Theorems of Korovkin Type in an Ordered Vector Space with a Locally Convex Topology

Hisako Watanabe

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received September 10, 1979)

§ 1. Introduction

Let E be an ordered vector space. Denote by \mathbb{R}^Y the ordered vector space of all real-valued functions defined on a set Y. Given a linear subspace F of E such that E is F^+ -bounded, i.e. for each $f \in E$ there is $g \in F^+$ satisfying $-g \leq f \leq g$. Let A be a positive linear map from F into \mathbb{R}^Y . In a preceding paper [3] the author has proved that for a net $(L_i)_{i \in I}$ of monotone maps from E into \mathbb{R}^Y pointwise convergence of $(L_i g)_{i \in I}$ for all $g \in F$ implies pointwise convergence of $(L_i f)_{i \in I}$ for all elements $f \in E$ which are A(F)-affine in the sence of [3]. The set of A(F)-affine elements is a linear subspace of E containing E and coincides with E if and only if the E-boundary of E equals E. In the proof, the assumption that E is E-bounded is essential.

In this paper, using a Hahn-Banach type theorem of Anger and Lembcke ([1]) where sublinear functionals are replaced by hypolinear ones and endowing E with a locally convex topology, we shall obtain the analogous theorems without the assumption that E is F^+ -bounded.

Moreover, using these results, we shall define an integral with respect to a finitely additive, positive real-valued set function on a ring of sets.

Further, in case Y is a compact Hausdorff space and A is a continuous positive linear map from E into C(Y), the analogous theorems with uniform convergence instead of pointwise convergence will be obtained.

§ 2. The A(C)-boundary and A(C)-affine elements

Let E be an ordered vector space with a locally convex topology and \mathcal{B} a fundamental system of convex symmetric neighborhoods of 0. Suppose that C is a convex cone in E. An element $f \in E$ is called almost upper C-bounded if it satisfies the following condition:

 (B_1) For every $V \in \mathcal{B}$ there are $u \in V$ and $g \in C$ with $f \leq g + u$. The set of all almost upper C-bounded elements in E is denoted by C_u^* . Let Y be a set and A be a monotone sublinear map from C into \mathbb{R}^Y . For $f \in E$ and $y \in Y$, define

$$\overline{Af}(y) := \sup_{V \in \mathcal{B}} \inf \{ Ag(y) : u \in V, g \in C, f \leq g+u \}$$

if $f \in C_u^*$ and $\overline{Af}(y) := +\infty$ elsewhere. Denote \overline{Af} by the function: $y \mapsto \overline{Af}(y)$. In the sequel we shall assume that

 (B_2) $\overline{Af}(y) > -\infty$ for every $f \in E$ and every $y \in Y$. Easily we have the following properties of the envelopes.

PROPOSITION 2.1. The map: $f \mapsto \overline{Af}$ from E into \overline{R}^{Y} with $\overline{R} = (-\infty, +\infty]$ has the following properties:

- (i) $\overline{A(f+g)} \leq \overline{Af} + \overline{Ag}$,
- (ii) $\overline{A(\lambda f)} = \lambda \overline{Af} \quad (\lambda \in \mathbb{R}^+),$
- (iii) $f \leq g$ implies $\overline{Af} \leq \overline{Ag}$,
- (iv) $\overline{Ag} \leq Ag$ for every $g \in C$.

Consequently, the map: $f \mapsto \overline{Af}(y)$ is a monotone hypolinear functional on E. Recall that a hypolinear functional on E means a sublinear functional on E which may attain the value $+\infty$.

REMARK 2.1. If A is a monotone sublinear map from E into \mathbf{R}^Y and $u\mapsto Au(y)$ is locally upper bounded, $\overline{Af}(y)>-\infty$ for every $f\in E$. Indeed, for $\varepsilon>0$ there exist M>0 and $W\in \mathcal{B}$ satisfying $Au(y)\leq M$ for every $u\in W$. Assume that $f\leq g+u$ where $g\in C$ and $u\in W$. Since $Af(y)\leq Ag(y)+Au(y)\leq Ag(y)+M$, it holds that $Af(y)-M\leq\inf\{Ag(y):f\leq g+u,\ g\in C,\ u\in W\}$ and hence $\overline{Af}(y)\geq Af(y)-M>-\infty$.

