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§0. Introduction.

A 2n-dimensional Hermitian manifold is said to be locally conformal
kéhlerian (l.c.k. manifold) if its metric is locally conformal to kihlerian metrics.
In 1976, 1. Vaisman [1] introduced an l.c.k. manifold and showed that the
Hopf manifold is a typical example of l.c.k. manifolds. Since the Hopf mani-
fold is an l.c.k. manifold which can not admit a k#hlerian metric, l.c.k. manifolds
seem to constitute an interesting class among all complex manifolds.

On the other hand, let N?"*! be a Sasakian manifold with contact form
7, D a distribution defined by 7(X)=0, then we know the following results:

(1) The dimension of any integrable distribution DD is at most n. ([3])

(2) Let DCD be an n-dimensional integrable distribution of a Sasakian
space form and N, a maximal integral manifold of D. Then N, is totally
geodesic provided that N, is compact minimal and the square length of the
second fundamental form is bounded by a certain number. ([4])

Since an l.c.k. manifold resembles to a contact manifold in a sense, it is a
problem to study in such manifolds the character of a distribution correspond-
ing to D.

In §1, we shall give some basic properties in an lLck. structure (J, g, a).
In §2, we shall derive an integrability condition for a distribution D defined
by a(X)=0, a(JX)=0, and show that the dimension of any integrable distribu-
tion in D is at most n—1. If there exists such a distribution of dimension
n—1, we shall call it «-distribution and its maximal integral manifold «a-
submanifold. In §3, we shall show that if M?*"* is a conformally flat lck.
manifold satisfying Va=0, then the similar theorems to (1) and (2) stated above
hold on a-submanifold. In §4, we shall show that there exists a-submanifold
(n—1)?

in the Hopf manifold with |A|2= ,
2n—3

where h is the second fundamental

form of the immersion.
Throughout the paper, manifolds, vector fields and tensor fields are assumed
to be C=.
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§1. L.c.k. manifold.

Let M?"® be a 2n-dimensional manifold. We denote by X(M) the Lie
algebra of all vector fields on M?*". A complex structure / on M?" is by defini-
tion a tensor field of type (1, 1) on M?" satisfying the following two condi-
tions :

(L1 J*X=-X,

(1.2) LX, YI+JLJX, YI+JLX, JY1-[JX, JY]=0,

where X, YeX(M).

A 2 n-dimensional manifold with a complex structure is called a complex
manifold. If a complex manifold M?" admits a Riemannian metric g which
satisfies the condition

(1.3) gUX, JY)=g(X, Y)

for X, YeX(M), then we call {M?", J, g} a Hermitian manifold.
Putting

JUX, Y)=g(X,JY)
for X, YeX(M), we have
J(X, Y)=—J%Y, X).

This means that J° is a differential 2-form which will be called the fundamental
2-form of {M®", J, g}. A Hermitian manifold {M?®", ], g} is called a kédhlerian
manifold if V/=0, where V is the Riemannian connection. A Hermitian manifold
{M?*, ], g} is called an l.c.k. manifold if the metric is locally conformal to
kihlerian metrics. More precisely, for each point of M there exists a neigh-
bourhood U and a local function p on U such that g*=e=*g is a kihlerian
metric.

If g¥"=e¢7%g is a k#hlerian metric in another neighbourhood U’, then g*
is homothetic to g* on UNU’. As p-p’ is constant on UNU’, the collection
{dp} defines a closed differential 1-form which will be denoted by a.

Now we shall investigate some relations between the Riemannian connec-
tion V with respect to g and V* with respect to g*=e %g.

