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Introduction.

One example of conformally flat Riemannian space is given by a warped
product of 1-dimensional space M* and the space M™(c) of constant sectional
curvature ¢ ([6]). Especially, taking the function f(#)=(t*+1)/2 for t=R!, the
warped product space M"=R'X  M""(—1) is conformally flat and of non-
constant negative sectional curvature.

In this paper we investigate the umbilic space of an isometric immersion
of a conformally flat space M™ into the Euclidean space R™*?. The umbilic
spaces of an immersion were first studied by B.O’Neill [3] when M™ is of
positive constant curvature, and M. Sekizawa [4] generalized the results due
to O’Neill to the case of conformally flat spaces with positive curvature. We
make use of the metric of Lorentz signature and the theory of flat bilinear
forms introduced by J.D. Moore [1], [2]. Then Theorem 6 gives a characte-
rization of an umbilic space of an isometric immersion of a conformally flat
space into the Euclidean space. To determine the maximum dimension of the
umbilic spaces, we apply one of the results of Moore [1] about the dimension
of the nullity space of a flat bilinear form. Our main result (Theorem 8) is
that the dimension of the umbilic space for such an immersion of the space
of negative sectional curvature is not greater than 1.

1. Conformally flat spaces.

Let M™ be a Riemannian space which admits an isometric immersion into
the Euclidean space R™*?. Notations are as follows: For meM", T.(M)
(or Tn(M)*); the tangent (or normal) space of M™ at m, <,)>; the Euclidean
metric of R**? and the induced metric on M™®, a: Tp(M)X Tp(M) — Tn(M)*; the
second fundamental form of the immersion, &; (1=1, ---, p); the orthonormal
vectors of T, (M)*, Ay: Tn(M)— T,(M); the second fundamental tensor of
type (1, 1) such that v

a(x, ), Eo=<Axx), y>  for x, yeTn(M).
Let R(x, y) be the curvature tensor of M™ for x, y&€Tn(M), Q: Tn(M)—
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T..(M) be the Ricci tensor of type (1, 1), and R be the scalar curvature of M".
Then we have the Gauss equation

) —R(x, y>22221 (A, 2>Azy—§4‘ (Axy, DA,

—<{R(x, ¥)z, wy=Xa(x, z), a(y, w)>—<a(y, 2), alx, w)>.

Suppose that M”™ is conformally flat. Then the curvature tensor of M"
satisfies

@ —CR(x, )z, wy=¢(x, 2)9, wy—d(y, 2)x, w)
+d(y, w)ix, 2>—¢(x, wXy, 27,

where
Ox, =20 (@, 35— RCx, 3>/20—1) .

We take a vector space W,=T,(M)* @ R? in which we define the inner
product by

L, a, b), (&, a’, b')y>=<XE, &>+ab’+a’b

for &, &Tp(M) and a, b, a’, ’R. Then W, is a (p+2)-dimensional metric
vector space of Lorentz signature. The W,-valued symmetric bilinear form
B on T,(M) is defined by

B(x, =(alx, ), <x, y>, —(x, y)).

From (1) and (2), we have
{alx, 2), aly, w)>—<Lx, D¢y, wy—<y, w>P(x, 2)
=<Lalx, w), a(y, 2)>—<x, wr(y, 2)—<y, 2>P(x, w),

which implies
(3) L B(x, 2), By, w)>—<L Blx, w), By, 2)>=0.

A bilinear form f satisfying (3) for any vectors x, y, z and w in T,(M) is
called flat with respect to the metric € ,> (see [1]). Then taking into con-
sideration the more general work of J.D. Moore [1], we have the following
results: Let S(B) be the linear subspace of W, spanned by the vectors S(x, ¥)
as x and y range over T, (M), and put S(B),=1{£=S(B); <&, S(B)>=0}. Taking
a linear complement subspace W, of S(B), in S(B), we let W, be the orthogonal
complement to W, in W,. Then we have S(B);=S(B)NW,and Wr=W,D W.,.
We define the symmetric bilinear forms 8, and 8, on T,(M) as the W;- and
Wa-components of 8. Then Corollary 3 of [1] says that
(4) (i) the restriction of £ ,>» to W, and W, are non-degenerate,

(ii) By is null, that is, L Bi(x, ¥), Bilx, ¥)>=0 for any x, y€ Tn(M),

(iii) S(B)=W, and dim N(B)=n—dim W,, where

N(B)={x€Tn(M); Bulx, Tn(M))=0}.
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We will cite this result as (4) of J.D. Moore in the following.

LEMMA 1. Let the codimension p<n—1. Then the space N(B,)=(0) if and
only if S(B),=(0).