PROPOSITION 2.2. The hypolinear functional: $f \mapsto \overline{Af}(y)$ is lower semicontinuous on E for each $y \in Y$.

PROOF. Given $f \in E$ and an arbitrary real number α . Assume that $\overline{Af}(y) > \alpha$. We shall show the existence of an open set G containing f such that $\overline{Ag}(y) > \alpha$ for all $g \in G$. If $f \in E \setminus C_u^*$, we may put $G = E \setminus C_u^*$. Indeed, $E \setminus C_u^*$ is open and $\overline{Ag}(y) = +\infty$ at $g \in E \setminus C_u^*$. If $f \in C_u^*$, there is $V \in \mathcal{B}$ such that

$$\inf \{Ag(y): g \in C, u \in V, f \leq g+u\} > \alpha$$

Take $W \in \mathcal{B}$ satisfying $W + W \subset V$. Then

 $\inf \{Ah(y): h \in C, v \in W, f+w \leq h+v\}$

 $\geq \inf \{Ah(y): h \in C, u \in V, f \leq u+h\}$

and hence $\overline{A(f+w)}(y) > \alpha$ for each $w \in W$. It suffices to take G = f + W.

Let y be an element of Y. The set of all positive continuous linear functional μ on E satisfying $\mu(g) \leq Ag(y)$ for every $g \in C$ is denoted by $M_y(C)$.

LEMMA 2.1. For each $f \in E$ and each $y \in Y$ it holds that $(-\overline{A(-f)}(y), \overline{Af}(y)) \subset \{\mu(f) : \mu \in M_y(C)\} \subset [-\overline{A(-f)}(y), \overline{Af}(y)]$. Here, if $-\overline{A(-f)}(y) = \overline{Af}(y)$, we use the convention $(-\overline{A(-f)}(y), \overline{Af}(y)) = \{\overline{Af}(y)\}$.

PROOF. By Propositions 2.1 and 2.2, the map: $h \mapsto \overline{Ah}(y)$ is a lower semi-continuous hypolinear functional on E. Using Proposition 3.2 in [1] there exists, for every $\alpha \in (-\overline{A(-f)}(y), \overline{Af}(y))$, $\mu \in E'$ such that

$$\mu(f) = \alpha$$
 and $\mu(h) \leq \overline{Ah}(y)$ for each $h \in E$.

Since $g \leq 0$ implies $\mu(h) \leq \overline{Ah}(y) \leq \overline{A0}(y) = 0$, μ is positive. If $g \in C$, it holds that $\mu(g) \leq \overline{Ag}(y) \leq Ag(y)$. Consequently $\mu \in M_y(C)$. Further, let $\mu \in M_y(C)$. If $f \in E \setminus C_u^*$, then $\mu(f) \leq +\infty = \overline{Af}(y)$. Assume that $f \in C_u^*$. For each $\varepsilon > 0$ there exists $V \in \mathcal{B}$ such that $\mu(u) < \varepsilon$ for every $u \in V$ since μ is continuous. The inequality $f \leq g + u(g \in C, u \in V)$ implies $\mu(f) \leq \mu(g) + \mu(u) \leq Ag(y) + \varepsilon$ and hence

$$\mu(f) \leq \inf \{Ag(y) : f \leq g + u, g \in C, u \in V\} + \varepsilon \leq \overline{Af}(y) + \varepsilon.$$

Consequently $\mu(f) \leq \overline{Af}(y)$ for every $f \in E$. Replacing f by -f, it follows that $\mu(f) \geq -\overline{A(-f)}(y)$.

