The Choquet Boundary and the Integral Representation

Hisako Watanabe

Department of Mathematics, Faculty of Science, Ochanomizu University (Received April 10, 1980)

§ 1. Introduction.

Let X be a compact Hausdorff space and C be a minimal convex cone in C(X) which contains a strictly positive function. N. Boboc and A. Cornea proved in [3] that for each x there is a C-minimal measure μ on X such that

$$\mu(g) \leq g(x)$$
 for every $g \in C$,

and proved under the assumption that X is metrizable and $C \subset C^+(X)$ that each C-minimal measure is supported by the Choquet boundary which is not empty. The assumption that C has a strictly positive function is essential in the proof.

H. Bauer and K. Donner considered the Choquet boundary $\partial_{\mathscr{H}}X$ with respect to an arbitrary linear subspace \mathscr{H} of $C_0(X)$, the set of all continuous functions on a locally compact Hausdorff space X which tend to zero at infinity. Under their definition the Choquet boundary is empty in case all functions in \mathscr{H} take zero at a common point in X, or in case \mathscr{H} is not linearly separating.

We shall define the Choquet boundary $\delta(C)$ with respect to an arbitrary convex cone C in C(X) where X is a compact Hausdorff space and study the sufficient condition for $\delta(C)$ to be not empty. We shall also discuss the existence of minimal measures with respect to the preoder \prec_C on positive measures and show that minimal measures are supported by the union of $\delta(C)$ and $X_0(C):=\{x\in X\colon g(x)=0 \text{ for all } g\in C\}$. Further we shall show, under the additional assumptions, that $\delta(C)$ is the union of all minimal C-stable sets disjoint to $X_0(C)$.

§ 2. The preoder on positive measures.

Let C be a convex cone of lower semicontinuous functions on a compact Hausdorff space X. Remark that in this paper a lower semicontinuous function on X means a lower semicontinuous function from X into $R \cup \{+\infty\}$. Denote by M^+ the set of all positive measures on X. For two measures μ , $\nu \in M^+$, we write

$$\mu \prec_{c} \nu$$
 or simply $\mu \prec \nu$

if $\mu(g) \leq \nu(g)$ for every $g \in C$. The relation \leq_c is a preoder on M^+ . A lower semicontinuous function f on X is called C-concave if for each $x \in X$ and for each μ with $\mu < \varepsilon_x$ it holds that

$$\mu(f) \leq f(x)$$
.

The set of all lower semicontinuous C-concave functions on X is denoted by \hat{C} . Obviously \hat{C} is a min-stable convex cone. Recall that a convex cons S is called min-stable if f, $g \in S$ implies min $(f, g) \in S$.

The following theorem with respect to a hypolinear functional is important. Recall that a sublinear map from a vector space E into $\mathbf{R} := \mathbf{R} \cup \{+\infty\}$ is called a hypolinear functional on E.

Theorem 2.1. (Anger-Lembcke) Let q be a lower semicontinuous hypolinear functional on a locally convex space E. Then, for each $h \in E$ and for each $\lambda \in (-q(-h), q(h))$ there is a continuous linear functional μ on E such that

$$\mu(h) = \lambda$$
 and $\mu(f) \leq q(f)$ for all $f \in E$.

Let C be a convex cone of lower semicontinuous functions on X. A function f in C(X) is called C-almost bounded if for each $\varepsilon > 0$ there is $g \in C$ satisfying $f \leq g + \varepsilon$. The set of all C-almost upper bounded continuous functions is denoted by C_u^* . We remark that C_u^* is closed in C(X) with the sup-norm.

PROPOSITION 2.1. Let C be a convex cone of lower semicontinuous functions on X and P be a monotone sublinear map from C into R. Assume that for each $f \in C(X)$

$$\hat{p}(f) := \sup_{\epsilon > 0} \inf \{p(g) : g + \epsilon \ge f\} > -\infty.$$

Here we regard inf ϕ as $+\infty$. Then the map $f \mapsto \hat{p}(f)$ is hypolinear, monotone and lower semicontinuous on C(X) with the sup-norm.

PROOF. (Subadditivity) Let f and g be two elements of C(X) For each $\varepsilon > 0$ there are $g_1 \in C$ and $g_2 \in C$ satisfying

$$f_1 \leq g_1 + \varepsilon$$
, $f_2 \leq g_2 + \varepsilon$.