Taking account of the definition of Vyx:

2e(NxY, 2)=Xg(Y, Z)+Yg(X, 2)—Zg(X, Y)
+g([X, Y], Z)+g([Z, X], V)+g(X, [Z, Y]
for X, Y, Z€X¥(M), and the similar expression of V%, we have
(14)  g(V%Y, 2)=g(NxY, Z)—a(X)g(Y, Z)—a(Y)g(X, Z)+a(Z)g(X, ).
On the other hand, V#/**=0 holds for g* where

JX, Y)=g*X, JY)=e*]"X, Y).

ey g

»
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From (1.4) and
(VETNY, Z)=e*{(VE]')NY, Z)—2a(X)JNY, Z)} ,
V#/*0=() is equivalent to the following equations:

(L5) (VxNY, Z)=a(Z2)]J"(X, Y)—a(Y)J"X, Z)+a(JY)g(X, Z)—a(JZ)g(X, Y).
Hence we know that if M*®" is an l.c.k. manifold, then there exist a tensor
field J of type (1, 1), Riemannian metric g and a closed differential 1-form «
satisfying (1.1)~(1.3) and (1.5). ’

Conversely it is easy to prove that a manifold which admits (J, g, a)
satisfying (1.1)~(1.3) and (1.5) and da=0 is an l.c.k. manifeld. We call « the
fundamental 1-form of the l.c.k. manifold.

We shall mean by {M®*, ], g, a}b a 2n-dimensional l.c.k. manifold with
structure {/, g, a} .

Let us introduce a 1-form f by

BX)=a(JX)  for XeX(M),
then (1.5) can be written as
(1.6) (VxJNY, Z2)=a(Z)g(X, JY)—a(Y)g(X, JZ)
+B8(Z2)g(X, Y)—-p(Y)gX, Z).
Defining a¥, p*€X(M) by
AX)=gX, a®),  BX)=g(X, B,

we easily obtain the following five formulas:

(1.7 Br=—Ja*,  BJX)=—a(X).

(1.8) a(f*)=pla*)=0.

(1.9) (VxB(Y)=]a*?]"(X, Y)+a(X)BY)—a(Y)BX)+(xa)JY).
(1.10) Var]J'=0.

(111) If Yxa=0, then
VxpV)=]a*|J*X, Y)+a(X)B(Y)—a(Y)(X).

§2. Submanifold in an l.c.k. manifold satisfying Va=0.

Let {M?®", ], G, o} be an lLck. manifold satisfying Va=0, where V is the
Riemannian connection with respect to G. We may assume that |a|=1
without loss of generality.

Now let us consider the distribution given by

PrOPOSITION 2.1. If D, is an involutive distribution such that D,C D, then
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D, is anti-invariant, i.e, X& D, = JX&D,.
PROOF. Since D, is involutive, we have
BLX, YD=0 for X, YeD,.
On the other hand,

BLX, Y)=2g(Y, JX)
follows from (1.11), and we obtain
g(Y, JX)=0 for X, YeD,,

which means that D, is anti-invariant. Q.E.D.
We are interested in the distribution D, stated in proposition 2.1 and
investigate its integral manifold.

ProOPOSITION 2.2. The dimension of D, is at most n—1.

PrOOF. Suppose that the dimension of D, is r and M, is a maximal
integral manifold of D,. Let E,, ---, E, be the local orthonormal basis of X(M,).
Since D, is anti-invariant, we have

G(Ei, ]E]):()r i: ]:1: e, T

Since E;€D,, we have a(E;)=0, B(E;)=0, ie, G(a*, E;)=0, G(5¥, E;)=0. On
the other hand, from (1.6) and (1.7), we have

G(aﬁ:) ‘8#):0’ G(JE” a#):O: G(]EZ) ﬂ#):O°

Thus, E,, -, E,, JE,, ---, JE,, a*, B%* constitute a local orthonormal basis of
X(M), and hence r=n—1. ' Q.E.D.

From now on, we shall only consider the distribution D, with dimension

n—1. Let i: M,— M be an integral manifold of D, and for the sake of simpli-
city we call M, a-submanifold.

Let E,, ---, E,-; be a local orthonormal basis of X¥(M, and &, -, E,+1 be
a local orthonormal normal vector fields.

By the above argument, we can put
&=JE;,, i=l,,n—1,
§n=a®,  Enu=f*.
We denote the induced metric on M, by g, that is,
gX, V)i=GX,Y) for X, YeD,.

