α-Submanifold in a Locally Conformal Kählerian Manifold

Kazuko Ikuta

Department of Mathematics, Faculty of Science, Ochanomizu University Tokyo (Received March 21, 1980)

§ 0. Introduction.

A 2*n*-dimensional Hermitian manifold is said to be locally conformal kählerian (l.c.k. manifold) if its metric is locally conformal to kählerian metrics. In 1976, I. Vaisman [1] introduced an l.c.k. manifold and showed that the Hopf manifold is a typical example of l.c.k. manifolds. Since the Hopf manifold is an l.c.k. manifold which can not admit a kählerian metric, l.c.k. manifolds seem to constitute an interesting class among all complex manifolds.

On the other hand, let N^{2n+1} be a Sasakian manifold with contact form η , \tilde{D} a distribution defined by $\eta(X)=0$, then we know the following results:

- (1) The dimension of any integrable distribution $D \subset \widetilde{D}$ is at most n. ([3])
- (2) Let $D \subset \widetilde{D}$ be an *n*-dimensional integrable distribution of a Sasakian space form and N_0 a maximal integral manifold of D. Then N_0 is totally geodesic provided that N_0 is compact minimal and the square length of the second fundamental form is bounded by a certain number. ([4])

Since an l.c.k. manifold resembles to a contact manifold in a sense, it is a problem to study in such manifolds the character of a distribution corresponding to \widetilde{D} .

In § 1, we shall give some basic properties in an l.c.k. structure (J, g, α) . In § 2, we shall derive an integrability condition for a distribution D defined by $\alpha(X)=0$, $\alpha(JX)=0$, and show that the dimension of any integrable distribution in D is at most n-1. If there exists such a distribution of dimension n-1, we shall call it α -distribution and its maximal integral manifold α -submanifold. In § 3, we shall show that if M^{2n} is a conformally flat l.c.k. manifold satisfying $\nabla \alpha = 0$, then the similar theorems to (1) and (2) stated above hold on α -submanifold. In § 4, we shall show that there exists α -submanifold in the Hopf manifold with $|h|^2 = \frac{(n-1)^2}{2n-3}$, where h is the second fundamental

form of the immersion.

Throughout the paper, manifolds, vector fields and tensor fields are assumed to be C^{∞} .

§ 1. L.c.k. manifold.

Let M^{2n} be a 2n-dimensional manifold. We denote by $\mathfrak{X}(M)$ the Lie algebra of all vector fields on M^{2n} . A complex structure J on M^{2n} is by definition a tensor field of type (1, 1) on M^{2n} satisfying the following two conditions:

$$(1.1) J^2X = -X,$$

$$[X, Y]+J[JX, Y]+J[X, JY]-[JX, JY]=0,$$

where $X, Y \in \mathfrak{X}(M)$.

A 2n-dimensional manifold with a complex structure is called a complex manifold. If a complex manifold M^{2n} admits a Riemannian metric g which satisfies the condition

$$(1.3) g(JX, JY) = g(X, Y)$$

for X, $Y \in \mathfrak{X}(M)$, then we call $\{M^{2n}, J, g\}$ a Hermitian manifold. Putting

$$J^b(X, Y) = g(X, JY)$$

for X, $Y \in \mathfrak{X}(M)$, we have

$$J^{b}(X, Y) = -J^{b}(Y, X)$$
.

This means that J^b is a differential 2-form which will be called the fundamental 2-form of $\{M^{2n}, J, g\}$. A Hermitian manifold $\{M^{2n}, J, g\}$ is called a kählerian manifold if $\nabla J = 0$, where ∇ is the Riemannian connection. A Hermitian manifold $\{M^{2n}, J, g\}$ is called an l.c.k. manifold if the metric is locally conformal to kählerian metrics. More precisely, for each point of M there exists a neighbourhood U and a local function ρ on U such that $g^* = e^{-2\rho}g$ is a kählerian metric.

If $g^{*\prime}=e^{-2\rho'}g$ is a kählerian metric in another neighbourhood U', then $g^{*\prime}$ is homothetic to g^* on $U\cap U'$. As ρ - ρ' is constant on $U\cap U'$, the collection $\{d\rho\}$ defines a closed differential 1-form which will be denoted by α .

Now we shall investigate some relations between the Riemannian connection ∇ with respect to g and ∇^* with respect to $g^*=e^{-2\rho}g$.