Then $g_1+g_2 \in C$ and $f_1+f_2 \leq g_1+g_2+2\varepsilon$. From the monotonity of C it follows that $p(g_1+g_2) \leq p(g_1)+p(g_2)$ and hence

$$\inf \{ p(g) : f_1 + f_2 \leq g + 2\varepsilon \} \leq \inf \{ p(g) : f_1 \leq g + \varepsilon \}$$
$$+ \inf \{ p(g) : f_2 \leq g + \varepsilon \}$$
$$\leq \hat{p}(f_1) + \hat{p}(f_2).$$

Therefore, $\hat{p}(f_1+f_2) \leq \hat{p}(f_1) + \hat{p}(f_2)$.

(Positively homogenuous) Assume that $\alpha > 0$. It holds that

$$\alpha \hat{p}(f) = \alpha \sup_{\varepsilon > 0} \inf \{ p(g) : g + \varepsilon \ge f, g \in C \}$$
$$= \sup_{\varepsilon > 0} \inf \{ p(\alpha g) : \alpha g + \alpha \varepsilon \ge \alpha f, g \in C \}$$

$$= \sup_{\epsilon > 0} \inf \{ p(h) : h + \alpha \epsilon \ge f, h \in C \}$$
$$= \hat{p}(\alpha f).$$

In case $\alpha=0$, it follows from the definition and the subadditivity that $\hat{p}(\alpha f)=\hat{p}(0)=0=\alpha \hat{p}(f)$.

(Monotonity) Obviously the inequality $f \leq g$ implies $\hat{p}(f) \leq \hat{p}(g)$.

(Lower semicontinuity) We shall show that the set $\{f \in C(X): \hat{p}(f) > \lambda\}$ is open for each $\lambda \in \mathbf{R}$. Assume that $\hat{p}(f_0) > \lambda$. If $f_0 \notin C_u^*$, $U(f_0) := C(X) \setminus C_u^{*1}$ is open and $U(f_0) \subset \{f: \hat{p}(f) = +\infty\} \subset \{f: \hat{p}(f) > \lambda\}$. Secondly, we consider in case $f_0 \in C_u^*$. Since $\hat{p}(f_0) > \lambda$, there is $\varepsilon > 0$ such that $\inf \{p(g): g + \varepsilon \ge f_0, g \in C\} > \lambda$. Let h be an arbitrary element of $U(f_0, \frac{\varepsilon}{2})$. For all $g \in C$ satisfying $g + \frac{\varepsilon}{2} \ge h$, it holds that $g + \frac{\varepsilon}{2} \ge h \ge f_0 - \frac{\varepsilon}{2}$ and hence $g + \varepsilon \ge f_0$. Consequently,

$$\inf \left\{ p(g) : g + \frac{\varepsilon}{2} + h \right\} \ge \inf \left\{ p(g) : g + \varepsilon \ge f_0 \right\}.$$

By the definition of $\hat{p}(h)$ we have $\hat{p}(h) > \lambda$. Therefore $U(f_0, \frac{\varepsilon}{2}) \subset \{f : \hat{p}(f) > \lambda\}$.

Let μ be a positive measures on X. For $f \in C(X)$ we define

$$Q^{\mathfrak{c}}_{\mu}(f) := \sup_{\varepsilon > 0} \inf \left\{ \mu(g) \colon g + \varepsilon \geqq f, \ g \in C \right\}.$$

For $x \in X$ we write $Q_x^c(f)$ instead of $Q_{\varepsilon_x}^c(f)$. The function $x \mapsto Q_x^c(f)$ is denoted by Q^cf . By Proposition 2.1 the map $f \mapsto Q_\mu^c(f)$ is monotone, hypolinear and lower semicontinuous.

PROPOSITIOH 2.2. The following relations are verified for two functions $f, g \in C(X)$, for $\alpha \in \mathbb{R}^+$ and for two measures $\mu, \nu \in M^+$.

- (i) $Q_{\mu}^{c}(f+g) \leq Q_{\mu}^{c}(f) + Q_{\mu}^{c}(g)$,
- (ii) $Q^{c}(\alpha f) = \alpha Q^{c}(f)$,
- (iii) $\mu(f) \leq Q_{\mu}^{c}(f)$,
- (iv) $f \leq g$ implies $Q_{\mu}^{c}(f) \leq Q_{\mu}^{c}(g)$,
- (v) $\mu < \nu$ implies $Q_{\nu}^{c}(f) \leq Q_{\nu}^{c}(f)$,
- (vi) $f \mapsto Q_u^c(f)$ is lower semicontinuous.

PROOF. (i) (ii) (iv) (vi) Immediately these relations and properties are obtained by Proposition 2.1.

