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Equations of motion of a charged particle in the Coulomb field of an
electric charge combined with the magnetic field of a magnetic monopole at
the same point are integrable by separation of variables in classical dynamics
as well as in relativistic dynamics. The Schrédinger equation and the Dirac
equation of the particle are also soluble by separation of variables. While
eigenvalues and eigenfunctions of the angular operator are different from those
of the pure Coulomb field, the energy formula is very similar to that of the
pure Coulomb field.

§1. Motion in classical dynamics.

A magnetic monopole at the origin of a cartesian coordinate system pro-
duces a magnetic field with flux density

Bo=—bt%,  B=-B =B AR

in the cartesian coordinates, —4zf denoting the strength of the magnetic
monopole. The field may be represented by a vector potential A with compo-
nents

__ PByz _ Bax _
As= r(x%+y?)’ Ay—r(x2+y2)’ 4.=0.

We note here that

____ bz —rd =2 4 tan— 2
Agdx+Aydy+A,dz= 7,(x2+y2)(ydx xdy)= - d tan p
=pf cos 0d¢

7, 0, ¢ being polar coordinates. Hence the magnetic field of the monopole
may be represented by the vector potential with components A,=0, A,=0,
Ag=pcoslf. An electric charge —4za produces an electric field with its po-
tential V=—a/r.

A particle with the unit mass and the unit electric charge has the Lagrangian
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L:—é—(fz—l—rzé"‘—]—rz sin? @ %)+ B cos 0-gz§+%, M
canonical momenta
Pr=—%€“=f ) Po=—aa§—= 70, p¢:—g§—:r2 sin?6- qﬁ+‘8 cos @,

and the Hamiltonian

1,1 1 _ o &
He= g bt g it g g (Po B eos O
The partial differential equation of Hamilton-Jacobi
0S 1,05\, 1 /0S\e 1 (0S :a
a3 t2(e) o (5s) T sin g \gp P Co 6) ~ =0 @

is integrable by separation of variables, by putting

S=—Et+f(nN+g@+pp, E, p: constants
and getting

yimms . (P—pBcosO)? .
Lg’'(0)] =g —9¢> ¢:a constant
[ —2E—2% 4+ —g
e v

And we have

s=—Et+["4/ <2E+27a——%—>dr+g0\/ (¢—2=LLoSO N 491 pg.

sin% 0

The period in ¢ for » varying between two limits is equal to

2ra
(—2E)%/?

the same as that in the pure Coulomb field.

§2. Motion in relativistic dynamics.

From (1) we have the relativistic Lagrangian

L=—R+Asf+Ad, R=V(i2—#"—(r)*—(rsin 04)*) ©)

where we put the light velocity=1 and Ag=pcosb, A,=a/r, #=dr/ds, s being
an appropriate parameter. We have
7 %0 _ r¥sin®*@ i

br="5" bo=—p" P¢——T¢+A¢, po:—7+A.

2 — 2
and gD BaAN (e,

r?sin? 6

hence the Hamilton-Jacobi equation
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This equation is also integrable by separation of variables, by putting
S=f(r+g@)+pp—Et.

g(@) turns out to be the same as in classical dynamics. We have

= IS 12y ar.

The period in ¢ becomes 2za(l—E?)~%2,

§3. Schriodinger equation.

The Schrodinger equation runs as

109 11, ey Lo e Lo e a7
T ot G A 5 (0, — A (5 A — A 9=0
or, in the polar coordinates

top r 1¢1 9 ,0 1 9. ,0 1 9
5 8t+[ o\ or " ar s 0 00050 T st g a¢2)

ifcosd 0 | [Pcos*d  al,
r?sin® 0 3¢+ 27*sin® g r]¢_0' ©)

This equation is soluble by separation of variables. By putting

r¢p=R(r)O(0) e'™? e~ 1Lt

we have

1 d . .dé (m—PBcos O 1,
sind 462945 +[ sin’ @ ]@“0 ©)
(&L 22 2E)R=0 @
dr v 7

7 being a constant of separation. When the magnetic field is absent, we know
that

p=I(l+1), O=Pr(cos 8),

from the text books on quantum mechanics.
The equation (6) may be changed into

d .40 [ (m—purl,_ _
S a—un - Jo=0,  u=coss ®)

which is a Riemann’s P-equation® with a solution of the type
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We classify solutions according as indices at u=1 and u=—1 are positive
or negative, to ensure @ to be finite.

6=P

1° m—pB>0, m—+p>0.
O=(1—w)m P+ u) D Ffmt g o[ L gt

m+—-—\/ r+n+B% 1+m+8; u+1}.