Let V and V be Riemannian connections with respect to g and G, and D
be the normal connection of M, Then the Gauss and Weingarten formulas
are as follows:

(2.1) VxY=VyY+n(X,Y) for X, YED,,



July 1980 a-Submanifold in a Locally Conformal Kihlerian Manifold 5

(2.2) Vxé=—HeX)+Dx§  for XeD,, é€ Dy,

where A is the second fundamental form of M, and H: is the second funda-
mental form with respect to a normal vector field &.
If we denote H; instead of Hg, (i=1, --+, n-+1), it holds that

nX, Y>=:§g<Hi<X>, Y2 .

Now we have following propositions.

PROPOSITION 2.3. (a) The second fundamental form with respect to o¥, 5%
are identically zero, that is

(2.3) H,=H,_,=0.
(b) If XeX(M,), then
2.4) Dyat=0, Dyf*=JX.
Proor. From (2.2) and Va=0, we have
0=Vy&,=—H(X)+Dx&,, for XeD,,

which implies that H,(X)=0, Dy£,=0 for any X<D, Similarly we have from
(2.2)

Vx f#=—Hps(X)+DxEpss.
On the other hand, we can obtain from (1.10),
Gz B, Y)=G(Y, JX),
which means Vxf¥=JX. Q.E.D.
PROPOSITION 2.4. For any X, Y€ D,, we have
(2.5) Hyx(Y)=Hy(X).
Proor. Since X, YeD,, we have
Ve )Y)=G(X, Y)B* .
Substituting the above equation into Vx(JY)={N(Y)+JTxY), we obtain
Vx(JY)=G(X, Y)B*+J(VxY)+J(h(X, Y)).
On the other hand, we have
Vx(JY)=—Hp(X)+Dx(JY),

because /X is a normal vector field for any XeD,.
Therefore by comparing the tangential parts of above two equations, we
obtain (2.5). Q.ED.

PROPOSITION 2.5 tr (X H3)?=>tr H;H,)*
] 1,7
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Proor. We put
Hj ni=g(H(Ey), Ey),

where E;, -+, E,-; is a local orthonormal basis of X(M,).
By definition of H; and from (2.3) and (2.5), we have

Hj.kL:Hj,lk ’ Hn,kl:Hn+1,kl:0; Hi,jk:Hj,ik .
Hence it holds that

tr (Z}H}"»)‘&:tr CH;, i1 Hy w0)?
j

:EHi,iji, szm,anm, nj
=>(tr H;H;)?,
1,7

where the sums are taken over all repeated indices. Q.ED.

§ 3. a-submanifold in a conformally flat l.c.k. manifold.

Let M*" be an l.c.k. manifold satisfying Va=0, then at each point of M?®"
there exists a neighbourhood where G*=e¢~*(G is a kidhlerian metric for a sui-
table local function p and a=dp is the fundamental 1-form. Denoting the
curvature tensor with respect to G and G* by R and R* respectively, we have
by straightforward calculation

B1) GRYvZ, W)=G(RxvZ, W)+a(X)a(W)G(Y, Z)+a(Y)UZ)G(X, W)
—a(Y)a(W)G(X, Z)—a(X)a(Z)G(Y, W)—G(X, W)G(Y, Z)
+G(Y, W)GX, Z).

From now on, we assume that M*®*" is conformally flat, and look for the
exact form of curvature tensor in terms of G and a.

As conformally flat kdhlerian metric is flat, G* satisfies R¥,Z7=0. Hence
from (3.1), we have

32) GRzyZ, W)=a(X)(Z)G(Y, W)—a(Y)a(Z)G(X, W)+a(Y)a(W)G(X, Z)
—a(X)a(W)G(Y, Z)+G(X, W)G(Y, Z)—G(Y, W)G(X, Z).