(iii) Suppose that $\varepsilon > 0$ and $g + \varepsilon \ge f$ with $g \in C$. Since μ is positive, it holds that $\mu(g) \ge \mu(f) - \varepsilon \mu(1)$ and hence

¹⁾ For two subsets A, B of X with $A \subset B$ we denote by $A \setminus B$ the complementary set of B with respect to A.

$$\hat{\mu}(f) \geqq \sup_{\varepsilon > 0} \mu(f) - \varepsilon \mu(1)) = \mu(f).$$

(v) is obvious.

THEOREM 2.2. For $f \in C(X)$ and $\mu \in M^+$, it holds that

$$Q^{c}_{\mu}(f) = \sup \{ \nu(f) : \nu < \mu \}.$$

Here the relation \prec is the preoder with respect to C.

PROOF. By Proposition 2.2 the map $h\mapsto Q^{\mathfrak{e}}_{\mu}(h)$ is monotone, hypolinear and lower semicontinuous. Let α be an arbitrary real number satisfying $Q^{\mathfrak{e}}_{\mu}(f)>\alpha>-Q^{\mathfrak{e}}_{\mu}(-f)$. By Theorem 2.1 there is a continuous linear functional ν on C(X) such that

$$\nu(f) = \alpha$$
 and $\nu(h) \leq Q_{\mu}^{c}(h)$ for all $h \in C(X)$.

If $h \leq 0$, it holds that $\nu(h) \leq Q_{\mu}^{c}(h) \leq Q_{\mu}^{c}(0)$. Consequently ν is positive. For every $g \in C$ it holds that

$$\nu(g) = \sup_{\substack{f \leq g \\ f \in \mathcal{C}(X)}} \nu(f) \leq \sup_{\substack{f \leq g \\ f \in \mathcal{C}(X)}} Q^c_{\mu}(f) \leq \mu(g)$$

and hence $\nu < \mu$. Therefore $Q^{\epsilon}_{\mu}(f) \leq \sup \{\nu(f) : \nu < \mu\}$. On the other hand, let $\lambda < \mu$. For $\epsilon > 0$ and $g \in C$ satisfying $f \leq g + \epsilon$, it follows that

$$\lambda(f) \leq \lambda(g) + \varepsilon \lambda(1) \leq \mu(g) + \varepsilon \lambda(1)$$
.

Consequently

$$\lambda(f) - \varepsilon \lambda(1) \leq \inf \{ \mu(g) : g + \varepsilon \geq f, g \in C \}$$

and hence $\lambda(f) \leq Q_{\mu}^{c}(f)$. Therefore we have the conclusion.

§ 3. Minemal measures.

In this section we shall assume that C is a min-stable convex cone in C(X).

PROPOSITIO 3.1. Let μ , ν be two positive measures. Then $\mu \prec_{c} \nu$ if and only if $\mu \prec_{\hat{c}} \nu$.

PROOF. Since $C \subset \hat{C}$, it is obvious that $\mu \prec_{\hat{C}} \nu$ implies $\mu \prec_{C} \nu$. Conversely, suppose that $\mu \prec_{C} \nu$. From the definition of concave functions it follows that $\lambda \prec_{C} \varepsilon_{x}$ for $\lambda \in M^{+}$ and $x \in X$ if any only if $\lambda \prec_{\hat{C}} \varepsilon_{x}$.

By Theorem 2.2 we have, for each $x \in X$ and for each $f \in C(X)$,

$$Q_x^c(f) = \sup \{\lambda(f) : \lambda \leq_C \varepsilon_x\} \sup \{\lambda(f) : \lambda \leq_{\hat{c}} \varepsilon_x\} = Q_x^c(f).$$

Since C and \hat{C} are min-stable, we have

$$Q_{\nu}^{c}(f) = \sup_{\varepsilon > 0} \inf \{ \nu(g) : g + \varepsilon \ge f, g \in C \} = \nu(Q^{c}f)$$
$$= \nu(Q^{c}f) = Q_{\nu}^{c}(f).$$

Using Proposition 2.2, we have, for every $g \in \hat{C}$,

$$\begin{split} \mu(g) &= \sup \{ \mu(f) : f \leq g, \ f \in C(X) \} \\ &\leq \sup \{ Q_{\mu}^{e}(f) : f \leq g, \ f \in C(X) \} \\ &\leq \sup \{ Q_{\nu}^{e}(f) : f \leq g, \ f \in C(X) \} \\ &= \sup \{ Q_{\nu}^{\hat{e}}(f) : f \leq g, \ f \in C(X) \} \leq \nu(g) \,. \end{split}$$

Therefore we have $\mu < \hat{c}\nu$.