For F, hypergeometric function, to be finite at u=1, the second argument
of F must be zero or a negative integer, since m is positive there. Hence

77'1+-%_—~ 4—+7]+ﬁ2:"—k ’ k:(): 1: 27

=(mt bty ) g B=(mt Bt k)~
If we put =0, we get the well-known relation p=I(I+1), I=m+Fk.
2° m—pB<0, m+B>0. .
O=1—u)¢- m>/2(1+u><m+ﬂ>/2ﬁ{ﬁ+ Jr\/~?:ﬁ~

Bl tytpn Limg; M2

Since B is positive, we have

ﬁ+%—4f%+v+‘82:—k 3 k:O; 1: 21 Tt

n=(k~+p)Yk+p+1)—p%.
3° m—p<0, m+p<0, (m<0),
O=(1—u)®-™/*(1+u)" m‘“@”zF{—m—l- +\/ -+n+ 5%

m+~——\/4+ —i—,BZ 1-m—8; u—}—l}

p=(k—m)(k—m-+1)—p*, k=0, 1,2, -
4° m—pF>0. m+B<0, (<0,

O=(1—wym -ty mdipl gty [t
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—pa—a Tt 1om—p; 2EL,

n=(k—B)Xk—p+1)—p*, k=0,1,2, .
In short we have

p=(k+s)k+s+D—g, £=0,1,2, -,

s=max (|ml, |8[),

@:(1_u)lm-ﬂ|/2(1+u)lm+5'/2F{23+1+k, —k, 1+|m+B]; u+1}

A change of variable v/ (— 8E) 0 brlngs the equation (7) of the radial part
into the following form

[ d? n 1/4—p?
do?

1
4
b P

Z]RZO’

1 1, SR
2. o — _— —_— —_— —_—
pr=ntp=(kt5+s) —p, g=a/v(=2E),
and gives us a solution expressed by Whittaker’s function®
R=M,, ,(p)

vorn cmpfr s U2HD= (/24 p—g(3/24p—0) ,
=ptr el 2pD) P 2i2priepty P T }

For R be finite at p==co, we have the condition

%’—{—p'—q:_n 3 77.:0, 1) 2} Tty

hence

=2 pnmgtaf (k) —prtn.

If we put =0, s=m, we have the relation g=k-+4|m|-+n+1, which is
well known.

§4. Dirac equation.
We put the Dirac equation in the following form
Fp=0,  F=po—Avtan(ps—A)+aspy—Ay)+as(p.—A.) )

in cartesian coordinates with the condition that ¢¢ be one-valued and square-
integrable. Symbols used here mean as follows

_1a _1a e _ 10
po“iat’ pr‘iax’ by= 70y’ pz_iaz’

_a _ —Byz _ Bax
AO_‘T’ A”—r(xz—l—yg)’ Ay= (xFy?)’
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with the agreement m=1, ¢=1, h/2x=1, e=1.
In polar coordinates (x=r sin § cos ¢, y=v sin 0 sin ¢, z=r cos ), the operator
F may be written

1
F:arpr+a0?p€+ b (p{z" ¢)+po—Ao"_ao

7 sin 0
where

br= 1 aar Poz%%, Pqi:%‘%
a,=a; 8in 0 cos ¢-+a, sin 6 sin ¢-+a; cos 0
ag=a; cos  cos ¢+a, cos f sin p—a; sin &
ag=-—a, Sin g+a, cos ¢@.

Two matrices S and T defined by

S=exp (—é—gﬁalaZ): cos %—alaz sin %

T=-exp (-%—00(1%):(:08 %—Fala;.; sin —g—
transform the matrices «y, a,, a; as follows
Sa;S'=a; cos g-+a,sin ¢, Ta, T '=a, cos ﬁ—a?_, sin @
Sa;S™'=—a; sin g-+a,cos ¢, TaT '=a,
Sa.S'=a;,, Toa; T *=a,sin 0+a; cos .

Hence the matrix U=ST allows us to see that

a,=UasU™", ay=Ua,U™, az=Ua U™, a=UaU™",

Up.U=p,, U py U=po—%a1a3 , U“p¢U:p¢—%a2(al cos O-+a; sin )

and finally v
U FU=ayp -—i)+a —l—(p Lot 0)+a B 2 L
3 7 7 1 ¥ 7} 2 T Qe ¥ Sin 0 ) 0 o
y cos @
prr—l—al \/-w—po\/sm 0+a,—~ Py gnﬂ +po—As—a

Therefore the equation F¢)=0 may be changed into
Fa=0

where the operator & and the spinor w are defined by

g:aapr+a1—;l:f70+a’z (pgb B cos 6)—}—1')0———1

sin 4

1
¢=U r/sin 0
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The angle ¢ is an ignorable coordinate, so the operator p, commutes with .
Since U involves the factor S:cos—gzi—ala2 sin -‘é, the one-valuedness of ¢ re-
quires that

bp=maw

m being any half-integer.
An operator @) defined by

1

Q:ia?,ao[alpo +azsin 7

(ps—F cos 0)] (an)
commutes with a,, as, p,, po— Ao, hence with &,
FQ—QIF=0.
Therefore the spinor w may be labeled by the eigenvalues of p; and Q. The
operator p, also commutes with #. We denote the eigenvalue of p, by —E.
§5. Eigenvalues of the operator L.

With matric representation of «,, ai, o, and «a;

a=1X0o;, a=0,X0,, a;=0,X0y, ay=03X0;,

we have
L 0
Q=L Xo,=
=(, _,)
1
Lzang—olm(p¢—‘8cosﬁ>.