An element f of E is called A(C)-affine if $\overline{Af} = -\overline{A(-f)}$ on Y. Immediately the following corollary follows from the definition and Lemma 2.1.

COROLLARY 2.1. An element f of E is A(C)-affine if and only if the function: $\mu \mapsto \mu(f)$ is constant on $M_y(C)$ for each $y \in Y$.

The set of all $y \in Y$ for which $M_y(C)$ consists of one element is denoted by $\delta(A(C))$ and called the A(C)-boundary. By the definition and Lemma 2.1 we have the following Proposition 2.3 and Corollary 2.2.

PROPOSITION 2.3. A point y in Y belongs to $\delta(A(C))$ if and only if $\overline{Af}(y) = -\overline{A(-f)}(y)$ for every $f \in E$.

COROLLARY 2.2. $\delta(A(C))=Y$ if and only if every element f of E is A(C)-affine.

EXAMPLE 1. Let X be a locally compact Hausdorff space and put $E=C_0(X)$ (with the uniform norm) and Y=X. Then it is obvious that the I(C)-boundary with respect to the identity map I on E is equal to the Choquet boundary of X with respect to C: the set of all points $x\in X$ for which $M_x(C)=\{\varepsilon_x\}$.

EXAMPLE 2. Let X and Y be locally compact Hausdorff spaces. Assume that X has at least n+1 points and F is a linear subspace of $C_0(Y)$ satisfying the following assumption:

Given any n distinct points of X, there exists $g \in F$ such that $g(x) \ge 0$ and g(x) = 0 exactly when $x = x_i$ for $i = 1, 2, \dots, n$.

Denote by A a positive linear map from $C_0(X)$ into $C_0(Y)$ of the form

$$(Ag)(y) := \sum_{i=1}^n \phi_i(y) g(\varphi_i(y)) \qquad (g \in C_0(X), y \in Y),$$

where $\phi_i \in C_0^+(Y)$ and φ_i is a continuous map from Y into X for $i=1, \dots, n$. Since A is a positive linear map form $C_0(X)$ into $C_0(Y)$ and for every $y \in Y$ the function $g \mapsto (Ag)(y)$ is continuous at 0 in $C_0(X)$, it follows from Remark 2.1 that $\overline{Af(y)} > -\infty$ for every $f \in E$ and every $y \in Y$. Further we have $\delta(A(F)) = Y$ (cf. Proposition 2.3 in [3]).

EXAMPLE 3. Let E be an ordered vector space with a locally convex topology and F a subspace of E. A positive continuous linear functional A on F is considered as a positive continuous linear map from E into \mathbf{R}^Y where Y consists of one point y. The point y is contained in $\delta(A(F))$ if and only if the linear functional A can be uniquely extended to a positive continuous linear functional on E.

§ 3. Pointwise convergence

Let E be an ordered vector space with a locally convex topology and Y be a set. A net $(L_i)_{i\in I}$ of maps from E into \mathbb{R}^Y is said to satisfy the condition (I) (resp. (II)) if it has the following properties (s) and (p):

- (s) L_i is monotone, subadditive (resp. superadditive) and satisfies $L_i(0)=0$ for all $i \in I$,
- (p) for each $\varepsilon > 0$ and for each $y \in Y$ there exists $V \in \mathcal{B}$ such that $L_i u(y) < \varepsilon$ (resp. $L_i u(y) > -\varepsilon$) for all $u \in V$ and all $i \in I$.

THEOREM 3.1. Let $(L_i)_{i\in I}$ be a net satisfying the condition (I) and C be a convex cone in E. Suppose that $\overline{\lim}_{i} L_i g(y) \leq Ag(y)$ for every $g \in C$ and every $y \in Y$. Then the net $(L_i f(y))_{i\in I}$ in R converges to $\overline{Af}(y)$ for every affine element $f \in E$ and every $y \in Y$.