Taking account of the definition of ∇_X :

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y)$$
$$+g([X, Y], Z) + g([Z, X], Y) + g(X, [Z, Y])$$

for X, Y, $Z \in \mathfrak{X}(M)$, and the similar expression of ∇_X^* , we have

$$(1.4) \quad g(\nabla_X^*Y, Z) = g(\nabla_XY, Z) - \alpha(X)g(Y, Z) - \alpha(Y)g(X, Z) + \alpha(Z)g(X, Y).$$

On the other hand, $\nabla^* J^{*b} = 0$ holds for g^* , where

$$I^{*b}(X, Y) = g^{*}(X, IY) = e^{-2\rho}I^{b}(X, Y)$$
.

From (1.4) and

$$(\nabla_x^* J^{*b})(Y, Z) = e^{-2\rho} \{ (\nabla_x^* J^b)(Y, Z) - 2\alpha(X) J^b(Y, Z) \}$$

 $\nabla^* J^{*b} = 0$ is equivalent to the following equations:

(1.5) $(\nabla_X J^b)(Y, Z) = \alpha(Z)J^b(X, Y) - \alpha(Y)J^b(X, Z) + \alpha(JY)g(X, Z) - \alpha(JZ)g(X, Y)$. Hence we know that if M^{2n} is an l.c.k. manifold, then there exist a tensor field J of type (1, 1), Riemannian metric g and a closed differential 1-form α satisfying (1.1) \sim (1.3) and (1.5).

Conversely it is easy to prove that a manifold which admits (J, g, α) satisfying $(1.1)\sim(1.3)$ and (1.5) and $d\alpha=0$ is an l.c.k. manifold. We call α the fundamental 1-form of the l.c.k. manifold.

We shall mean by $\{M^{2n}, J, g, \alpha\}$ a 2n-dimensional l.c.k. manifold with structure $\{J, g, \alpha\}$.

Let us introduce a 1-form β by

$$\beta(X) = \alpha(JX)$$
 for $X \in \mathfrak{X}(M)$,

then (1.5) can be written as

(1.6)
$$(\nabla_X J^b)(Y, Z) = \alpha(Z)g(X, JY) - \alpha(Y)g(X, JZ)$$

$$+ \beta(Z)g(X, Y) - \beta(Y)g(X, Z) .$$

Defining α^* , $\beta^* \in \mathfrak{X}(M)$ by

$$\alpha(X) = g(X, \alpha^*), \quad \beta(X) = g(X, \beta^*),$$

we easily obtain the following five formulas:

$$\beta^* = -J\alpha^*, \quad \beta(JX) = -\alpha(X).$$

$$\alpha(\beta^*) = \beta(\alpha^*) = 0.$$

$$(1.9) \qquad (\nabla_X \beta)(Y) = |\alpha^*|^2 J^b(X, Y) + \alpha(X)\beta(Y) - \alpha(Y)\beta(X) + (\nabla_X \alpha)(JY).$$

$$\nabla_{\alpha} * J^b = 0.$$

(1.11) If $\nabla_X \alpha = 0$, then

$$(\nabla_X \beta)(Y) = |\alpha^{\sharp}|^2 J^b(X, Y) + \alpha(X)\beta(Y) - \alpha(Y)\beta(X)$$
.

§ 2. Submanifold in an l.c.k. manifold satisfying $\nabla \alpha = 0$.

Let $\{M^{2n}, J, G, \alpha\}$ be an l.c.k. manifold satisfying $\overline{\nabla}\alpha=0$, where $\overline{\nabla}$ is the Riemannian connection with respect to G. We may assume that $|\alpha|=1$ without loss of generality.

Now let us consider the distribution given by

$$D = \{X \in \mathfrak{X}(M) \mid \alpha(X) = 0, \beta(X) = 0\}$$
.

PROPOSITION 2.1. If D_0 is an involutive distribution such that $D_0 \subset D$, then

 D_0 is anti-invariant, i.e., $X \in D_0 \Rightarrow JX \notin D_0$.

PROOF. Since D_0 is involutive, we have

$$\beta([X, Y])=0$$
 for $X, Y \in D_0$.

On the other hand,

$$\beta([X, Y]) = 2g(Y, JX)$$

follows from (1.11), and we obtain

$$g(Y, JX)=0$$
 for $X, Y \in D_0$,

which means that D_0 is anti-invariant.

Q.E.D.

We are interested in the distribution D_0 stated in proposition 2.1 and investigate its integral manifold.

Proposition 2.2. The dimension of D_0 is at most n-1.

PROOF. Suppose that the dimension of D_0 is r and M_0 is a maximal integral manifold of D_0 . Let E_1, \dots, E_r be the local orthonormal basis of $\mathfrak{X}(M_0)$. Since D_0 is anti-invariant, we have

$$G(E_i, JE_i)=0$$
, $i, j=1, \dots, r$.