Proor. First we assume S(8),=(0). Let x&N(B,), then we have B(x, y)=
Bi(x, »)=S(P), for any yeT,,(M). Hence <{x, y>=0 holds, from which x=0 fol-
lows. Conversely we suppose S(B), is not (0). Since W, has the Lorentz
signature, the dimension of the subspace consisting of null vectors is one, and
hence we have dim S(8),=1. From the definition of S(f),, the metric <, > s
restricted to S(B) is degenerate. On the other hand <, >y, is non-degenerate
and hence S(f) is a proper subspace of W,. Thus we have

dim W, =dim S(8)4-1=dim W.+2,
from which dim W,=<p follows. Then by virtue of (4) of J. D. Moore, we have
dim N(Bs)=n—dim W,=n—p=1

by the assumption p=n—1. Therefore N(B,)+#(0) is proved.

2. Unmbilic spaces N(j.) at m.
In this section we assume N(f,)#(0).
LEMMA 2. Let x&N(B,), then x satisfies
la(x, ¥)1°=2<x, yP(x, ¥)
for any yeTn(M), where | | denotes the norm of <, ).

PROOF. Let x&N(B,). Since fi(x, »)=0 for any yeT,(M), we have
Bi(x, y)=Pp(x, »)=S(B). Hence

L Bx, ), plx, »)>=0
holds, and the lemma follows from the definition of the inner product £, >.
LEMMA 3. Let x&N(B,), then x satisfies for any yETn(M)
alx, y)=<x, yya(x, %),
P(x, y)=<x, Y>¢P(*xo, o),
where x, is any unit vector in N(B,).

ProOOF. Taking any unit vector x, in N(B.), we see that SB(x, x,) is a
non-zero vector in S(B),. As we mentioned in the proof of Lemma 1, S(f), is
necessarily one dimensional. Thus for xe N(B,), we have p(x, y)=p3.(x, y)=Fk
B(x,, x) for some k. It follows that

(@, 9), <x, 35, —(x, y)=k(a(xo, %), 1, —P(xa, 1)),
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and the lemma is easily obtained.

REMARK. The unit vector x, in Lemma 3 is taken arbitrarily in N(}Ss).
However, in the following we fix such a vector x, once, and use it all over
the section. '

THEOREM 4. We have < B(x, x), B(x, x)> =0 for any x&Tn(M). Hence it
holds '

) la(x, x)1*22]x]*d(x, x)
for any x< T (M).

PROOF. Let N(By)'={z€Tn(M); <z, N(B)>=0}. Any non-zero vector
xETw(M) can be decomposed as x=z+w, ze&N(B,) and w&N(B,)*. From
Lemma 3, they satisfy

alx, x)=a(z, z)+a(w, w),
dx, =¢(z, 2)+dw, w).
Therefore using Lemmas 2, 3 and the flatness of 8, we obtain
Caln, 0, alio, 1)>=121"ali, %)|*+Halx, ©), ali, w)
+lwl(x0, x0)+p(w, w)
=2 2]+ |w|")(x0, x0)+P(x, 2)— | 2] *P(x0, %0)
=|x|%(xo, xo)+¢p(x, x).
Making use of the Schwarz inequality, we get
la(x, 2)[*[a(xo, x0) P2 x[*)(xo, x0)+(x, X))*,
and hence we have
L] (o, x0)*+2(1 x| 2(x, 1)—lax, )| D%, x0)+(x, 2)*=0.

Since this holds for some ¢(x,, x,) which is non-negative by Lemma 2, we have
to get

(x[%p(x, x)—lalx, )|?)*—|x|*¢(x, x*=0,
and
[x]%(x, ©)—|alx, x)]|*=0.

Then if a(x, x)=0, we have ¢(x, x)<0 from which (5) holds. If a(x, x)#0, then
the above

laCx, |2 alx, 2)|*—2]|x]%)(x, x))=0

means (5) again, and the theorem is proved.
In the next place, we consider the case in which the equality holds in
Theorem 4, that is, we take a vector x satisfying
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(6) la(x, ©)|*=2]x|*)(x, x).

Then the above Schwarzian inequality becomes as
(1x]2¢(xo, x0)—¢p(x, 1))*=0,

and hence we have

Y P(x, x)=x[*(x0, x0) .

As the vectors a(x, x) and a(x,, x,) are linearly dependent in this case, we put
alx, x)=ka(x,, x,) for some k. Then it holds

<C¥(X, X), a(xtb x0>>:2k¢(x0, Xo),

and by virtue of flatness of 8, we have

alx, 2), alxo, x0)y={a(x, x0), a(x, x0)>—2{x, X>P(x, x0)
+ x| 2¢(x0, x0)+p(x, x)
=2| x[*¢p(x0, x0)
where we used Lemma 2 and (7). Therefore we have

Sb(xo, Xo)(k— | x]%)=0.