PROOF. Let f be an affine element in E. Since $\overline{Af}(y) = -\overline{A(-f)}(y)$ for all $y \in Y$, it holds that $\overline{Af}(y) < \infty$. Let y be a point of Y and given $\varepsilon > 0$. Then, there is $V \in \mathcal{B}$ satisfying $L_i u(y) < \varepsilon$ for every $u \in V$ by the assumption. Since $\inf \{\overline{Ag}(y) : f \leq g + u, u \in V, g \in C\} < \overline{Af(y)} + \varepsilon$, there are $g \in C$ and $u \in V$ such that $f \leq g + u$ and $Ag(y) < \overline{Af}(y) + \varepsilon$. From the assumption it follows that $L_i g(y) < Ag(y) + \varepsilon$ for all $i \geq i_0$ for sufficiently great i_0 . Consequently

$$L_i f(y) \leq L_i g(y) + L_i u(y) < Ag(y) + \varepsilon + \varepsilon < \overline{Af}(y) + 3\varepsilon$$
 ,

whence

$$(3.1) \overline{\lim}_{i} L_{i} f(y) \leq \overline{Af}(y).$$

Replacing f by -f we have also

$$\overline{\lim}_{i} L_{i}(-f)(y) \leq \overline{A(-f)}(y).$$

By the subadditivity of L_i and $L_i(0)=0$, we have

$$(3.2) -\overline{A(-f)}(y) \leq -\overline{\lim}_{i} L_{i}(-f)(y) \leq -\overline{\lim}_{i} (-L_{i}f(y)) = \underline{\lim}_{i} L_{i}f(y).$$

From (3.1), (3.2) and $\overline{Af}(y) = -\overline{A(-f)}(y)$, it follows that $\lim_{x \to 0} L_i f(y) = \overline{Af}(y)$.

Let F be a linear subspace of E and A a positive linear map from F into $\mathbf{R}^{\mathbf{y}}$. Then it holds that

$$(3.3) -\overline{A(-f)} = \inf_{v \in \mathfrak{g}} \sup \{Ag : f \ge g - u, g \in F, u \in V\} \text{for every } f \in E.$$

THEOREM 3.2. F be a linear subspace of E and A a positive linear map from F into $\mathbf{R}^{\mathbf{Y}}$. Assume that a net $(L_i)_{i \in I}$ satisfies the condition (I) or (II). If $\lim_{i} L_i g(y) = Ag(y)$ for all $g \in F$ and all $y \in Y$, then $\lim_{i} L_i f(y) = \overline{Af}(y)$ for every affine element f and every $y \in Y$.

PROOF. If a net $(L_i)_{i \in I}$ satisfies (I), it follows from Theorem 3.1 that $\lim_{i \to I} L_i f(y) = \overline{Af}(y)$ for every affine element f.

Next, assume that a net $(L_i)_{i\in I}$ satisfies (II). Using the superadditivity of L_i , the condition (p) and (3.3) we have

(3.4)
$$\underline{\lim}_{i} L_{i} f(y) \ge -\overline{A(-f)}(y) \text{ for every } f \in E.$$

Replacing f by -f,

$$\underline{\lim}_{i} L_{i}(-f)(y) \geq -\overline{Af}(y),$$

whence

(3.5)
$$\overline{Af}(y) \ge -\underline{\lim}_{i} L_{i}(-f)(y) \ge \overline{\lim}_{i} L_{i}f(y).$$

From (3.4) and (3.5) it follows that

$$\lim_{i} L_{i}f(y) = \overline{Af}(y)$$
 for every affine element f .

COROLLARY 3.1. Suppose that $\delta(A(C))=Y$ in addition to the assumptions of Theorem 3.2. Then $(L_i f(y))_{i\in I}$ converges to $\overline{Af}(y)$ for every $f\in E$ and every $y\in Y$.

PROOF. This is an immediate consequence of Theorem 3.2 and Corollary 2.2.

§ 4. Uniform convergence

Let E be an ordered vector space with a locally convex topology and Y a set. Suppose that a positive linear map A from E into \mathbb{R}^Y satisfies the following condition (B_3) :

 (B_3) for each $y \in Y$ the function: $f \mapsto Af(y)$ from E into R is continuous at 0 in E.

