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§1. Introduction.

Let X be a compact Hausdorff space and C be a minstable convex cone
in C(X) which contains a strictly positive function. N. Boboc and A. Cornea
proved in [3] that for each x there is a C-minimal measure ¢ on X such that

u(g)=g(x)  for every geC,

and proved under the assumption that X is metrizable and CEC*(X) that each
C-minimal measure is supported by the Choquet boundary which is not empty.
The assumption that C has a strictly positive function is essential in the proof.

H. Bauer and K. Donner considered the Choquet boundary 04X with respect
to an arbitrary linear subspace 4 of Co(X), the set of all continuous functions
on a locally compact Hausdorff space X which tend to zero at infinity. Under
their definition the Choquet boundary is empty in case all functions in % take
zero at a common point in X, or in case 4 is not linearly separating.

We shall define the Choquet boundary 6(C) with respect to an arbitrary
convex cone C in C(X) where X is a compact Hausdorff space and study the
sufficient condition for 0(C) to be not empty. We shall also discuss the ex-
istence of minimal measures with respect to the preoder <, on positive mea-
sures and show that minimal measures are supported by the union of §(C) and
Xy(C): ={x€X: glx)=0 for all geC}. Further we shall show, under the
additional assumptions, that d(C) is the union of all minimal C-stable sets
disjoint to X,(C).

§2. The preoder on positive measures.

Let C be a convex cone of lower semicontinuous functions on a compact
Hausdorff space X. Remark that in this paper a lower semicontinuous func-
tion on X means a lower semicontinuous function from X into R\J{4oo}.
Denote by M* the set of all positive measures on X. For two measures y, ve M*,
we write

p=<cv  or simply pu<y

if u(g)=<y(g) for every g&C. The relation <, is a preoder on M*.
A lower semicontinuous function f on X is called C-concave if for each
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x€ X and for each p with p< e, it holds that
UH=1(x).

The set of all lower semicontinuous C-concave functions on X is denoted by
C. Obviously C is a min-stable convex cone. Recall that a convex cons S is
called min-stable if f, g&S implies min (f, g)=S.

The following theorem with respect to a hypolinear functional is important.
Recall that a sublinear map from a vector space E into R:=R\U{+} oo} is
called a hypolinear functional on E.

THEOREM 2.1. (Anger- Lembcke) Let q be a lower semicontinuous hypolinear
Sfunctional on a locally convex space E. Then, for each h€E and for each
AE(—q(—h), g(h)) there is a continuous linear functional p on E such that

wh)y=2 and p(f)=q(f) for all feE.

Let C be a convex cone of lower semicontinuous functions on X. A func-
tion f in C(X) is called C-almost bounded if for each &¢>0 there is g=C
satisfying f=g-+e. The set of all C-almost upper bounded continuous functions
is denoted by C}. We remark that C} is closed in C(X) with the sup-norm.

PROPOSITION 2.1. Let C be a convex cone of lower semicontinuous functions

on X and P be a monotone sublinear map from C into R. Assume that for each
redX)

() 1=sup inf {p(g): g+e=f}>—oco.

Here we regard inf ¢ as+oo. Then the map f— p(f) is hypolinear, monotone
and lower semicontinuous on C(X) with the sup-norm.

PROOF. (Subadditivity) Let f and g be two elements of C(X) For each
¢>0 there are g,€C and g,=C satisfying

Hi=gite, [fiZgte.

Then g,+g,€C and f,+f,<g,+g,+2¢. From the monotonity of C it follows
that p(g:+g.)=p(g)-+p(g,) and hence

inf{p(g): f1+/f.=g+2¢} Sinf{p(g): f1=g-+e}
+inf{p(g): fz§g+€}
=p(f)+D(fs).

Therefore, p(fi+7)=p(f0)+D(f2).
(Positively homogenuous) Assume that a>0. It holds that

ap(f)=a sup inf{p(g): g+e=f, g}

:segg) inf{plag): agtac=af, g=C}
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:su>10) inf{p(h): h-tae=f, heC}

=plaf).

In case =0, it follows from the definition and the subadditivity that
plaf)=p0)=0=ap(f).
(Monotonity) Obviously the inequality f<g implies p(f)=p(g).
(Lower semicontinuity) We shall show that the set {feC(X): p(f)>2} is open
for each A€ R. Assume that p(fo)>A. If fo&C¥ U(f,) :=C(X)\C¥’ is open
and U(fo)C{f: p(f)=+oo}{f: p(f)>2). Secondly, we consider in case
foeC¥. Since p(fy)>2, there is e>0 such that inf{p(g): g+e=f, g=C}>A

Let h be an arbitrary element of U(fo, —%) For all geC satisfying g—l—izh,
it holds that g+%2h§ fo— and hence g+e=/,. Consequently,

inf{p(g): g+5+h}z inf{p(e): g+e2f .