We denote by C(X, C) the set of all $f \in C(X)$ for which the equality $f(x) = \alpha f(y)$ holds for any two points $x, y \in X$ and every $\alpha \in \mathbf{R}$ for which the equality $g(x) = \alpha g(y)$ holds for all $g \in C$.

Proposition 3.2. $C(X, C) = \overline{C - C}$.

PROOF. Obviously we have $\overline{C-C}\subset C(X,\,C)$. Let f be arbitrary function in $C(X,\,C)$ and $x,\,y$ be arbitrary two points in X. For every $\varepsilon>0$ there is $g\in C-C$ such that

$$|f(x)-g(x)| < \varepsilon$$
, $|f(y)-g(y)| < \varepsilon$.

By the Kakutani-Stone theorem (cf. [5, p. 39]) we have $f \in \overline{C-C}$.

PROPOSITION 3.3. Let ν be a positive bounded linear functional on a linear sublattice F of C(X). Then ν can be extended to a positive measure on X.

PROOF. For $f \in C(X)$, put

$$Q_{\nu}^{F}(f) = \sup_{\varepsilon > 0} \inf \{ \nu(g) : g + \varepsilon \geq f, g \in F \}.$$

Assume that $g \in F$ satisfies $g + \varepsilon \ge f$ for a real number $\varepsilon > 0$. Put $g^+ := \max(g, 0)$ and $g^- := \max(-g, 0)$. Then $g^+ \in F$, $g^- \in F$ and $g = g^+ - g^-$. If $g^- \equiv 0$, it holds that $\nu(g) = \nu(g^+) \ge 0$. If $g^- \not\equiv 0$, it follows that $g^+(x) = 0$ at a point x satisfying $g^-(x) = \|g^-\| > 0$. Consequently

$$-\|g^-\| + \varepsilon = g^+(x) - g^-(x) + \varepsilon \ge f(x) \ge \min_{y \in X} f(y)$$
.

Hence

$$\nu(g) \!\!=\! \nu(g^+) \!\!-\! \nu(g^-) \!\! \ge \!\! - \!\! \nu(g^-) \!\! \ge \!\! - \!\! \|\nu\| \|g^-\| \!\! \ge \!\! \|\nu\| (\min_{y \in X} f(y) \!\! - \!\! \varepsilon) \,.$$

Therefore $Q_{\nu}^F(f) \ge \|\nu\| \min_{y \in X} f(y) > -\infty$. By proposition 3.1 the map $f \mapsto Q_{\nu}^F(f)$ is monotone, hypolinear and lower semicontinuous. By theorem 3.1 there is a continuous linear μ on C(X) such that $\mu(f) \le Q_{\nu}^F(f)$ for all $f \in C(X)$. If $f \le 0$, we have $\mu(f) \le Q_{\nu}^F(f) \le Q_{\nu}^F(0) = 0$. Hence μ is positive. Especially, it follows that

$$\mu(g) \leq Q_{\nu}^{F}(g) \leq \nu(g)$$
 and $\mu(-g) \leq Q_{\nu}^{F}(-g) \leq \nu(-g)$

for every $g \in F$ and hence $\mu(g) = \nu(g)$.

A positive measure ν on X is called C-minimal if $\mu <_{\mathcal{C}} \nu$ for $\mu \in M^+$ implies $\nu <_{\mathcal{C}} \mu$. The following properties (i) (ii) (iii) are equivalent by Proposition 3.2:

(i) $\mu \prec_{c} \nu$ and $\nu \prec_{c} \mu$,

28

- (ii) $\mu(g) = \nu(g)$ for all $g \in C$,
- (iii) $\mu(g) = \nu(g)$ for all $g \in C(X, C)$.

The restriction $\mu | C - C$ of a positive measure μ to the sublattics C - C of C(X) is a positive bounded linear functional on C - C. On the other hand, from Proposition 3.3 it follows that a positive bounded linear functional on C - C is extended to a positive measure on X.

THEOREM 3.1. If $\mu \in M^+$ satisfies $Q^c_{\mu}(f) < \infty$ for every $f \in -C$, there is a C-minimal measure $\nu \in M^+$ satisfying $\nu < \mu$.