Since $E_i \in D_0$, we have $\alpha(E_i) = 0$, $\beta(E_i) = 0$, i.e, $G(\alpha^*, E_i) = 0$, $G(\beta^*, E_i) = 0$. On the other hand, from (1.6) and (1.7), we have

$$G(\alpha^{\sharp}, \beta^{\sharp})=0$$
, $G(JE_i, \alpha^{\sharp})=0$, $G(JE_i, \beta^{\sharp})=0$.

Thus, $E_1, \dots, E_r, JE_1, \dots, JE_r, \alpha^{\sharp}, \beta^{\sharp}$ constitute a local orthonormal basis of $\mathfrak{X}(M)$, and hence $r \leq n-1$. Q.E.D.

From now on, we shall only consider the distribution D_0 with dimension n-1. Let $i: M_0 \to M$ be an integral manifold of D_0 and for the sake of simplicity we call M_0 α -submanifold.

Let E_1, \dots, E_{n-1} be a local orthonormal basis of $\mathfrak{X}(M_0)$ and ξ_1, \dots, ξ_{n+1} be a local orthonormal normal vector fields.

By the above argument, we can put

$$\xi_i = JE_i$$
, $i=1, \dots, n-1$,

$$\xi_n = \alpha^{\sharp}$$
, $\xi_{n+1} = \beta^{\sharp}$.

We denote the induced metric on M_0 by g, that is,

$$g(X, Y)i=G(X, Y)$$
 for $X, Y \in D_0$.

Let ∇ and $\overline{\nabla}$ be Riemannian connections with respect to g and G, and D be the normal connection of M_0 . Then the Gauss and Weingarten formulas are as follows:

$$(2.1) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \text{for } X, Y \in D_0,$$

$$(2.2) \overline{\nabla}_X \xi = -H_{\xi}(X) + D_X \xi \text{for } X \in D_0, \ \xi \in D_0^{\perp},$$

where h is the second fundamental form of M_0 and H_{ξ} is the second fundamental form with respect to a normal vector field ξ .

If we denote H_i instead of H_{ξ_i} , $(i=1, \dots, n+1)$, it holds that

$$h(X, Y) = \sum_{i=1}^{n+1} g(H_i(X), Y) \xi_i$$
.

Now we have following propositions.

PROPOSITION 2.3. (a) The second fundamental form with respect to α^{\sharp} , β^{\sharp} are identically zero, that is

$$(2.3) H_n = H_{n-1} = 0.$$

(b) If $X \in \mathfrak{X}(M_0)$, then

$$(2.4) D_X \alpha^{\sharp} = 0, D_X \beta^{\sharp} = JX.$$

PROOF. From (2.2) and $\nabla \alpha = 0$, we have

$$0 = \overline{\nabla}_X \xi_n = -H_n(X) + D_X \xi_n$$
, for $X \in D_0$,

which implies that $H_n(X)=0$, $D_X\xi_n=0$ for any $X\in D_0$. Similarly we have from (2.2)

$$\overline{\nabla}_X \beta^* = -H_{n+1}(X) + D_X \xi_{n+1}$$
.

On the other hand, we can obtain from (1.10),

$$G(\overline{\nabla}_X \beta^*, Y) = G(Y, JX)$$
,

which means

$$\overline{\nabla}_X \beta^* = JX$$
.

Q.E.D.

PROPOSITION 2.4. For any X, $Y \in D_0$, we have

$$(2.5) H_{JX}(Y) = H_{JY}(X).$$

PROOF. Since $X, Y \in D_0$, we have

$$(\overline{\nabla}_X J)(Y) = G(X, Y)\beta^*$$
.

Substituting the above equation into $\overline{\nabla}_X(JY) = (\overline{\nabla}_X J)(Y) + J(\overline{\nabla}_X Y)$, we obtain

$$\overline{\nabla}_X(JY) = G(X, Y)\beta^* + J(\nabla_X Y) + J(h(X, Y)).$$

On the other hand, we have

$$\overline{\nabla}_{\mathbf{Y}}(IY) = -H_{IY}(X) + D_{\mathbf{Y}}(IY)$$

because JX is a normal vector field for any $X \in D_0$.

Therefore by comparing the tangential parts of above two equations, we obtain (2.5).

Q.E.D.

Proposition 2.5
$$\operatorname{tr} \left(\sum_{j} H_{j}^{2} \right)^{2} = \sum_{i,j} (\operatorname{tr} H_{i} H_{j})^{2}$$

PROOF. We put

$$H_{i,kl}=g(H_i(E_k), E_l)$$
,

where E_1, \dots, E_{n-1} is a local orthonormal basis of $\mathfrak{X}(M_0)$. By definition of H_j and from (2.3) and (2.5), we have

$$H_{j,kl} = H_{j,lk}$$
, $H_{n,kl} = H_{n+1,kl} = 0$, $H_{i,jk} = H_{j,ik}$.