By the definition of p(h) we have p(h)>A. Therefore U(fo, %)C{f: D>},
Let ¢ be a positive measures on X. For fe(C(X) we define
if) r=sup inf{(g): g+e=f, geC}.

For x€ X we write Q3(f) instead of Q¢,(f). The function x— Q5(f) is denoted
by Q°f. By Proposition 2.1 the map f~ Q¢(f) is monotone, hypolinear and
lower semicontinuous.

PROPOSITIOH 2.2. The following relations arve wverified for two funclions
f, g=C(X), for acR* and for two measures p, ve M™.

(i) QuUfte=Qu/)+Qig),

(i) QUaf)=aQ(f),

(i) w(H=Q(f),

(iv) f=g wmplies QuN=Qg),

(v) p<v implies Qu(f)=Q(f),

Vi) [ Q(f) is lower semicontinuous.

Proor. (i) (ii) (iv) (vi) Immediately these relations and properties are
obtained by Proposition 2.1.
(iii) Suppose that ¢>0 and g+e=f with geC. Since p is positive, it holds
that p(g)=p(f)—ep(l) and hence

1) For two subsets 4, B of X with ACB we denote by A\B the complementary
set of B with respect to A.



26 H. WATANABE NSR. 0.U. Vol. 31

/.7(f)2sst>10p p(f)—ep))=pu(f).

(v) is obvious.
THEOREM 2.2. For fe(C(X) and psM*, it holds that
(=sup{v(f): v<p}.
Here the relation < is the preoder with respect to C.

PrOOF. By Proposition 2.2 the map h+— Q%(h) is monotone, hypolinear and
lower semicontinuous. Let a be an arbitrary real number satisfying Q4(f)>
a>—Q5(—f). By Theorem 2.1 there is a continuous linear functional v on C(X)

such that
v(f)=a and v(h)=QY(h) for all he(C(X).

If h=0, it holds that v(h)=Q5(M=0Q%(0). Consequently v is positi‘ve. For every
g=C it holds that

wg)= supu(f)= sup Qu(f)=pg)

rL6&n JEC(X)

and hence v<g. Therefore Q5 (f)<sup{v(f): v<g}. On the other hand, let
A<p. For ¢>0 and geC satisfying f=<g-e¢, it follows that

AN=Mg)+eA)=pm(g)+eAl).
Consequently
Af)—eAV)=inf{u(g): gt+e=f, geC}

and hence A(f)=Q4(f). Therefore we have the conclusion.

§3. Minemal measures.
In this section we shall assume that C is a min-stable convex cone in C(X).

ProroSITIO 3.1. Let p, v be two positive measures. Then p<c v if and only
if p<sv.

ProOF. Since CcC, it is obvious that p<pv implies py<cv. Conversely,
suppose that y<cv. From the definition of concave functions it follows that
< s e, for 2e Mt and x= X if any only if 1<p e,.

By Theorem 2.2 we have, for each xe X and for each feC(X),

Q:(f)=sup{A(f): A<L¢ extsup{A(f) : 2<g ez} =Q5(f).
Since C and € are min-stable, we have
Qﬁ(f)zssgg inf{u(g): g+e=f, g&C=v(Q°f)

=u(Q%F)=QL(f).
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Using Proposition 2.2, we have, for every g C,

w@)=sup{(f): f<g, FECX)}
ssup{Qu(f): /=g, feC(X)
ssup{(f): f=g, feC(X)}
=sup{Q%(f): f<g, FEC(X)} =u(g).

Therefore we have p<av.

We denote by C(X, C) the set of all fe(C(X) for which the equality f(x)=
af(y) holds for any two points x, y= X and every a=R for which the equality
g(x)=ag(y) holds for all geC.

ProrosiTiON 3.2. C(X, C)=C—C.

PrOOF. Obviously we have C—CCC(X, C). Let f be arbitrary function in
C(X, C) and x, y be arbitrary two points in X. For every ¢>0 there is geC—C
such that

[f(x)—gx)|<e, [f(y)—gy)<e.

PROPOSITION 3.3. Let v be a positive bounded linear functional on a linear
sublattice F of C(X). Then v can be extended to a positive measure on X.

ProOoOF. For feC(X), put

Qf(f)=s€gg inf{u(g): gt+e=f, gEF}.