PROOF. For every $g \in C$ we have $Q^c_{\mu}(g) \leq \mu(g) < \infty$ and $-Q^c_{\mu}(-g) > -\infty$ by the assumption. Consequently we have $-\infty < -Q^c_{\mu}(-f) \leq Q^c_{\mu}(f) < \infty$. Suppose that $\nu < \mu$ and $f \in C(X)$. It holds that, for $g \in C$ with $g + \varepsilon \geq f$, $\mu(g) \geq \nu(g) \geq \nu(f) - \varepsilon \nu(1)$ and hence

$$(3.1) Q_{\mu}^{c}(f) \geq \nu(f).$$

Since the inequality holds for -f, we have $-Q_{\mu}^{c}(-f) \ge \nu(f)$. Accordingly

$$(3.2) -\infty < -Q_{\mu}^{c}(f) \leq \nu(f) \leq Q_{\mu}^{c}(f) < \infty \text{for every } f \in C - C.$$

We consider the conjugate space (C-C)' of the normed space C-C which is endowed with the topology $\sigma((C-C)', C-C)$. Put

$$M_{\mu} := \{ \nu_{\perp C-C} : \nu \in M^+, \nu < \mu \}.$$

Then M_{μ} is a subset of (C-C)'. Since the enequality (3.2) holds for every $f \in C-C$, \overline{M}_{μ} is compact in (C-C)' (cf. [4, Theorem 23.11]). On the other hand M_{μ} is closed. In fact, let ν be an arbitrary element of \overline{M}_{μ} . Since ν is positive, ν can be extended to a positive measure on X. It is easy to see $\nu(g) \leq \mu(g)$ for all $g \in C$. Consequently $\nu \in M_{\mu}$. Therefore M_{μ} is compact. Using the compactness of M_{μ} , we see that the preoder $\langle C \rangle$ is inductive. By Zorn's lemma there is a C-minimal measure ν_1 with $\nu_1 \langle C \rangle_{\mu}$.

Especially, we have

COROLLARY 3.1. If $Q_x^c(f) < \infty$ for all $f \in -C$ and for $x \in X$, there is a C-miniml measure $\nu \in M^+$ with $\nu \prec_C \varepsilon_x$.

PROPOSITION 3.4. If $\nu \in M^+$ is a C-minimal, it holds that $\nu(f) = Q_{\nu}^c(f) = \nu(Q^c f)$ for $f \in C(X, C)$.

PROOF. Since ν is C-minimal, we have $\mu(f) = \nu(f)$ for every $\mu \in M^+$ with $\mu < \nu$ and for every $f \in C(X, C)$. By Theorem 2.2, we have

$$Q_{\nu}^{c}(f) = \sup \{\mu(f): \mu \prec \nu\} = \nu(f)$$

for every $f \in C(X, C)$. Since C is min-stable and the function $\varepsilon \mapsto \inf\{g(x) : g + \varepsilon \ge f, g \in C\}$ decreases, we have $Q^{\varepsilon}_{\mu}(f) = \nu(Q^{C}f)$.

§ 4. The Choquet boundary.

Let S be a convex cone in C(X). We denote by $X_0(S)$ or simply X_0 the set $\{x \in X : g(x) = 0 \text{ for all } g \in S\}$. Put

$$C_S := \{ \min(g_1, g_2, \dots, g_n) : g_i \in S, n \in N \}$$

Then C_S is a min-stable convex cone and the relation $\mu \leq_S \varepsilon_x$ is equivalent to the relation $\mu \leq_{C_S} \varepsilon_x$. Consequently we have $Q_x^S(f) = \sup_{\varepsilon > 0} \inf \{g(x) : g + \varepsilon \geq f, g \in C_S\}$ for all $f \in C(X)$ by Theorem 2.2.

We denote by $\delta(S)$ the set of all points $x \in X \setminus X_0(S)$ such that ε_x is C_{S} -minimal and call the Choquet boundary with respect to S.

PROPOSITION 4.1. Let x be a point in X. Then $x \in \delta(S)$ if and only if $x \in X_0(S)$ and $Q_x^S(f) = f(x)$ for all $f \in -C_S$.

PROOF. If a point $x \in X_0(S)$ belongs to $\delta(S)$, we have $Q_x^S(f) = Q_x^C s(f) = f(x)$ for all $f \in C_S$ by Proposition 3.4. Conversely, suppose that $x \in X_0(S)$ and $Q_x^S(f) = f(x)$ for all $f \in -C_S$. Let μ be a positive measure on X with $\mu <_{C_S} \varepsilon_x$. Using Theorem 2.2, we have

 $f(x)=Q_x^S(f)=Q_x^C(f)=\sup\{\mu(f): \mu \leq_{C_S} \varepsilon_x \} \geq \mu(f) \geq f(x)$. Consequently $\mu(f)=f(x)$ for all $f\in -C_S$. Therefore μ is C_S -minimal.