Hence it holds that

$$\operatorname{tr} (\sum_{j} H_{j}^{2})^{2} = \operatorname{tr} (\sum_{i,j,k} H_{i,j,k} H_{i,k,l})^{2}$$

$$= \sum_{i,j,k} H_{i,j,k} H_{m,ln} H_{m,nj}$$

$$= \sum_{i,j} (\operatorname{tr} H_{i} H_{j})^{2},$$

where the sums are taken over all repeated indices.

Q.E.D.

\S 3. α -submanifold in a conformally flat l.c.k. manifold.

Let M^{2n} be an l.c.k. manifold satisfying $\nabla \alpha = 0$, then at each point of M^{2n} there exists a neighbourhood where $G^* = e^{-2\rho}G$ is a kählerian metric for a suitable local function ρ and $\alpha = d\rho$ is the fundamental 1-form. Denoting the curvature tensor with respect to G and G^* by \overline{R} and R^* respectively, we have by straightforward calculation

$$(3.1) \quad G(R_{XY}^*Z, W) = G(\overline{R}_{XY}Z, W) + \alpha(X)\alpha(W)G(Y, Z) + \alpha(Y)\alpha(Z)G(X, W)$$

$$-\alpha(Y)\alpha(W)G(X, Z) - \alpha(X)\alpha(Z)G(Y, W) - G(X, W)G(Y, Z)$$

$$+G(Y, W)G(X, Z).$$

From now on, we assume that M^{2n} is conformally flat, and look for the exact form of curvature tensor in terms of G and α .

As conformally flat kählerian metric is flat, G^* satisfies $R_{XY}^*Z=0$. Hence from (3.1), we have

$$(3.2) \quad G(\overline{R}_{XY}Z, W) = \alpha(X)\alpha(Z)G(Y, W) - \alpha(Y)\alpha(Z)G(X, W) + \alpha(Y)\alpha(W)G(X, Z) - \alpha(X)\alpha(W)G(Y, Z) + G(X, W)G(Y, Z) - G(Y, W)G(X, Z).$$

The curvature tensor of M_0 with respect to g will be denoted by R, and the equation of Gauss is given by

(3.3)
$$g(R_{XY}Z, W) = G(\overline{R}_{XY}Z, W) + G(h(X, W), h(Y, Z)) - G(h(X, Z), h(Y, W)).$$

From (3.2) and (3.3), we obtain

(3.4)
$$g(R_{XY}Z, W) = g(X, W)g(Y, Z) - g(Y, W)g(X, Z)$$

 $+ \sum_{i} \{g(H_{i}(X), W)g(H_{i}(Y), Z) - g(H_{i}(Y), W)g(H_{i}(X), Z)\}$
for $X, Y, Z, W \in \mathfrak{X}(M_{0})$.

The Ricci tensor Ric(X, Y) and the scalar curvature k of M_0 are as follows:

(3.5)
$$Ric(X, Y) = (n-2)g(X, Y) + \sum_{i} (\operatorname{tr} H_i)g(H_i(X), Y) - \sum_{i} g(H_i(X), H_i(Y)).$$

(3.6)
$$k = (n-2)(n-1) + \sum_{i} (\operatorname{tr} H_{i})^{2} - |h|^{2}.$$

The sectional curvature $\rho_{M_0}(X, Y)$ of M_0 determined by an orthonormal pair X and Y of D_0 is given by

(3.7)
$$\rho_{M_0}(X, Y) = 1 - \frac{1}{|X|^2 |Y|^2} \sum_i \{g(H_i(X), Y)^2 - g(H_i(X), X)g(H_i(Y), Y)\}$$
.

Thus, we obtain the following two propositions immediately.

PROPOSITION 3.1. Let M^{2n} be conformally flat. If M_0 is minimal, then

$$k \leq (n-2)(n-1)$$
,

with equality if and only if M_0 is totally geodesic.

PROPOSITION 3.2. Let M^{2n} be conformally flat. If M_0 is totally geodesic, then the sectional curvature of M_0 is identically 1.

THEOREM 3.3. Let M_0 be an α -submanifold in a conformally flat l.c. k. manifold $\{M^{2n}, J, G, \alpha\}$ satisfying $\overline{\nabla}\alpha = 0$ and $|\alpha| = 1$. If M_0 is minimal, then the followings are equivalent to one another.

- (a) M_0 is totally geodesic.
- (b) Ric=(n-2)g.
- (c) k=(n-2)(n-1).
- (d) $\rho_{M_0}(X, Y)=1$ for any orthogonal pair X and Y in D_0 .