Assume that g€ F satisfies g+e=f for a real number ¢>0. Put g*:=max (g, 0)
and g~ :=max(—g, 0). Then g*eF, greF and g=g*—g~. If g~=0, it holds
that v(g)=v(g")=0. If g =£0, it follows that g*(x)=0 at a point x satisfying
g~ (x)=llg||>0. Consequently

—lg=ll +e=g*(x)—~g‘(x)+e§f(xzryréi§fl ).
Hence
v(g)=v(g")—v(gT)z—u(g)=—Ivllig = llvll({ggf(y>—8) .

Therefore Qf]“(f)zllvllrﬁsi;lf(y)>——00. By proposition 3.1 the map f— QI(f) is
monotone, hypolinear and lower semicontinuous. By theorem 3.1 there is a
continuous linear g on C(X) such that UHZQI(Sf) for all feC(X). If f=0, we
have u(f)=QE(f)=Qf(0)=0. Hence p is positive. Especially, it follows that

w@=Q(g=v(g) and u(—g)=QI(—g)=v(—g)

for every g&F and hence p(g)=v(g).
A positive measure v on X is called C-minimal if p<cv for pe M* implies
v<cp. The following properties (i) (i) (iii) are equivalent by Proposition 3.2:
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(i) p<¢v  and v<cpu,
(ii) wm(g)=w(g)  for all geC,
(i) pmg)=y(g) for all geC(X, C).

The restriction ¢|C—C of a positive measure ¢ to the sublattics C—C of C(X)
is a positive bounded linear functional on C—C. On the other hand, from
Proposition 3.3 it follows that a positive bounded linear functional on C—C is
extended to a positive measure on X.

THEOREM 3.1. [If peM* satisfies QZ(f)<OO for every fe-—C, there is a
C-minimal measure ve M* satisfying v<p.

Proor. For every g&C we have Q4(g)=u(g)<oco and —Qi(—g)>—o0 by
the assumption. Consequently we have —oo<—Q%(—f)=Q:(f)<co. Suppose
that y<p¢ and feC(X). It holds that, for g&C with g+e=f, u(g@)=v(g)=v(f)—
ev(l) and hence

3.1 W(HHzu(f).
Since the inequality holds for —f, we have —Q5(—/f)=v(f). Accordingly
(3.2) —oo< —QUN=v(I=Qi(f)<oo  for every feC—C.

We consider the conjugate space (C—C)’ of the normed space C—C which is
endowed with the topology ¢((C—C), C—C). Put

M’u = {VIC'—-C' . IJEM+, V'</,t}.

Then M, is a subset of (C—C)’. Since the enequality (3.2) holds for every
feC—_C, M,, is compact in (C—C) (cf. [4, Theorem 23.117). On the other hand
M, is closed. In fact, let v be an arbitrary element of ]\7[#. Since v is positive,
v can be extended to a positive measure on X. It is easy to see w(g)=<pu(g)
for all geC. Consequently veM,. Therefore M, is compact. Using the
compactness of M,, we see that the preoder < is inductive. By Zorn’s lemma
there is a C-minimal measure v, with v, <qp.
Especially, we have

COROLLARY 3.1. If Qi(f)<oo for all fe—C and for x X, there is a C-
miniml measure ve M+ with v<ge,.

ProposITION 34. If veM*" is a C-minimal, it holds that v(f)=Q(f)=
v(QCf) for feC(X, C).

PrOOF. Since v is C-minimal, we have up(f)=v(f) for every p=M* with
p<y and for every feC(X, C). By Theorem 2.2, we have

s(f)=sup{u(f): p<v}=v(f)

for every feC(X, C). Since C is min-stable and the function ¢ — inf{g(x): g-+¢
=f, g&C} decreases, we have Q%(f)=uv(Q°f).
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§4. The Choquet boundary.

Let S be a convex cone in C(X). We denote by X,(S) or simply X, the set
{xe X: g(x(=0 for all g&S}. Put
Cs:={min(gy, g5, =, gn): €S, nEN}
Then Cg is a min-stable convex cone and the relation p<se, is equivalent to
the relation y<¢4 ¢,. Consequently we have Qﬁ(f):sgg%) inf{g(x): g+e=f, gCs}
for all feC(X) by Theorem 2.2.

We denote by 6(S) the set of all points x= X\X,(S) such that e, is Cg-
minimal and call the Choquet boundary with respect to S.

PROPOSITION 4.1. Let x be a point in X. Then x=d6(S) if and only if
x& Xo(S) and Q3(f)=f(x) for all fe —Cs.