Then, we have

PROPOSITION 4.1. For the envelop \overline{Af} with respect to a linear subspace F of E it holds that

$$-\overline{A(-f)}(y) \leq Af(y) \leq \overline{Af}(y)$$
 for each $f \in E$ and each $y \in Y$.

PROOF. Let y be a point of Y and f an element of E. For $\varepsilon > 0$, there exists $V \in \mathcal{B}$ such that $Au(y) < \varepsilon$ for all $u \in V$. The inequality $f \leq g + u(g \in F, u \in V)$ implies

$$Ag(y) \ge Af(y) - Au(y) > Af(y) - \varepsilon$$

and hence

$$\inf \{Ag(y): f \leq g+u, g \in F, u \in V\} \geq Af(y)-\varepsilon$$
.

Consequently $\overline{Af}(y) \ge Af(y) - \varepsilon$. Since ε is an arbitrary positive number, it holds that $\overline{Af}(y) \ge Af(y)$ for all $f \in E$. Replacing f by -f, we have

$$A(-f)(y) \leq \overline{A(-f)}(y)$$
,

whence

$$-\overline{A(-f)}(y) \leq Af(y) \leq \overline{Af}(y)$$
.

In this section we assume that Y is a compact Hausdorff space and a positive linear map A from E into C(Y) satisfies the condition (B_3) . Further, a net $(L_i)_{i\in I}$ of maps from E into C(Y) is said to satisfy the condition (III) (resp. (IV)) if it has the following properties (S) and (U):

- (s) L_i is monotone, subadditive (resp. superadditive) and satisfies $L_i(0)=0$ for all $i \in I$,
- (u) for each $\varepsilon > 0$ there exists $V \in \mathcal{B}$ such that $L_i u(y) < \varepsilon$ (resp. $L_i u(y) > -\varepsilon$) for all $i \in I$, for all $u \in V$ and for all $y \in Y$.

THEOREM 4.1. Suppose that a net $(L_i)_{i\in I}$ of maps from E into C(Y) satisfies the condition (III) or (IV) and F is a linear subspace of E. If $(L_ig)_{i\in I}$ converges uniformly to Ag for all $g\in F$, then $(L_if)_{i\in I}$ also converges uniformly to Af for each A(F)-affine element $f\in E$.

PROOF. Let f be an A(F)-affine element. Then, since the map A satisfies the condition (B_3) , it holds that $\overline{Af} = -\overline{A(-f)} = Af$. As a similar method in the proof of Theorem 3.2, it suffices to prove in case that $(L_i)_{i \in I}$ satisfies condition (III). By (u) for each $\varepsilon > 0$ there exists $V \in \mathcal{B}$ such that

$$(4.1) L_i u(y) < \varepsilon \quad (i \in I, \ u \in V, \ y \in Y).$$

Let y be a point of Y. For $\varepsilon > 0$, we can find $g_y \in F$ and $u_y \in V$ satisfying

$$f \leq g_y + u_y$$
 and $Ag_y(y) < \overline{Af}(y) + \varepsilon = Af(y) + \varepsilon$

and hence, by continuity, find a neighborhood U_y of y with $Ag_y < Af + \varepsilon$ on U_y . Since Y is compact, there are finite points y_1, \cdots, y_n in Y with $Y \subset \bigcup_{i=1}^n U_{y_i}$. Put $g_{y_i} = g_i$. Then it holds that

$$\min_{1 \le i \le n} A g_i < A f + \varepsilon \quad \text{on } Y.$$

From the assumption, there exists an index i_0 such that for all $i \ge i_0$

(4.3)
$$L_i g_j(y) < A g_j(y) + \varepsilon \quad (y \in Y, j=1, \dots, n).$$

The relations (4.1), (4.2) and (4.3) imply

$$L_{i}f \leq \min_{1 \leq j \leq n} L_{i}(g_{j}+u_{j}) \leq \min_{1 \leq j \leq n} (L_{i}g_{j}+L_{i}u_{j})$$

$$\leq \min_{1 \leq j \leq n} L_{i}g_{j}+\varepsilon \leq \min_{1 \leq j \leq n} Ag_{j}+2\varepsilon \leq Af+3\varepsilon.$$