If we denote the eigenvalue of the operator L by A, the eigenvalues of the
operator @ will be 2 and —2. Eigenfunctions X=(X;, X,) corresponding to the
eigenvalue A are to be determined by the equation LX=2AX or

0 m—pBcosf\,
(—ﬁ*m sin 8 )Xz_le
0 m—pBcosf\,
(_8—07— ~ sind )xlﬁuz

which may be written in the following form

Xm — 7n—18ux _2,_._,x_2..w
du 1wt VI-w?
dX, _m—fu 4

du  1—u? Xg_l_lz\/l--u2

where the independent variable @ is replaced by u=cos 6.
Since the original spinor ¢ is replaced by o=U"'¢-r+/sin 6, it seems reaso-
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nable to require that w/4/siné be finite. Therefore we impose the boundary
condition that X;/+/sin @=w,; and X,/+/sin0=w, be finite at u= 1 and u=-—1.
Equations to be satisfied by X; and X, individually turn out to be

5 a7 d mu— B—(m— Bu)? oy
kl U —u——+ — +1]L-n
dz B—mu— (m Bu)?
2 2 [y —
[U‘ U guE du_+ - '+2]X2 0.

These equations are | Riemann’s P-equations. Referring to the formulas on
Riemann’s P-function®, we have ‘

1 —1 oo
_n o R PRl SvETE
Y /sinf
S
1 1 o

Said boundary condition requires that each of w; and w, have at least one
positive index at u=1 and u=—1, therefore there arise four cases where both
w; and w, have positive indices at u=1 and u=—1.

° 1 1

1 77/1‘+18>7’ m'—‘B>"2",
wl=(l—u>(m~5)/2—1/4(1‘{‘H)(mﬂg)/z““F{m—{—%—[—\/mf’
mt5—VETE, Smtp; 23

The condition that the hypergeometric function F be finite at u=1 leads to the
condition

m+%~¢ﬁ¥ﬁ:—k, E=0,1,2, -,
1 2
2— — —_
or 2—(m+2+k> 8.

2° m+ﬁ>%, B—m>
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wlz(l_u)cﬁ—m/2+1/4(1+u)(m+5)/2+1/4p{{3_}_1_1_\/7:2"_'*:‘]3‘2’,

u-zi—l}

A=(p+1+Fk)>*—p2, E=0,1, 2, .

BV B, St

3° n1+ﬁ<~—l—, ﬁ—m>%,

e e i

u+l}

R N S
m+ «/2+,B,2 m—B; 5

22=(~m+%+k)2—ﬁ2, E=0,1,2, .

o 1 ' 1
4 m+,8<—§, n1M19>*2-,

wlz(l_u)Cm-ﬁ)/Z—l/A(l+u)—(m+ﬁ)/2_1/4F{__.ﬁ+1\/72_:‘—_‘§§_’

)

B=(—B+EP—p,  k=0,1,2 .

— B, B

In short we have

22:<s+%+k)2—‘82, E=0,1,2, -,
s=max{[m[, ’,('H—-H}

§6. Energy formula.

Replacing the operator Q by one of its eigenvalues, 2, we put
. A
gz_E—%_ao"{‘aspr““laaao—r“

1A, —ads }

=a3{—a3E—a3ao+pr+ "

We transform the coefficient of 1/ in the bracket into a diagonal form by
the matrix V defined by

V=2+p—iaaas, Vi=Q+op+iaa,s)/20(p+2), p=+vIF—a®
getting V-l(izao_"aag) VZZ,OC(O .

Further we have
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3 .
V-HasE +a3a'o)V=<—aa+z—aao)E +asa,
o o _
consequently

V- lagﬂ’V—pr+—pa0—<—a3+—ao>E D)

br —ir’i—% (—-;E»}—l)as
R R

where o; is one of Pauli matrices. Radial eigenfunctions ¢=V"'w are to
satisfy

<pT i zaE)¢1 (——E+1)0'3¢2_

wE
(—“—1)03¢1+<Pr +“‘O‘—)¢2*—0 .
Elimination of ¢, leads to a Whittaker equation

d? —p® | 2aFE
[erJ[ przp ! 7 +E2_~1]¢1=0'

A change of variable 2r+/1—E? =x brings this equation into the standard form

G oo

aFE - 1
~VI—E® ":l”_?‘

and gives us the solution

¢1:Mlc,,u(x)

1724+ p—«
112p-+1)

A2+ p—e)3/24 p—r) 5,
212p+D2p+2) g

:x1/2+/ze—x/2{1+ X+

The condition that ¢, be finite for x — co leads to the energy formula

/5:"12:“—*_[1_*—” B n:(): 1: 2; )

2 -1/2

(1/2+p+n)y ]

or E:[l+

which is very similar to that of the pure Coulomb field.

The existence of a magnetic monopole has been proposed by Dirac® but
has not been confirmed to date, despite boundless efforts of many researchers.
It seems remarkable that, in a field produced by a magnetic monopole and a
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point charge, all of the Hamilton-Jacobi equations, the Schrédinger equation and
the Dirac equation of a charged particle are soluble by separation of variables.
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