The curvature tensor of M, with respect to g will be denoted by R, and
the equation of Gauss is given by

(3.3) g(RxvZ, W)=G(RxyZ, W)+GX, W), h(Y, Z)—GKX, Z), Y, W)).
From (3.2) and (3.3), we obtain
B4) g(RxyZ, W)=g(X, W)g(Y, Z)—g(Y, W)g(X, Z)
+2 {g(H(X), W)g(H(Y), Z)—g(H(Y), W)g(H(X), Z)
1 for X,Y,Z WeXM,) .
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The Ricci tensor Ric(X, Y) and the scalar curvature k of M, are as follows :

(3.5) Rie(X, Y)=(n—2)g(X, ¥)+Z (tr H)g(H(X), ¥)—3 g(H{X), H(Y)).
(3.6) k=(n—2)(n—1)+3 (tr H)*—|h|*.

The sectional curvature py (X, Y) of M, determined by an orthonormal
pair X and Y of D, is given by

B7) pu(X, Y)=1 2 {gH(X), Y)*—g(Hy(X), X)g(H(Y), Y)} .

L
| X2 Y] %
Thus, we obtain the following two propositions immediately.
PROPOSITION 3.1. Let M*®" be conformally flat. If M, is minimal, then
E=(i—2(n—1),
with equality if and only if M, s totally geodesic.

PROPOSITION 3.2. Let M®*" be conformally flat. If M, is totally geodesic,
then the sectional curvature of M, is identically 1.

THEOREM 3.3. Let M, be an a-submanifold in a conformally flat . c. k.
manifold {M?®**, J, G, a} satisfying VNa=0 and |a|=1. If M, is minimal, then
the followings are equivalent to one another.

(a) M, is totally geodesic.

(b) Ric=(n—2)g.

(c) k=(n—2)(n—1).

(d) (X, Y)=1 for any orthogonal pair X and Y in D,.

Proor. It is immediate from (3.5), (3.6) and (3.7) that (a)= (b), (c), (d).
(b) => (a), (¢) =~ (a) and (b) = (¢) are obvious.

Hence it is sufficient to show only (d) = (b). Let X, be an arbitrary unit
vector field and choose X,, ---, X,-; such that X, X,, ---, X,,_; is an orthonormal
basis of X¥(M,). Then from (d), we have

Ric(X,, X,)=n—2.

This completes the proof. Q.E.D.
Now for the second fundamental form £/, we shall define the covariant
derivative 'Vyh by

3.8 (Nxh)XY, Z)=Dx(WY, Z)—h(NxY, Z)—hY,NxZ).
Then the Codazzi equation of M, is given by
(RxyZ)N=(VxhXY, Z)—(Nyh)X, Z),
and the left hand side is zero because of (3.2). Hence we have

(3.9) ("NxhXY, Z)=UNyh)(X, Z).
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Next, denoting R* the curvature tensor of normal connection D, the Ricci
equation of M, is as follows.

G<EXYE) ﬁ):G(Ri‘YE; ”)mg([HE, Hv]X) Y) ’
where X, YeD,, & p=Dy. Hence from (3.2), we obtain
(3.10) G(Rxyv§, n)=g([He, H,1X, V).

LEMMA 34. Let M, be a minimal a-submanifold in a conformally flat . c. k.
manifold M. Then we have

2 Alh|*=(—D1A] 3 tr (HHy— H,H) =5, (e HiH )+ | 'Th|®
=(n—1)|h|*—3 12] (tr H;H;*+2 Z)] tr (H;H;)*4-|'Vh|?.

PRrROOF. Since M, is minimal, we have from (3.8) and (3.9)
1
§A[h1232 {Ri;Hy, jHp 1i—RijeiHp, st Hp, j1 -+ Ry, imHy, jm} +1'VR| 2,

where R;jui, Rij, Rijm are the components of R, Ric and R*.
Hence from (3.4), (3.5) and (3.6), we have

1
E—AI/‘LIZZ(n——l)[h]z—Z S H; e Hy yHo inH o, nj— 20 Hi o Hy i Ha, j2 Hoa, 1m

+22 H i1 i imHy, i Hy, o+ 1"VR|?
=(n—1)] h|2—|~i2 tr (H;H;—H;H;*—% (tr H;H;*+|'Vh|®.
i iJ

The second equation follows from the above equation and proposition 2.5.

Q.E.D.
We have known the following lemma.