COROLLORY 4.1. $Q_x^S(f) = f(x)$ for all $f \in -C_S$ if and only if $x \in \delta(S)$ or $x \in X_0(S)$.

PROOF. This is an immediate consequence from Proposition 4.1.

PROPOSITION 4.2. Let x be a point contained in the complement of $X_0(S)$. Assume that there are $u \in S$ and $v \in S$ such that $u(x_0) > 0$ and $v(x_0) < 0$. Further, assume that there is $w \in C_S$ such that $w \ge 0$ and the set $\{x \in X : w(x) = 0\}$ is equal to $X_0(S) \cup \{x_0\}$.

PROOF. For each $\mu \in M^+$ with $\mu \prec_{C_S} \varepsilon_x$, it follows that $0 \leq \mu(w) \leq w(x_0) = 0$ and hence $\mu(w) = 0$. Since w is non-negative, the support μ is included by the set $\{x : w(x) = 0\}$. By the assumption we can write

$$\mu = \mu_1 + \alpha \, \varepsilon_{x_0}$$

where μ_1 is a positive measure of which support is contained in $X_0(S)$ and α is a non-negative real number. Accordingly

$$v(x_0) \ge \mu(v) = \mu_1(v) + \alpha v(x_0) = \alpha v(x_0)$$
.

From the inequality $v(x_0)<0$ it follows that $\alpha \ge 1$. Similarly, considering u, we have $\alpha \le 1$, and hence $\alpha = 1$. Since f = 0 on $X_0(S)$ for all $f \in -C_S$, we have $\mu(f) = f(x_0)$. Therefore x_0 is a point of the Choquet boundary.

EXAMPLE 1. Let X be the closed interval [0, 1] in R and S be the linear space generated the function f(x)=x. Then we have $C_S=S$, $C(X, C_S)=S$ and $\delta(S)=(0, 1]$.

EXAMPLE 2. Let X=[0, 1] and $S=\{ax+bx^2: a, b \in \mathbb{R}\}$. Then we have $X_0(S)=\{0\}$, $C(X, C_S)=\{f \in C([0, 1]): f(0)=0\}$ and $\delta(S)=\{1\}$.

EXAMPLE 3. Let X=[0, 1] and $S=\{ax+bx^2+cx^3: a, b, c \in \mathbb{R}\}$. Then we have $X_0(S)=\{0\}$, $C(X, C_S)=\{f\in C([0, 1]): f(0)=0\}$ and $\delta(S)=(0, 1]$.

Hearafter, assume that C is a min-stable convex cone in C(X).

Proposition 4.3. Let X be metrizable. Then there is $f_0 \in -\overline{C}$ such that

(4.1)
$$\{x \in X : Q_x^c(f_0) = f_0(x)\} = \bigcap_{f \in -C} \{x \in X : Q_x^c(f) = f(x)\} = \delta(C) \cup X_0$$
.
and $\delta(C)$ is a $G_{\tilde{o}}$ -set.

PROOF. Since X is compact and metrizable, there is a countable set $\{f_n\} \subset -C$ which is total in C(X, C). Put

$$f_0 = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{f_n}{\|f_n\|}.$$

Then $f_0 \in -\overline{C}$ and it holds that $\{x: Q_x^c(f_0) = f_0(x)\} = \bigcap_{f \in -C} \{x: Q_x^c(f) = f(x)\}$ Further, it follows that

$$\{x \in X : Q_x^c(f_0) = f_0(x)\} = \bigcap_{n \in N} \left\{ x \in X : Q_x^c(f_0) - f_0(x) < \frac{1}{n} \right\}$$

$$= \bigcap_{n \in N} \bigcup_{m \in N} \left\{ x \in X : h_m(x) - f_0(x) < \frac{1}{n} \right\},$$

where $h_m(x) = \inf \{ g(x) : g \in C, g + \frac{1}{m} \ge f \}$. Since h_m is upper semicontinuous, $\{x : Q_x^c(f_0) = f_0(x)\}$ is a $G_{\bar{\partial}}$ -set. By Proposition 4.1 and (4.1) we have

$$\{x \in X: Q_x^c(f_0) = f_0(x)\} = \delta(C) \cup X_0(C)$$
.

Since $X_0(C)$ is closed, $\delta(C)$ is a $G_{\hat{o}}$ -set.