If (x5, x0)=0, then from |a(x,, xo)|?=2¢(xy, x5)=0, a(x,, x,) must be zero vector,
and hence a(x, x)=0. If ¢(x,, x,)#0, then k=|x|2 from which a(x, x)=|x|2a(x,, x0)
is obtained. In any case, we have proved the next

LEMMA 5. If x€T,(M) satisfies |a(x, x)|2=2|x|%)(x, x), then
alx, x)=|x|%a(x,, xo)
holds, where x, is a unit vector in N(B,).
Making use of Lemma 5, we show

THEOREM 6. If x&T, (M) satisfies |a(x, x)|*=2|x|°¢(x, x), then x belongs
to N(Bs). Therefore it holds that

N(Bo)={x€Tn(M); |alx, 1)|*=2|x|?¢(x, 0)} .

ProoFr. Since the vector in N((,) satisfies the equation (6), it is sufficient
for the proof of the last assertion of the theorem to show the first statement.
Let x be a vector with (6), then it satisfies a(x, x)=|x|%a(x,, x,) and ¢(x, x)=
| x|2¢(x, x0). Then for any vector yeT,(M), we have

L Bx, 3), Blx, »)>=<KP(x, x), By, y)>
=<la(x, x), a(y, y)>— |22y, »)—|y]%¢(x, x)
=|x|*{{a(x0, ¥), a(xo, Y)>—2{0, YD P(0, ¥)

+ (v, y)F[91%0(x0, x26)} — [ x1°¢P(y, y)— ¥ [%(x, x)
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= x|2{{x0, ¥>22¢h(x0, %0)—2%0, Y><X0, YDP(Xo, Xo)}
=0

and hence x satisfies

® la(x, ¥)?=2<x, y>¢P(x, )

for any ye T (M). Since {a(y, 2), alx, x)>=¢(y, 2)+<y, 22¢(x, %) is valid, it
follows ‘

0=<a(x, ), alxy, x)>*—lalx, y)|*|alx, x0)|*
=((x, y)—<x, y>P(x0, x0))?,
and therefore
©) O(x, 3)=<x, y>P(x0, X0)

is obtained for any y. Moreover the vectors a(x, y) and a(x,, x,) are linearly
dependent. Hence by the similar way as the proof of Lemma 5, we get

(10) a(x, Y)=<x, yra(x,, Xo) .
Then we can easily deduce for any y, z and we T,(M)
L Bx, 3), Blz, w)y>=<alx, y), alz, w)>—<x, y>P(z, w)—<z, wrP(x, )
=<x, Yz, wy(xo, x0)+(z, w))
—x, 3Pz, w)—<z, W<, YOP(xe, %)
=0.
This means x€ N(f,), and the theorem is proved.
COROLLARY 7. We have
N(B)={x=Tn(M); alx, x)=|x|?alx, %)},
where x, 1S a unit vector in N(fs).

PROOF. Let x satisfy a(x, x)=|x|%a(xo, x,). By the same way as we get
the equation (9), we have ¢(x, x)=|x|%)(x,, x,) easily. Hence it follows
la(x, x)|*=2|x|%(x, x).

Summarizing the above theorems, we have proved the following relations
about N(B,): Let x, be any unit vector in N(jB,), then

N(B)={x€ Tn(M); < p(x, v), Bz, w)»=0 for any ¥, z and w}
={xeTn(M); <B(x, y), Blx, »)»=0 for any y}
={xeTn(M); <B(x, ), Blx, x)>=0}

={xeTn(M); alx, y)=<x, y>a(x, x,) for any y}
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={xeTn(M); alx, 1)=|x|"alx,, x0)}.

REMARK. For an isometric immersion M® — R"*?, we define the umbilic
subspace at me M™ by the set

Um)y={xeTy(M); alx, y)=<x, > &, for any yeT,(M)}

where & is a certain normal vector. If U(m)#(0), then taking a unit vector
x, in U(m), we have &=a(x,, x,). It follows then

Um)={xeTa(M); alx, y)=<x, y>a(x, x,) for any y}

which shows that N(B,) coincides with an umbilic space at m.

3. Negative sectional curvature.

Let M™ — R™? be an isometric immersion of a conformally flat Rieman-
nian space into the Euclidean space. Then the sectional curvature k(x, y) of
the plane spanned by the orthonormal vectors x, yeT,(M) is given by

k(x, y)=—<R(x, )x, y>
=La(x, x), aly, y)>—<Lalx, ¥), alx, )
=d(x, x)+P(, )
making use of the flatness of 8. We shall show

THEOREM 8. Let M™ be conformally flat and of negative sectional curva-
ture. If M™ is isometrically immersed into R™**? (p=n—1), then we have dim N(j3,)
=1 and p=n—2.