LeMMA 35. [6] Let A and B be symmetric nXn-matrices. Then we have
—tr (AB—BA?<2 tr A*tr B?, and the equality holds for non zero matrices A and
B if and only if A and B can be transformed simultaneously by an orthogonal
matrix into scalar multiples of A and B respectively, where

SRS

0 O

0 0
Moreover, if A;, As, A; are nXn symmetric matrices, and if

—tr (A A;—A;ARS2 tr AZAY, 11, j<3,  i#j,
then at least one of the matvices A; must be zero.

LEMMA 3.6. For arbitrary real numbers ay, -+, ap, the following equality
holds.
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P — l 2 1 2
—2 ;jaiaFZ ai—ggj(ara» —(2*;>(2 a;)?.

THEOREM 3.7. Let M, be an a-submanifold in a conformally flat [.c. k. ma-
nifold M?* satisfying Va=0, |a|=1 and n>1. If M, is compact minimal and
(n 1)*

satisfies [h|*<— Dy then M, is totally geodesic.

Proor. Let (H; ;) be the local expression of H; with respect to a local
orthonormal basis E,, -, E,-; of X(M,). Then (tr(H:H;) is a symmetric
matrix and independent of the choice of the basis. Hence we may assume
that tr (H;H;)=0 if i#j.

From lemma 3.4, 3.5 and 3.6, we have

%Alhlz"—‘(n—l)lhi“rzzj tr (HiH;—H;Ho) =3 (tr HY)*+|'Vh]?

Z(—D]h1*=2 3 (e Hi)(er HY—3 (tr HY?
2 1 2 ne__[o__. 1 7\2
=(n—D)| A= 2 (e Hi—tr HY*—(2———7) 3 (tr H)

S ri (P~ ).

(n —1)°
-3’

known theorem of E. Hopf. Q.E.D.

Therefore, if [A|2<—

then A|A|?=0 follows and |A|=0 by a well-

THOREM 3.8. Let M, be an a-submanifold in a conformally flat l. c. k. mani-
fold M* satisfying Ya=0, |a|=1 and n>1. If M, is compact minimal and of

2

constant curvature c, then either M, is totally geodesic or ¢= L , Where the
equality holds if and only if 'V h=0.

PrROOF. Since M, is of constant curvature ¢, we have k=(n—2)(n—1)c and
from equation (3.6)

0= | h|?=(—D—2)1—c) |

which means that if n=2 or ¢=1 then M, is totally geodesic.
On the other hand, equations (3.4) and (3.5) become

> tr (HiHj)z—g‘;_(tr H:H)*=(c—1)|h|*,
?j(tr HHj)*=|h|*>.
Then from lemma 3.4, we have
(n—4+20)|h|*+|'Vh|*=0,

which means that |A|=0 or n—4+42¢=<0. This completes the proof. Q.E.D.
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(n—1)*
2n—3
Let M?®" be a conformally flat l.c.k. manifold satisfying Va=0 and |a|=1,
and M, be an (n—1)-dimensional a-submanifold with natural induced metric.
We shall make use of the following convention on the ranges of indices:

§4. Minimal a-submanifold with |A|%?=

1=a, b=Z2n, 1=:, j=n—1, n=a, P=2n.

With respect to the frame field of M?™ choosen in §2, let w;, -+, w,, be the
field of dual frames. Then we have ws,-,=a and w,,=p, and the structure
equations of M?®" are as follows:

(4.1) dw,=2] 0wy Nwy,  @artwpa=0,
4.2) dwab:E wacchb+§ab s
_ 1 -
Qab:_fz R pca@ AN@Wa=0o NWp— Qa0 N\ Wyt 030 Ny,

where «, are the components of «.

Restricting these forms to M, we have the structure equations of the
immersion.

(4.3) w,=0,
(4.4) ’ L Wai =2 haiyjw;, haij=haji,
(4.5) dw;=2 wi; \w;, Wit w;=0,
1
(4.6) dwyj =% Wi Nwyi+245, Qz’j:~?2 Rijniwe Ny,
4.7) Rijn1=040;4—0:1:0 5+ 2 (haithajr—hainhaj) -

Let us define h,qjr by
(4.8) 2 haijrwr=dhaijthair@rithari@ri+hei j0pa .
Then from (4.2), (4.3) and (4.4), we have
(4.9) hasjr=nRairj.