30

THEOREM 4.1. Let X be a compact metrizable set and C be a min-stable convex cone in C(X). Assume that there are $x_0 \in X$ and $v \in C$ satisfying $v(x_0) < 0$ and $Q_{x_0}^c(f) < \infty$ for every $f \in -C$. Then the Choquet boundary $\delta(C)$ is not empty and a $G_{\bar{o}}$ -set. For every C-minimal measure $\mu \in M^+$, it follows that

$$\mu(X\setminus(X_0(C)\cup\delta(C)))=0$$
.

PROOF. From Theorem 3.1 it follows that there is a C-minimal measure ν with $\nu < \varepsilon_x$. Put $w = min(\nu, 0)$. Then $w \in C$ and it holds that

$$\nu(w) \leq w(x_0) = v(x_0) < 0$$
.

Since $w \leq 0$, we have $\nu(X \setminus X_0) > 0$. Since X is metrizable, there is $f_0 \in -\overline{C}$ satisfying (4.1) and it follows that $\nu(Q^c f_0 - f_0) = 0$. The inequality $Q^c f_0 - f_0 \geq 0$ implies $\nu\{x: Q_x^c(f_0) - f_0(x) > 0\} = 0$. Consequently $\nu(X \setminus X_0 \cup \delta(C)) = 0$. Since $\nu(X \setminus X_0) > 0$, $\delta(C)$ is not empty. Further, since $\mu(Q^c f_0 - f_0) = 0$ for every C-minimal measure μ , we obtain $\mu(X \setminus (X_0 \cup \delta(C))) = 0$.

§ 5. Minimal stable sets.

Let C be a min-stable convex cone in C(X). A closed subset S of X is called C-stable or simply stable if for each $x \in X$ and for each measure μ with $\mu \prec_C \varepsilon_x$ the support S_μ of μ is contained in the set $S \cup X_0$. We denote by S the set of all C-stable closed subsets of X. Since S is inductive with respect to the oder \subset , there is, for each $S \in S$, a minimal C-stable set included by S.

In this section we shall assume the following condition (p):

(p) for each $x \in X \setminus X_0$ there is $w \in C$ satisfying $w \ge 0$ and w(x) > 0.

Let v be a function in C satisfying $v(x_0) < 0$ for $x_0 \in X \setminus X_0$. The function v is said to satisfy (c) at x_0 if there is a non-negative function $u \in C$ such that $u(x_0) > 0$ and for some real number b with $\frac{-v(x_0)}{u(x_0)} > b > 0$, it holds that bu + v > 0

on $U \setminus X_0$ where U is an open set containing X_0 .

PROPOSITION 5.1. Assume that $v \in \overline{C}$ with $v(x_0) < 0$ satisfies (c) at x_0 . Then there is a C-stable set S included by the set $\{x \in X : v(x) < 0\}$.

PROOF. By the assumption there are a non-negative function $u \in \overline{C}$ with $u(x_0) > 0$, an open set U containing X_0 and a real number b with $\frac{-v(x_0)}{u(x_0)} > b > 0$ such that

$$(5.1) bu+v>0 on U\backslash X_0.$$

Since $X\backslash U$ is compact, by the condition (p) there is a non-negative function $w\in C$ with w>0 on $X\backslash U$. We may suppose that w satisfies

(5.2)
$$\frac{-v(x_0)}{u(x_0)} \ge \frac{-v(x_0)}{u(x_0) + w(x_0)} > b.$$

Let α_0 be the supremum of positive real numbers α satisfying

$$\{x \in X : \alpha(u(x)+w(x))+v(x) \leq 0\} \cap (X\setminus X_0) \neq \phi$$
.

Then

$$\alpha_0 \geq \frac{-v(x_0)}{u(x_0) + w(x_0)}.$$

From (5.1) it follows that

$$b(u(x)+w(x))+v(x) \ge bu(x)+v(x) > 0$$

on $U\backslash X_0$. Using (5.2), we have, for $\alpha \ge \frac{-v(x_0)}{u(x_0)+w(x_0)}$,

$$\alpha(u+w)+v>0$$
 on $U\setminus X_0$.