PROOF. It is immediate from (3.5), (3.6) and (3.7) that (a) \Rightarrow (b), (c), (d). (b) \Rightarrow (a), (c) \Rightarrow (a) and (b) \Rightarrow (c) are obvious.

Hence it is sufficient to show only (d) \Rightarrow (b). Let X_1 be an arbitrary unit vector field and choose X_2 , ..., X_{n-1} such that X_1 , X_2 , ..., X_{n-1} is an orthonormal basis of $\mathfrak{X}(M_0)$. Then from (d), we have

$$Ric(X_1, X_1) = n-2$$
.

This completes the proof.

Q.E.D.

Now for the second fundamental form h, we shall define the covariant derivative $\nabla_x h$ by

$$(3.8) \qquad (\nabla_X h)(Y, Z) = D_X(h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z).$$

Then the Codazzi equation of M_0 is given by

$$(\overline{R}_{XY}Z)^N = ('\nabla_X h)(Y, Z) - ('\nabla_Y h)(X, Z)$$
,

and the left hand side is zero because of (3.2). Hence we have

$$(3.9) \qquad ('\nabla_X h)(Y, Z) = ('\nabla_Y h)(X, Z).$$

Next, denoting R^{\perp} the curvature tensor of normal connection D, the Ricci equation of M_0 is as follows.

$$G(\overline{R}_{XY}\xi, \eta) = G(R_{XY}^{\perp}\xi, \eta) - g([H_{\xi}, H_{\eta}]X, Y),$$

where $X, Y \in D_0, \xi, \eta \in D_0^{\perp}$. Hence from (3.2), we obtain

(3.10)
$$G(R_{XY}^{\perp}\xi, \eta) = g([H_{\xi}, H_{\eta}]X, Y).$$

Lemma 3.4. Let M_0 be a minimal α -submanifold in a conformally flat l.c.k. manifold M. Then we have

$$\begin{split} \frac{1}{2} \Delta |h|^2 &= (n-1)|h|^2 - \sum_{i,j} \operatorname{tr} (H_i H_j - H_j H_i)^2 - \sum_{i,j} (\operatorname{tr} H_i H_j)^2 + |\nabla h|^2 \\ &= (n-1)|h|^2 - 3 \sum_{i,j} (\operatorname{tr} H_i H_j)^2 + 2 \sum_{i,j} \operatorname{tr} (H_i H_j)^2 + |\nabla h|^2 \,. \end{split}$$

PROOF. Since M_0 is minimal, we have from (3.8) and (3.9)

$$\frac{1}{2}\Delta|h|^2 = \sum \{R_{ij}H_{k,jl}H_{k,li} - R_{ijkl}H_{m,il}H_{m,jk} + R_{ijkl}^{\perp}H_{k,im}H_{l,jm}\} + |\nabla h|^2,$$

where R_{ijkl} , R_{ij} , R_{ijkl}^{\perp} are the components of R, Ric and R^{\perp} . Hence from (3.4), (3.5) and (3.6), we have

$$\begin{split} \frac{1}{2}\Delta|h|^2 &= (n-1)|h|^2 - 2\sum H_{i,jk}H_{i,kl}H_{m,ln}H_{m,nj} - \sum H_{i,jk}H_{i,lm}H_{n,jk}H_{n,lm} \\ &+ 2\sum H_{i,jk}H_{i,lm}H_{m,jl}H_{n,km} + |\nabla h|^2 \\ &= (n-1)|h|^2 + \sum_{i,j} \operatorname{tr}(H_iH_j - H_jH_i)^2 - \sum_{i,j} (\operatorname{tr}H_iH_j)^2 + |\nabla h|^2. \end{split}$$

The second equation follows from the above equation and proposition 2.5.

Q.E.D.

We have known the following lemma.

LEMMA 3.5. [5] Let A and B be symmetric $n \times n$ -matrices. Then we have $-\operatorname{tr}(AB-BA)^2 \leq 2\operatorname{tr} A^2\operatorname{tr} B^2$, and the equality holds for non zero matrices A and B if and only if A and B can be transformed simultaneously by an orthogonal matrix into scalar multiples of \tilde{A} and \tilde{B} respectively, where

$$\widetilde{A} = \left(\begin{array}{c|c} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right) \qquad \qquad \widetilde{B} = \left(\begin{array}{c|c} 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 0 \end{array}\right)$$

Moreover, if A_1 , A_2 , A_3 are $n \times n$ symmetric matrices, and if

$$-\operatorname{tr}(A_iA_j-A_jA_i)^2 \leq 2\operatorname{tr}A_i^2A_j^2$$
, $1\leq i, j\leq 3$, $i\neq j$,

then at least one of the matrices A_i must be zero.