Replacing f by -f, we have

$$L_i(-f) \leq \overline{A(-f)} + 3\varepsilon$$
 for all $i \geq i_1$

and hence

$$L_i f \ge -L_i(-f) \ge -\overline{A(-f)} - 3\varepsilon = Af - 3\varepsilon.$$

Therefore $(L_i f)_{i \in I}$ converges uniformly to Af.

Let F be a linear subspace of E. We denote by Kor(F, A) the set of all $f \in E$ satisfying the following assertion:

For every net $(L_i)_{i\in I}$ from E into C(Y) which satisfies the condition (III), $(L_if)_{i\in I}$ converges uniformly to Af if $(L_if)_{i\in I}$ converges uniformly to Ag for all $g\in F$.

THEOREM 4.2. An element $f \in E$ belongs to Kor(F, A) if and only if it is A(F)-affine.

PROOF. Let f be A(F)-affine. Then, from Theorem 4.1 and the definition of Kor(F, A) it follows that $f \in Kor(F, A)$. Conversely, we can prove by the same method as Theorem 3.4 in [3] that $f \in Kor(F, A)$ is A(F)-affine.

§ 5. An integration with respect to a finitely additive set function

Let \mathcal{A} be a ring of subsets of X and m be a finitely additive set function on \mathcal{A} with $0 \le m(B) < \infty$ for each $B \in \mathcal{A}$. Further, assume that there is a constant M > 0 such that $m(B) \le M$ for every $B \in \mathcal{A}$. In this section we shall consider an integration with respect to m. Denote by E the set of all bounded real-valued function f on X satisfying the following condition (i_0) :

(i₀) for each $\varepsilon > 0$ there exists $B \in \mathcal{A}$ such that $|f| \leq \varepsilon$ on B^c , where B^c is the complement of B.

Then E is an ordered vector space with the usual order and also a normed space with the sup-norm. Put

$$F\!:=\!\!\left\{\sum\limits_{i=1}^{n}lpha_{i}1_{A_{i}}^{{\scriptscriptstyle 1}}\!:\,lpha_{i}\!\in\! R$$
, $A_{i}\!\in\!\mathcal{A}$, $n\!\in\! N
ight\}$,

$$Ag := \sum_{i=1}^n \alpha_i m(A_i)$$
 for $g = \sum_{i=1}^n \alpha_i 1_{A_i} \in F$.

Then A is a positive linear functional on a linear subspace F of E and satisfies

¹⁾ We denote by 1_B the characteristic function of a set B.

 $|Ag| \leq M||g||$ for every $g \in F$.

Put

$$\overline{Af} := \sup_{s > 0} \inf \{Ag : f \leq g + u, g \in F, u \in V_{\varepsilon}\}$$

for each $f \in E$, where $V_{\varepsilon} = \{u \in E : ||u|| < \varepsilon\}$.

Proposition 5.1. $\overline{Af} > -\infty$ for every $f \in E$.

PROOF. Let f be an element of E. From the assumption there is, for $\varepsilon > 0$, $A_{\varepsilon} \in \mathcal{A}$ such that $|f| \leq \varepsilon$ on $A_{\varepsilon}^{\mathcal{C}}$. Put $h := \max(\min(f, \varepsilon), -\varepsilon)$. Then $h \in V_{\varepsilon}$ and $f \leq ||f|| 1_A + h$. Suppose that $f \leq g + u$ with $g \in F$ and $u \in V_{\varepsilon}$. Then

$$f \leq \min(\|f\| 1_{A_{\varepsilon}}, g) + \max(u, h)$$

and $\max(u, h) \in V_{\varepsilon}$. Put

$$g_1 := \min(\|f\| 1_{A_{\varepsilon}}, g).$$

Then $g_1 \in F$ and $Ag_1 \leq A(\|f\| 1_A)$. Hence

$$\inf\{Ag: f \leq g+u, g \in F, u \in V_{\varepsilon}\}\$$

$$=\inf\{Ag: f\leq g+u, g\in F, g\leq ||f|| 1_{A_{\varepsilon}}, u\in V_{\varepsilon}\}.$$

