<|B|=n—k<4. So by |B, |g|Bi—[A|_1, there is
a vertex ve B, which must satisfy 2=k <dg(v)=dp(v)=|B|—1=2, that is
a contradiction. Therefore n=6, and then we know 6=n=8.

Hence k=2 or 3, which follows from 2=<|A|< ”;1. If k=2, we have
|B;|=]|A|=2=<|B,], and so {B) is hamiltonian. If £=3, |B| is 4 or 5 since
3=|A|<|B|=n—3=<5. Assume |B|=4, then B,#0 and for a vertex ve B, we
have dg(v)=n—k—1=Fk+1=4 which contradicts dg(v)<|B|—1=3. Assume
| B|=5. There are two possibilities: |B;|=2, |B;|=3 and |B,|=3, |B;|=2.
In the first case, {B> is hamiltonian because |B,|=|B,|. The second implies
that

p da(v)— Z de(v)—|Al=1

VEBy
because of dgs(v)=4 for every ve B, and dgv)=4 for every ve B, Hence
there exists at least one edge joining two vertices in B,;, which implies that
(B> is hamiltonian.

Step 3. We shall show that G is hamiltcnian. Let us recall that a path
which contains all vertices by strictly one time is called a hamiltonian path and,
specially, if the end vertices coincide, it is called a hamiltonian cycle. For any
2 pathes P,=[v,, -, v;] and P,=[w,, .-, wn] in G, denote by P+ P, the path

Lvy, =y Vi-1, Wy, ** Wy ] provided that v,=w,.
Similarly to the proof of step 2, let us decompose B={ve X: d(v)>Fk} into
B, and B, and write By={u,, us, ==, up}, Be={wi, ws, -+, wy}, respectively.

Then p+g=n—Fk and G consists of the complete graph <{4), the hamiltonian
graph (B> and the set C of edges joining {A)> and <{B) where C contains two
edges such that [u,, v,], Cu,, ve] (vy, #v.€ A and u,, #u,€ B,). Moreover B
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consists of B; in which every vertex is adjacent to A and B, in which every
vertex is not adjacent to A but adjacent to all vertices in B.

(I) The case of p=<q. Then there is a hamiltonian path P, of B such
that u, is the starting vertex and u, is the end one: [uy, wi, us, W,, Uy, Wy, **
Upy, Wp-1, Wp, Wpe1, - Wy Us]. Since <A) is a complete graph, there is a hamil-
tonian path P, such that v, is the starting vertex and v, is the end one.
Hence we get a hamiltonian cycle of G: [vy, Ui+ P+ LUz, vel+ P

(II) The case of p>q. Let Cp be a hamiltonian cycle in <B) whose
existence is assured by step 2. Then since a complete semi-bigraph K’,, (p>q)
is not hamiltonian, C., must contain at least one edge joining two vertices in B;
which are denoted by u;, u; for some 7, #j (1=1, j=<p). Moreover we write
by v., v the adjacent vertices in A to u; u; respectively. We may assume
that v.# v, and that there is a hamiltonian path P, in (A) having vg as the
starting vertex and v, as the end one. Now if we put Cp,—[u;, u;1=7Dw
then [vea, wi]+ P+l vgl+ P is a hamiltonian cycle in G. Thus, Lemma 1
is proved.

LEMMA 2. Let G=(V, E) be a 2-connected graph with n vertices. If G
satisfies the condition (), then for k (1=k< ”;1)

| Awl =F .

PROCF. Let put m= min d(v). Clearly m=<k. We will first prove in the
vEAR .

case m=k—1. Let pick up a vertex v, A, such that d(v,)=<k—1. Then for
each ve 4, (v#v,) we have [v,, v]EE by (*), which implies |A,| S| a(vo)|+1=k.
In the other case m=k, similarly to the above we obtain |A,|=k-+1. Suppose
|A,|=Fk+1. Then since d(v)=Fk for every vEA, and <A4,> is complete, any
vertex in A, can not be adjacent to the vertices in V—A,. This is a contra-
diction to the 2-connectedness of G, so we get |A,|=*k. '

REMARK. Lemma 2 is true if G is connected.

PROOF OF THEOREM.

Case 1: n is odd. If % satisfies l§k<—n———1

2
Lemma 2 that |A,|=<k. Moreover if there exists a £ such that |A,|=k, then
G is hamiltonian by Lemma 1. Therefore it is sufficient to prove the theorem

in the case of |A,|<Fk for every k <l§k< ”;1)

and Ap={veX: dw)=Em}. If |An|<m, using Posa’s

, we have already shown in

Now put m= n~2—

theorem we can conclude that G is hamiltonian. This leaves only the case
| Am|>m to consider. The inequality | An|>m implies Ap-,=0, for if A,_,#0,
there is a vertex ve X satisfying d(v)=<m—1, which must be adjacent by (*)
to all vertices in. An, s0 m—1=d(v)=|A,|—1>m—1, which is a contradiction.
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Therefore we get

ci(v)_>_,m:n—2_—l for every vertex ve X, (9)
By Dirac’s theorem there is a cycle in G with length at least 2m=n—1. Let

C be one of cycles in G with the largest length. Then |C|=n—1. If |C|=n,
C is a hamiltonian cycle.

Now we shall prove that if |Cl=n—1, G is K’(n_zH, n;l) Let denote
C by [vy, vy, -+, Vs] with v;=v, and v, the only one vertex not contained in

C. Since the length of C is maximum, C does not contain two vertices with
succeeding number (with respect to mod n—1) which are adjacent to v,. Hence
by (9), we may consider that v, is adjacent to all v; with odd 7 and not
adjacent to all v; with even i. Let put

Vi={v;: 1 is even}\U{v,} and V,={v,: 1 is odd}.

- Then |V,|=m+1 and |V,|=m. Now for any pair of vertices v, v; (0#:1<)
in V,, we have [v;, v;]& E because if [v;, v;]J€E, G has a hamiltonian cycle:
Cvo, Vs, Vjso, =y Umy V1, Vgy =+, V4, V), Vjoy, =, Visr, Vol, which is a contra-
diction to the majority of the length of C. On the other hand, for any veV;
d(v)=m implies that v must be adjacent to all vertices in V,. Thus G is a
n+1l n-—1
2 7 2 )

Case 2: n is even. Similarly to the case of odd, using Posa’s theorem, we
can conclude that G is hamiltonian.

From the theorem for even n, we have the following.

complete semi-bigraph K ’(

COROLLARY. Let G=(V, E) be an undirected 2-connected graph with even
n=3 vertices and satisfying the following :

[u, v]€E = d(u)+dv)=zn—1.

Then G 1is hamiltoniqn.
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