LEMMA 3.6. For arbitrary real numbers a_1, \dots, a_n , the following equality holds.

$$-2\sum_{i\neq j} a_i a_j - \sum_{i\neq j} a_i^2 = \frac{1}{n} \sum_{i\neq j} (a_i - a_j)^2 - \left(2 - \frac{1}{n}\right) (\sum_{i\neq j} a_i)^2.$$

THEOREM 3.7. Let M_0 be an α -submanifold in a conformally flat l.c. k. manifold M^{2n} satisfying $\overline{\nabla}\alpha=0$, $|\alpha|=1$ and n>1. If M_0 is compact minimal and satisfies $|h|^2 < \frac{(n-1)^2}{2n-3}$, then M_0 is totally geodesic.

PROOF. Let $(H_{i,jk})$ be the local expression of H_i with respect to a local orthonormal basis E_1, \dots, E_{n-1} of $\mathfrak{X}(M_0)$. Then $(\operatorname{tr}(H_iH_j))$ is a symmetric matrix and independent of the choice of the basis. Hence we may assume that $\operatorname{tr}(H_iH_i)=0$ if $i\neq j$.

From lemma 3.4, 3.5 and 3.6, we have

$$\begin{split} \frac{1}{2}\Delta|h|^2 &= (n-1)|h|^2 + \sum_{i,j} \operatorname{tr} (H_i H_j - H_j H_i)^2 - \sum_i (\operatorname{tr} H_i^2)^2 + |'\nabla h|^2 \\ &\geq (n-1)|h|^2 - 2\sum_{i\neq j} (\operatorname{tr} H_i^2)(\operatorname{tr} H_j^2) - \sum_i (\operatorname{tr} H_i^2)^2 \\ &= (n-1)|h|^2 + \frac{1}{n-1}\sum_{i < j} (\operatorname{tr} H_i^2 - \operatorname{tr} H_j^2)^2 - \left(2 - \frac{1}{n-1}\right)\sum_i (\operatorname{tr} H_i^2)^2 \\ &= \frac{2n-3}{n-1}|h|^2 \left(\frac{(n-1)^2}{2n-3} - |h|^2\right). \end{split}$$

Therefore, if $|h|^2 < \frac{(n-1)^2}{2n-3}$, then $\Delta |h|^2 = 0$ follows and |h| = 0 by a well-known theorem of E. Hopf. Q.E.D.

THOREM 3.8. Let M_0 be an α -submanifold in a conformally flat l.c.k. manifold M^{2n} satisfying $\overline{\nabla}\alpha=0$, $|\alpha|=1$ and n>1. If M_0 is compact minimal and of constant curvature c, then either M_0 is totally geodesic or $c \leq \frac{4-n}{2}$, where the equality holds if and only if $\nabla h=0$.

PROOF. Since M_0 is of constant curvature c, we have k=(n-2)(n-1)c and from equation (3.6)

$$0 \le |h|^2 = (n-1)(n-2)(1-c)$$
,

which means that if n=2 or c=1 then M_0 is totally geodesic.

On the other hand, equations (3.4) and (3.5) become

$$\begin{split} \sum & \operatorname{tr} \; (H_i H_j)^2 - \sum_{i,\,j} (\operatorname{tr} \; H_i H_j)^2 = & (c-1) \, |\, h\,|^{\,2} \; , \\ & \sum_{i,\,j} (\operatorname{tr} \; H_i H_j)^2 = |\, h\,|^{\,2} \; . \end{split}$$

Then from lemma 3.4, we have

$$(n-4+2c)|h|^2+|\nabla h|^2=0$$

which means that |h|=0 or $n-4+2c \le 0$. This completes the proof. Q.E.D.

§ 4. Minimal α -submanifold with $|h|^2 = \frac{(n-1)^2}{2n-3}$.

Let M^{2n} be a conformally flat l.c.k. manifold satisfying $\overline{\nabla}\alpha=0$ and $|\alpha|=1$, and M_0 be an (n-1)-dimensional α -submanifold with natural induced metric.

We shall make use of the following convention on the ranges of indices:

$$1 \le a, b \le 2n$$
, $1 \le i, j \le n-1$, $n \le \alpha, \beta \le 2n$.