Suppose that $f \le g + u$ with $g \in F$, $g \le ||f|| 1_{A_{\varepsilon}}$ and $u \in V_{\varepsilon}$. If $||g|| = \sup\{g(x) : x \in X\}$, it holds that $||g|| \le ||f||$ and hence $Ag \ge -M ||g|| \ge -M ||f||$. If $||g|| = -\inf\{g(x) : x \in X\}$, the relation

$$g \ge f - u \ge f - \varepsilon \ge - ||f|| - \varepsilon$$

implies

$$Ag \ge -M\|g\| \ge -M(\|f\| + \varepsilon)$$
.

Therefore $Ag \ge -M(\|f\|+\varepsilon)$ and hence

(5.1)
$$\overline{Af} \ge \sup\{-M(\|f\|+\varepsilon): \varepsilon > 0\} = -M\|f\| > -\infty.$$

REMARK 5.1. $-\overline{A(-f)} \leq M \|f\|$ for every $f \in E$ by (5.1).

If $f \in E$ is A(F)-affine, we call f integrable with respect to m and write

$$m(f) := \overline{Af} = -\overline{A(-f)}$$
.

Then $f \mapsto m(f)$ is a positive linear functional on the linear space of integrable functions and the relation (5.1) and Remark 5.1 imply

$$|m(f)| \le M ||f||$$
 for every integrable function f.

We consider a partition Δ of $B \in \mathcal{A}$:

$$(5.2) B = \bigcup_{i=1}^{n} B_{i}, \quad B_{i} \cap B_{j} = \emptyset \quad (i \neq j), \quad B_{i} \in \mathcal{A}.$$

Denote by \mathcal{Q} the set of all pairs (B, Δ) of $B \in \mathcal{A}$ and a partition Δ of B. For two pairs (A_1, Δ_1) and (A_2, Δ_2) in \mathcal{Q} . We write $(A_1, \Delta_1) \leq (A_2, \Delta_2)$ if $A_1 \subset A_2$ and Δ_2 is a refinement of Δ_1 . \mathcal{Q} is directed by the order relation. For a pair $(\Delta, B) = v$ given by (5.2) and for $f \in E$, define

$$M_{v}f := \sum_{i=1}^{n} \left(\sup_{x \in B_{i}} f(x) \right) m(B_{i})$$

and

$$N_{v}f := \sum_{i=1}^{n} \left(\inf_{x \in B_{i}} f(x) \right) m(B_{i}).$$

Then M_{ν} (resp. N_{ν}) is monotone and sublinear (resp. superlinear) functional on E. Further it holds that

$$|M_v g| \leq M||g||$$
 and $|N_v g| \leq M||g||$ for every $g \in E$.

Immediately we have

$$\lim_{v} M_{v}g = Ag$$
 and $\lim_{v} N_{v}g = Ag$ for every $g \in F$.

From Theorem 3.2 it follows that

$$\lim_{v} M_{v} f = \overline{Af} = \lim_{v} N_{v} f$$
 for each $A(F)$ -affine element f .

Thus we have

PROPOSITION 5.2. For every A(F)-affine element $f \lim_{v} M_v f$ and $\lim_{v} N_v f$ exist and both of them equal to \overline{Af} .

Conversely, we have

PROPOSITION 5.3. If $\lim_{v} M_{v} f = \lim_{v} N_{v} f$, f is A(F)-affine.