ProoOF. If a point xe X (S) belongs to d(S), we have Q5(f)=Q%(f)=s(x)
for all f&Cg by Proposition 3.4. Conversely, suppose that x& X(S) and Q3(f)=
f(x) for all f&—Cs. Let p be a positive measure on X with py<cge,. Using
Theorem 2.2, we have

F)=Qi(f)=0Q%(f)=sup{u(f): p<oge.{=p(f)=f(x). Consequently pu(f)=s(x)

for all f&—Cs. Therefore p is Cg-minimal.

COROLLORY 4.1. Q(f)=f(x) for all fe—Cs if and only if x=d(S) or
x€ Xy(S).

Proor. This is an immediate consequence from Proposition 4.1.

PROPOSITION 4.2. Let x be a point contained in the complement of X(S).
Assume that there are usS and ve S such that u(x,)>0 and v(x)<0. Further,
assume that there is weCg such that w=0 and the set {x€X: w(x)=0} s equal
to Xo(SHWU {x,}.

PrROOF. For each peM* with pu<cge, it follows that 0=p(w)=w(x,)=0
and hence p(w)=0. Since w is non-negative, the support g is included by the
set {x: w(x)=0}. By the assumption we can write

p=ptaces,

where p, is a positive measure of which suoport is contained in X(S) and «
is a non-negative real number. Accordingly

V(x0) = p(V)= p, (V) +av(xo)=av(x,) .

From the inequality v(x,)<0 it follows that o¢=1. Similarly, considering u, we
have o<1, and hence a=1. Since f=0 on XyS) for all f—Cs, we have
w(f)=rf(x,). Therefore x, is a point of the Choquet boundary.

ExamMPLE 1. Let X be the closed interval [0, 1] in R and S be the linear
space generated the function f(x)=x. Then we have Cg=S, C(X, Cs)=S and
a(S)=(0, 11.
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ExAaMPLE 2. Let X=[0,1] and S={ax-+bx?: a, be R}. Then we have
Xo(S)={0}, C(X, Co)={f=C([0, 11): f(0)=0} and o(S)={1}.

ExampLE 3. Let X=[0,1] and S={ax+bx®*+cx®: a, b, ceR}. Then we’
have X(S)={0}, C(X, Cs)={reC(0, 1) : f(0)=0} and &(S)=(0, 11.

Hearafter, assume that C is a min-stable convex cone in C(X).
PROPOSITION 4.3. Let X be metrizable. Then there is foe —C such that
(4.1) {xeX: Qu(fo)=/o(x)} = frEX: QA N=f(x)} =6(O)V X, .
and 0(C) 1is a Gs-set.

ProOOF. Since X is compact and metrizable, there is a countable set
{fz} ©—C which is total in C(X, C). Put

N
Jo= B T

Then f,€—C and it holds that {x: Q%(fo)=Ffo(x)} = Q_O{x: Qi(f)=f(x)} Further,
it follows that ’

e X: QrI=fwi= 0 {re X: QA< }

EN

= n U [rex: hm(x)—fo(x)<%},

nEN meN

where hm(x)zinf{g(x): geC, g+%_>__ f}. Since 4., is upper semicontinuous, {x:
Q5(fo)=fo(x)} is a Gs-set. By Proposition 4.1 and (4.1) we have

{xeX: Qi(fO)=/o(0)} =a(C)IX(C) .
Since X,(C) is closed, 6(C) is a Gs-set.

THEOREM 4.1. Let X be a compact metrizable set and C be a min-stable
convex cone in C(X). Assume that there are xo=X and veC satisfying v(x,)<0
and Q5(f)<oo for every f&—C. Then the Choquet boundary 0(C) is not empty
and a Gs-set. For every C-minimal measure psM*, it follows that

UENX(C)VE(C))=0.

Proor. From Theorem 3.1 it follows that there is a C-minimal measure v
with v<e,. Put w=min (v, 0). Then weC and it holds that

v(w) Sw(xo)=v(x0)<0.

Since w=0, we have v(X\X,)>0. Since X is metrizable, there is f,e—C
satisfying (4.1) and it follows that »(Q°fo—/fo)=0. The inequality Q°f,—/fo=0
implies v{x: Q%(fo)—fo(x)>0})=0. Consequently »(X\X,\Jd(C)))=0. Since
v(X\X)>0, o(C) is not empty. Further, since u(Q°fo—fo)=0 for every C-mini-
mal measure g, we obtain p(X\(X,\Jo(C)))=0.
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§5. Minimal stable sets.

Let C be a min-stable convex cone in C(X). A closed subset S of X is
called C-stable or simply stable if for each x& X and for each measure g with
#<c e, the support S, of g is contained in the set SUX,. We denote by S
the set of all C-stable closed subsets of X. Since S is inductive with respect
to the oder C, there is, for each S8, a minimal C-stable set included by S.