With respect to the frame field of M^{2n} choosen in § 2, let $\omega_1, \dots, \omega_{2n}$ be the field of dual frames. Then we have $\omega_{2n-1}=\alpha$ and $\omega_{2n}=\beta$, and the structure equations of M^{2n} are as follows:

$$(4.1) d\omega_a = \sum \omega_{ab} \wedge \omega_b, \quad \omega_{ab} + \omega_{ba} = 0,$$

$$(4.2) d\omega_{ab} = \sum \omega_{ac} \wedge \omega_{cb} + \bar{\Omega}_{ab},$$

$$ar{arOmega}_{ab} \! = \! -rac{1}{2} \sum ar{R}_{abcd} \omega_c \! \wedge \! \omega_d \! = \! \omega_a \! \wedge \! \omega_b \! - \! lpha_a lpha_c \! \omega_c \! \wedge \! \omega_b \! + \! lpha_b \! lpha_c \! \omega_c \! \wedge \! \omega_a$$
 ,

where α_a are the components of α .

Restricting these forms to M_0 , we have the structure equations of the immersion.

$$\omega_{\alpha}=0,$$

(4.4)
$$\omega_{\alpha i} = \sum h_{\alpha ij} \omega_j, \qquad h_{\alpha ij} = h_{\alpha ji},$$

$$(4.5) d\omega_i = \sum \omega_{ij} \wedge \omega_j, \omega_{ij} + \omega_{ji} = 0,$$

(4.6)
$$d\omega_{ij} = \sum \omega_{ik} \wedge \omega_{kj} + \Omega_{ij}, \qquad \Omega_{ij} = -\frac{1}{2} \sum R_{ijkl} \omega_k \wedge \omega_l,$$

$$(4.7) R_{ijkl} = \delta_{il}\delta_{jk} - \delta_{ik}\delta_{il} + \sum (h_{\alpha il}h_{\alpha jk} - h_{\alpha ik}h_{\alpha jl}).$$

Let us define $h_{\alpha ijk}$ by

$$(4.8) \qquad \sum h_{\alpha ijk} \omega_k = dh_{\alpha ij} + h_{\alpha ik} \omega_{kj} + h_{\alpha kj} \omega_{ki} + h_{\beta ij} \omega_{\beta \alpha}.$$

Then from (4.2), (4.3) and (4.4), we have

$$(4.9) h_{\alpha i i k} = h_{\alpha i k i}.$$

Let H_{α} denote the matrix formed from $h_{\alpha ij}$, then by lemma 3.4 we have

(4.10)
$$\frac{1}{2} \Delta |h|^2 = |\nabla h|^2 + \sum_{\alpha \neq \beta} \operatorname{tr} (H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha}) - \sum_{\alpha} (\operatorname{tr} H_{\alpha}^2)^2.$$

In the following, we consider the case $|h|^2 = \frac{(n-1)^2}{2n-3}$.

Applying the inequality in the lemma 3.5 to (4.10), we have

$$(4.11) \quad \frac{1}{2} \Delta |h|^2 \ge (n-1)|h|^2 - 2 \sum_{\alpha \neq \beta} (\operatorname{tr} H_{\alpha}^2) (\operatorname{tr} H_{\beta}^2) - \sum_{\alpha} (\operatorname{tr} H_{\alpha}^2)^2 + |\nabla h|^2$$

$$= (n-1)|h|^2 + \frac{1}{n-1} \sum_{\alpha < \beta} (\operatorname{tr} H_{\alpha}^2 - \operatorname{tr} H_{\beta}^2)^2 - \left(2 - \frac{1}{n-1}\right)|h|^4 + |\nabla h|^2$$

Since $|h|^2 = \frac{(n-1)^2}{2n-3}$, we have the following from (4.11):

$$(4.12) | 7 \nabla h |^2 = 0,$$

(4.13)
$$tr H_{\alpha}^{2} - tr H_{\beta}^{2} = 0,$$

$$(4.14) tr (H_{\alpha}H_{\beta}-H_{\beta}H_{\alpha})^{2}=-2 tr H_{\alpha}^{2} tr H_{\beta}^{2}, \alpha \neq \beta.$$

By lemma 3.5 and (4.13), (4.14), we have $n \le 3$. If n=2, then M_0 is 1-dimensional and has scalar curvature -1. Thus n must be 3. By lemma 3.5, we have

$$H_3 = x \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $H_4 = y \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $H_5 = H_6 = (0)$,

where x and y are constants. From (4.11) and $|h|^2 = \frac{4}{3}$, we have $x^2 = y^2 = \frac{1}{3}$. Thus we may assume that $x = -y = \frac{1}{\sqrt{3}}$.

From (4.4), we have

$$\omega_{13} = h_{31j}\omega_j = x\omega_2$$
, $\omega_{23} = h_{32j}\omega_j = x\omega_1$,
 $\omega_{14} = h_{41j}\omega_j = y\omega_1$, $\omega_{24} = h_{42j}\omega_j = -y\omega_2$,
 $\omega_{15} = \omega_{25} = \omega_{16} = \omega_{26} = 0$.