PROOF. Put $\lim_{v} M_v f = \lim_{v} N_v f = k$. For $\varepsilon > 0$, there is $v \in \mathcal{G}$ with $v = (A_0, \Delta_0)$ such that

$$k-\varepsilon < N_{n} f \le M_{n} f < k+\varepsilon$$
.

Since f is an element of E, there exists, for each $\delta > 0$, $B_{\delta} \in \mathcal{A}$ satisfying $|f| \leq \delta$ on B_{δ}^{c} . Put $u = \min(|f|, \delta) \in V_{\delta}$. Take a partition \mathcal{A}_{1} of B_{δ} and $(C, \mathcal{A}_{2}) \in \mathcal{G}$ satisfying $(A_{0}, \mathcal{A}_{0}) \leq (C, \mathcal{A}_{2})$ and $(B_{\delta}, \mathcal{A}_{1}) \leq (C, \mathcal{A}_{2})$. For $(C, \mathcal{A}_{2}) = v_{2}$ given by

$$C = \sum_{i=1}^{n} C_i$$
, $C_i \cap C_j = \emptyset$ $(i \neq j)$, $C_i \in \mathcal{A}$.

Put $\alpha_i = \sup_{x \in \mathcal{C}_i} f(x)$ and $\beta_i = \inf_{x \in \mathcal{C}_i} f(x)$. Then

(5.3)
$$f \leq \sum_{i=1}^{n} \alpha_{i} 1_{C_{i}} + u, \quad A\left(\sum_{i=1}^{n} \alpha_{i} 1_{C_{i}}\right) = M_{v_{2}} f \leq M_{v} f$$

and

(5.4)
$$f \ge \sum_{i=1}^{n} \beta_{i} 1_{C_{i}} - u$$
, $A\left(\sum_{i=1}^{n} \beta_{i} 1_{C_{i}}\right) = N_{v_{2}} f \ge N_{v} f$.

Suppose that $f \leq g+w$ where $g \in F$, and $0 \leq w \in V_{\delta}$. Further, suppose that $g_1-w_1 \leq f$ where $g_1 \in F$ and $0 \leq w_1 \in V_{\delta}$. Then $g_1-w_1 \leq g+w$ and hence

$$g_1 \leq g + 2\delta 1_{B_1}$$
 where $\operatorname{Supp} g_1 \subset B_1 \in \mathcal{A}$.

This implies $Ag_1 \leq Ag + A(2\delta 1_{B_1}) \leq Ag + 2\delta M$. Using (5.3)

$$Ag_1 \leq \inf \{Ag: f \leq g+w, g \in F, w \in V_{\delta}\} + 2\delta M$$

 $\leq M_{v,o} f + 2\delta M \leq M_v f + 2\delta M.$

From (5.4) and the previous inequality it follows that

$$\begin{split} N_{v}f &\leq N_{v_{2}}f \leq \sup\left\{Ag_{1} \colon f_{1} \geq g_{1} - w_{1}, \ g_{1} \in F, \ w_{1} \in V_{\delta}\right\} \\ &\leq \inf\left\{Ag \colon f \leq g + w, \ g \in F, \ w \in V_{\delta}\right\} + 2\delta M \\ &\leq M_{v}f + 2\delta M \,. \end{split}$$

Converging δ to zero, we have

$$k - \varepsilon \leq N_v f \leq -\overline{A(-f)} \leq \overline{Af} \leq M_v f < k + \varepsilon$$
.

Since ε is arbitrary, it holds that $\overline{Af} = -\overline{A(-f)}$.

References

- 1) B. Anger and J. Lembcke: Hahn-Banach type theorems for hypolinear functionals. Math. Ann., 209, 127-151 (1974).
- 2) H. Bauer and K. Donner: Korovkin approximation in $C_0(X)$. Math. Ann., 236, 225-237 (1978).
- 3) H. Watanabe: Convergence of monotone operators. Natur. Sci. Rep. Ochanomizu Univ., 28, 7-19 (1977).