PROOF. Suppose that dim N(B.)=2, then we can take the orthonormal
vectors x and y in N(B,). By virtue of Lemma 2 the sectional curvature
k(x, v) would satisfy

0> k(x, y)=d¢(x, x)+¢(y, y)=0

which is a contradiction. Therefore we have dim N(B;)<1. Next from
WDOS(B)=S(B)e P W, the inequality dim W,=dim W—dim S(8), holds. If
dim N(B:)=1, then dim S(B8)o=1 by Lemma 1. Thus it follows dim W,=dim W
—1=p-1. Therefore by virtue of (4) of J.D. Moore, we have

1=dim M(B).=n—(p+1)

and hence p=n—2 holds. If dim N(B:)=0, then from dim W,=<dim W=p-+2, we
get

0=n—dim W.=n—(p+2).
Thus p=n—2 is obtained again.

THEOREM 9. Let M™ be a space of constant sectional curvature ¢<0 which
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is immersed isometrically into R™? (p=n—1). Then we have N(B;)=(0) and
p=n—1.

PROOF. As M™ is of constant sectional curvature, the bilinear form ¢ has
a constant eigenvalue A, hence we can take the orthonormal basis {e¢;} in Tp(M)
such that

¢(ei; e;)=1A04;
hold for ¢, j=1, ---, n. Then
‘B(ei) ej>:(a(ei; ej), Oij “/wij)

are valid. If N(B,)#(0), then we may assume e, is a vector in N(S.) and it
follows that '

0= | aley, e1)12:2¢(e1; e)=22
and
0> k(ey, es)=q(e;, e))+¢(e,, e;)=22.
This is impossible. Therefore N(B;) must be (0). Next we have
S(P={(as;, 1, =2, (@15, 0, 0); 1=i=j=n}
={(as;, 0, 0), (@i, 0, 0)4(0, 1, —2); 1=i=j=n}
C{las;, 0, 0); 1=i=j=n} B {0, 1, =)}

where we put a(e;, e;)=a;;. Then the space {(ay;, 0, 0); 1=i=j=<n} is at most
p-dimensional, we see that

dim S(B)=p+1=n.
On the other hand, from N(B,)=(0), S(B),=(0) follows. Then S(8)=W, and
0=n—dim S(B)=(p+1)—dim S(B) '
from which we conclude easily that
dim S(B)=n=p+1.

REMARK. We state in more detail about the isometric immersion M™—
R**?(p=<n—1), where M™ is conformally flat and of negative sectional curvature.

CasE 1. N(By)#(0). Then S(B8), is 1-dimensional, and
W 2 S(B)=S(B) @ W, 2 W,.
Thus dim W,<p, and 1=n—dim W,=n—p. Consequently, we have p=n—1 and
dim S(B)=n, dim W,=n—1, dim Wp=n-+1.

CASE 2. N(B,)=(0). Then it follows S(B),=(0) and S(B)=W,. Hence we
have 0=n—dim S(8) and p=n—2. :
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(2-1) Let p=n—2. Then we have
dim S(B)=dim W,=dim W,=n.

(2-2) Let p=n—1. Then n=dim S(B)=n-+1.
(i) If dim S(8)=n+1, then we have

dim S(B)=dim W,=dim W,=n-+1.
(i) If dim S(8)=n, then we have
dim S(B)=dim W,=n, dim W,,=n+1.

Theorem 9 treats of the case of (2-2-ii). Another remark is that the above
cases are only necessary conditions of our immersions.
We show the following theorem in the case one.

THEOREM 10. Let M™ be conformally flat and of negative sectional curvature
which 1s immersed isometrically in R*™ . If MB.)#(0) at each point on a do-
main D of M", then there exists a unit vector field in N(B;) which is differentiable
on D.

PROOF. Since N(B.)#(0), we have dim N(B;)=1, and we take a continuous
unit vector field x on D which is in N(B,) at each point of D. Then x satisfies
d(x, y)=<x, y>¢(x, x) for any yeT,(M) and hence ¢(x, x)=2, is an eigenvalue
of ¢ and x is the corresponding eigenvector of ¢. From 22,=|a(x, x)|%, 2, is
a non-negative function of M". Let A,, ---, 4, and y,, -+, y, be the eigenvalues
and corresponding unit eigenvectors of ¢. Then for any j, 2=<j=<n,

k(x: }’j)':gb(X, x)+¢(y1’ yf)zll—*—)‘j

is negative, from which we have
A< —A4:=0.

It follows that 4,, :--, 4, can not coincide with 2, and the multiplicity of A, is
necessarily one. Hence 4, is a differentiable function on M™", and the eigenvector
field x can be taken as differentiable on D.
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