By (4.4) and (4.11), we have

$$h_{\alpha kj}\omega_{ki}+h_{\alpha ik}\omega_{kj}+h_{\beta ij}\omega_{\beta\alpha}=0$$
.

Putting $\alpha=3$ and i=j=1, this becomes

$$0 = h_{3k1}\omega_{k1} + h_{31k}\omega_{k1} + h_{311}\omega_{\beta3} = x\omega_{21} + x\omega_{21} + y\omega_{43}$$
.

That is $\omega_{43}=2\omega_{21}$. In the same way, we have $\omega_{45}=\omega_{25}=\omega_{46}=\omega_{56}=0$. In summary, we have

THEOREM 4.1. Let M_0 be a compact minimal α -submanifold of a conformally flat l.c.k. manifold M^{2n} satisfying $\overline{\nabla}\alpha=0$, $\alpha=1$, and $|h|^2=\frac{(n-1)^2}{2n-3}$. Then n=3, hence $|h|^2=\frac{4}{3}$ and M_0 is of constant curvature $\frac{1}{3}$. With respect to an adapted orthogonal frame field E_1, \dots, E_6 , the connection form (ω_{ab}) restricted to M_0 is given by

$$\begin{pmatrix}
0 & \omega_{12} & x\omega_{2} & -x\omega_{1} & 0 & 0 \\
-\omega_{12} & 0 & x\omega_{1} & x\omega_{2} & 0 & 0 \\
-x\omega_{2} & -x\omega_{1} & 0 & 2\omega_{12} & 0 & 0 \\
x\omega_{1} & -x\omega_{2} & -2\omega_{12} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \omega_{56} \\
0 & 0 & 0 & 0 & -\omega_{56} & 0
\end{pmatrix}, x = \frac{1}{\sqrt{3}}$$

Therefore such a submanifold is locally unique.

From now on, we consider the case that the ambient space is the Hopf manifold. Let us consider (2n-1)-dimensional sphere

$$S^{2n-1} = \{z \in \mathbb{C}^n \mid |z| = 1\}$$

and the circle $S^{1}\left(\frac{1}{\pi}\right)$ defined by $\left\{\frac{1}{\pi}e^{i\theta}\right\}$

Then one of the l.c.k. structures of $S^1\left(\frac{1}{\pi}\right) \times S^{2n-1}$ is given as follows.

$$ds^{2} = \frac{1}{\pi^{2}} d\theta^{2} + \sum_{k=1}^{n} dz^{k} d\bar{z}^{k},$$

$$\Omega = \frac{2}{\pi} i \sum_{k=1}^{n} \bar{z}^{k} d\theta \wedge dz^{k} - i \sum_{k=1}^{n} dz^{k} \wedge d\bar{z}^{k},$$

$$\alpha = -\frac{1}{\pi} d\theta.$$

Clearly $S^1\left(\frac{1}{\pi}\right) \times S^{2n-1}$ satisfies the condition of theorem 4.1, and M_0 is immersed is S^{2n-1} .

On the other hand, we know the following results. ([7])

THEOREM. Let M be an n-dimensional compact orientable Riemannian manifold which is minimally immersed in an (n+p)-dimensional sphere of constant curvature c. If the immersion is full and the sectional curvature of M is not smaller than $\frac{nc}{2(n+1)}$, then M is a sphere of constant curvature c or M is a Veronese manifold.

Thus we have

COROLLARY 4.2. If M_0 is a compact orientable minimal α -submanifold in $S^1\left(\frac{1}{\pi}\right) \times S^{2n-1}$ satisfying $|h|^2 = \frac{(n-1)^2}{2n-3}$, then n=3 and M_0 is a Veronese manifold.

References

- 1) I. Vaisman: On locally conformal almost kähler manifolds, Israel J. Math., 24 (1976), 338-351.
- 2) S. Tachibana: On the Bochner curvature tensor, Natur. Sci Rep. Ochanomizu Univ., 18 (1967), 15-19.
- 3) S. Sasaki: Almost contact manifolds, Lect Notes, Math. Insti. Tôhoku Uuiv., 1967.
- 4) D.E. Blair and K. Ogiue: Geometry of integral submanifolds of a contact distribution, Illinois J. Math., 19 (1975), 262-276.
- 5) S.S. Chern, M.P. Do Carmo and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer -Verlag, 1970, 59-75.
- 6) T. Kashiwada: Some properties of locally conformal kähler manifolds, Hokkaido Math. J., 8 (1979), 191-198.
- 7) T. Itoh: Characterizations of Veronese manifolds, J. Math. Soc. Japan, 30 (1978), 73-74.