Let H, denote the matrix formed from h,;;, then by lemma 3.4 we have
(4.10) %Mhﬁ: |'Thi24 %}ﬁtr (H Hg—HpH,)—X (tr H})®.

(n—1)*
2n—3 °

Applying the inequality in the lemma 3.5 to (4.10), we have

In the following, we consider the case |A|’=

@I SAlA*Z D] Al*—2 5 (er Her HY—3 (br HE+ | V[
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1 1
ey 2 9 __ ne_ (o 4 ’ 2
=(n—D |- 3 (e Himtr By —(2——=) Al *+|'Th|
. . (n—1)? .
Since |A| R — we have the following from (4.11):
(4.12) |'Vh|2=0,
(4.13) tr H3—tr H3=0,
(4.14) tr (HoHy—HgH,*=—2tr Hytr H},  a#8.

By lemma 3.5 and (4.13), (4.14), we have n<3. If n=2, then M, is 1-dimensional
and has scalar curvature —1. Thus n must be 3. By lemma 3.5, we have

01 1 0
Hy,=x H,=y Hy=H=(0),
10 0 —1

where x and y are constants. From (4.11) and Ihlzzg—, we have x“:yzz—é—.

Thus we may assume that x:—y::}?.
From (4.4), we have
Wy3= N3 ;0;=XW, , Wos== gy ;0 ;=XW; ,
wu=h0;=yw0,, W2y =hypj0;=—YWs,
W15=Wo5=W1,=Ws6=0.
By (4.4) and (4.11), we have
harj@uithairwy it hgijwsa=0.
Putting a«=3 and i=j=1, this becomes
0=hsp10r1tha ka)1e1+hﬂuwﬂa:xwzrl—xa)zl‘l‘yw43 .
That is w;=2w,;. In the same way, we have w,=w;=wi=ws=0.

In summary, we have

THEOREM 4.1. Let M, be a compact minimal a-submanifold of a conformally

(&

flat I c. k. manifold M?®® satisfying Ya=0, a=1, and |h|*= 2%_%-)32—. Then n=
3, hence ly h| 2:% and M, 1s of constant curvature -é— With respect to an adapted
orthogonal frame field E,, -, E,, the connection form (wqs) restricted to M, is
given by
0 W15 xw, —xw; 0 0
—w, 0 X, XWs 0 0
—XWs —XW 0 2w 0 0 1
X, —XWy, —2We 0 0 0 ’ x:V?
0 0 0 0 0 W5

0 0 0 0 —ws 0
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Therefore such a submanifold is locally unique.
From now on, we consider the case that the ambient space is the Hopf
manifold. Let us consider (2n—1)-dimensional sphere

S*ri={zeC"| |z| =1}
and the circle S* ( 1 ) defined by{ 1 W}

Then one of the l.c.k. structures of Sl(%>><52"‘1 is given as follows.

—

dst=——df*-+ 2 dz*dz*

;|

t\]w

i 3 2rdONdzH—i 3 dz AdE*,

a:—vl——dﬁ.
7

Clearly S‘(—TlT)XS‘“‘“1 satisfies the condition of theorem 4.1, and M, is
immersed is S?*°1.

On the other hand, we know the following results. ([7])

THEOREM. Let M be an n-dimensional compact orientable Riemannian mani-
fold which is minimally immersed in an (n-+p)-dimensional sphere of constant
curvature c. If the immersion is full and the sectional curvature of M is not

ne .
smaller than 2ot then M is a sphere of constant curvature ¢ or M is a
Veronese manifold.
Thus we have

COROLLARY 4.2. If M, is a compact orientable minimal «-submanifold in

2
Sl(—ﬁl-)XSZ"”1 satisfying Ihlz—*(n 1?3 , then n=3 and M, is a Veronese mani-
fold.
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