In this section we shall assume the following condition (p):

(p) for each xeX\X, there is weC satisfying w=0 and w(x)>0.

Let v be a function in C satisfying v(x,)<0 for x,€ X\X,. The function v
is said to satisfy (¢) at x, if there is a non-negative function u=C such that

—v(xo)

u(x,)>0 and for some real number b with W> b>0, it holds that bu-+v>0
0

on U\X, where U is an open set containing X,.

PROPOSITION 5.1. Assume that veC with v(x,)<0 satisfies (¢) at x,. Then
there is a C-stable set S inclvded by the set {x=X: v(x)<O0}.

PROOF. By the assumption there are a non-negative function ueC with

u(x,)>0, an open set U containing X, and a real number b With;uzé—(% >b>0
0

such that

(5.1) bu+v>0 on U\X,.

Since X\U is compact, by the condition (p) there is a non-negative function
weC with w>0 on X\U. We may suppose that w satisfies

—v(x,) —v(x,)
(5.2) u(xo) = u(xo)+w(xo) >b.

Let a, be the supremum of positive real numbers « satisfying

{xeX: au(x)Fwx)+v(x)=0 NX\X)#¢ .

—v(%xo)
Then aogm.

From (5.1) it follows that
blu(x)+w(x)+v(x)=bu(x)+v(x)>0

—v(x,)

u(xo)+w(xo)’
a(u+w)+v>0 on U\Xo.

on U\X, Using (5.2), we have, for a=

On the other hand, put

zl’éléI\lU (u()+wx)=; and Izlélg v(x)=7.

Then we have >0 and 7<0. Consequently
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a(u+w)—|—v>:;§—7(u—l—w)—i— v=—7+v=0 on X\U for a>—-—;—.

Hence a,=sup a_S_—_‘B—T<OO. Immediately, by the definition of «, we have

au+w)+v=0 on X\X, and hence on X. Further, there is x,= X\ X, such that
(5.3) aco(u(xy) +w(x))+v(x)=0.

In fact, suppose that no point x,€X\X, satisfies (5.3). Since a (utw)+v is
strictly positive on X\U, there is 6 R such that «a,>d>0 and o(u+w)+v>0
on X\U. Put a;=max(§, b). Then we have a,>a; and for az=a;,

a(ut+w)+v=za(ut+w)+v>0 on X\X,.

This is a contradiction to the definition of «, Therefore there is x;€X\X,
satisfying (5.3). Put

So: ={xe X\ X, 1 ao(u(x)+w(x)+v(x)=0}.
Then S,;#¢ and
Se=(X\U)N {xe X : aou(x)+w(x)+v(x)=0},

since ao(u+w)+v>0 on U\X, For each xS, and for each p=M* satisfying
p<ez, it holds that

0= plao(u+w)+v) S ao(u(x)+w(x)+v(x)=0.
Consequently
S.ClyeX: alu(y)+w(y)+v(y)=0}=S\JX,.
Hence S, is C-stable. Since u+w>0 on X\U, we have v<0 on S,.
Immediatly we have

. COROLLARY 5.1. Under the same conditions as Proposition 5.1., there is a
minimal C-stable set inclvded by {x=X: v(x)<0}.
The following proposition (resp. the corollary) can be proved by the same
method as the assertion a)=>b) (resp. e)=>f)) of Theorem 2.1 in [3].

PROPOSITION 5.2. Let S be a minimal C-stable set included by X\X, and u
be a function in C satisfying u>0 on S an u(xy)=1 for some x,&S. Further
assume that there is v,€C such that v(x,)<0. Then we have

v=0(x)U on S for every veC.

COROLLARY 5.2. Let S be a minimal C-stable set and for x,=S there is
viE€C such that v{(x,)<0. Then x, is a point of 6(C).

THEOREM 5.1. Let v be an element of C with v(x)<0 for some x,€X
Assume that v satisfies (¢) at x,. Then we have
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{xeX: v(x)<0}NOC)#¢ .

ProoF. By Proposition 5.1 there is a C-stable set S in {x: v(x)<0}. From
Zorn’s lemma there is a minimal C-stable set S, in S. Each point of S, is one of
0(C) by Proposition 5.2. Hence we have the conclusion.

THEOREM 5.2. Assume that for a point x,€0(C) there is veC such that
v(x0)<0 and v satisfies (c) at x,. Then there is a minimal C-stable set S disjoint
to X, and containing x.

PrRoOOF. This theorem can be proved by the same method as the assertion
g)=>a) in Theorem 2.1 in [3].
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