On the other hand, put

$$\min_{x \in X \setminus U} (u(x) + w(x)) = \beta \quad \text{and } \min_{x \in X} v(x) = \gamma.$$

Then we have $\beta > 0$ and $\gamma < 0$. Consequently

$$\alpha(u+w)+v>\frac{-\gamma}{\beta}(u+w)+\ v\geqq -\gamma+v\geqq 0\ \ \text{on}\ \ X\backslash U\qquad \text{for}\ \ \alpha>-\frac{\gamma}{\beta}.$$

Hence $\alpha_0 = \sup \alpha \leq \frac{-\gamma}{\beta} < \infty$. Immediately, by the definition of α_0 , we have $\alpha_0(u+w)+v \geq 0$ on $X \setminus X_0$ and hence on X. Further, there is $x_1 \in X \setminus X_0$ such that

(5.3)
$$\alpha_0(u(x_1) + w(x_1)) + v(x_1) = 0.$$

In fact, suppose that no point $x_1 \in X \setminus X_0$ satisfies (5.3). Since $\alpha_0(u+w)+v$ is strictly positive on $X \setminus U$, there is $\delta \in \mathbf{R}$ such that $\alpha_0 > \delta > 0$ and $\delta(u+w)+v > 0$ on $X \setminus U$. Put $\alpha_1 = \max(\delta, b)$. Then we have $\alpha_0 > \alpha_1$ and for $\alpha \ge \alpha_1$

$$\alpha(u+w)+v \ge \alpha_1(u+w)+v>0$$
 on $X\setminus X_0$.

This is a contradiction to the definition of α_0 . Therefore there is $x_1 \in X \setminus X_0$ satisfying (5.3). Put

$$S_0 := \{x \in X \setminus X_0 : \alpha_0(u(x) + w(x)) + v(x) = 0\}.$$

Then $S_0 \neq \phi$ and

$$S_0 = (X \setminus U) \cap \{x \in X : \alpha_0(u(x) + w(x)) + v(x) = 0\},$$

since $\alpha_0(u+w)+v>0$ on $U\setminus X_0$. For each $x\in S_0$ and for each $\mu\in M^+$ satisfying $\mu\prec\varepsilon_x$, it holds that

$$0 \le \mu(\alpha_0(u+w)+v) \le \alpha_0(u(x)+w(x))+v(x)=0$$
.

Consequently

$$S_{\mu} \subset \{y \in X : \alpha_0(u(y) + w(y) + v(y) = 0\} = S_0 \cup X_0$$
.

Hence S_0 is C-stable. Since u+w>0 on $X\setminus U$, we have v<0 on S_0 .

Immediatly we have

COROLLARY 5.1. Under the same conditions as Proposition 5.1., there is a minimal C-stable set included by $\{x \in X : v(x) < 0\}$.

The following proposition (resp. the corollary) can be proved by the same method as the assertion $a) \Rightarrow b$ (resp. $e) \Rightarrow f$)) of Theorem 2.1 in [3].

PROPOSITION 5.2. Let S be a minimal C-stable set included by $X \setminus X_0$ and u be a function in C satisfying u>0 on S an $u(x_0)=1$ for some $x_0 \in S$. Further assume that there is $v_1 \in C$ such that $v_1(x_0)<0$. Then we have

$$v=v(x_0)u$$
 on S for every $v \in C$.

COROLLARY 5.2. Let S be a minimal C-stable set and for $x_0 \in S$ there is $v_1 \in C$ such that $v_1(x_0) < 0$. Then x_0 is a point of $\delta(C)$.

THEOREM 5.1. Let v be an element of C with $v(x_0)<0$ for some $x_0 \in X$ Assume that v satisfies (c) at x_0 . Then we have

$$\{x \in X : v(x) < 0\} \cap \delta(C) \neq \phi$$
.

PROOF. By Proposition 5.1 there is a C-stable set S in $\{x: v(x) < 0\}$. From Zorn's lemma there is a minimal C-stable set S_0 in S. Each point of S_0 is one of $\delta(C)$ by Proposition 5.2. Hence we have the conclusion.

THEOREM 5.2. Assume that for a point $x_0 \in \delta(C)$ there is $v \in C$ such that $v(x_0) < 0$ and v satisfies (c) at x_0 . Then there is a minimal C-stable set S disjoint to X_0 and containing x_0 .

PROOF. This theorem can be proved by the same method as the assertion $g)\Rightarrow a$ in Theorem 2.1 in [3].

References

- 1) B. Anger and J. Lembche: Hahn-Banach type theorem for hypolinear functionals, Math. Ann. 209 (1974), 121-151.
- 2) H. Bauer and K. Donner: Korovkin approximation in $C_0(X)$, Math. Ann. 236 (1978), 225-237.
- 3) N. Boboc and A. Cornea: Convex cones of lower semicontinuous functions on compact spaces' Rev. Roum. Math. Pures et Appl., 12 (1967), 471-525.
- 4) G. Choquet: Lectures on analysis, vol. 2, Benjamin, New York (1969).
- 5) L. Nachbin: Elements of approximation theory, Van Norstrand mathematical studies 14 (1967).