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§1. Introduction

Let E be an ordered vector space. Denote by RY the ordered vector
space of all real-valued functions defined on a set Y. Given a linear sub-
space F of E such that E is F*-bounded, i.e. for each f=F there is g F*
satisfying —g=<f=<g. Let A be a positive linear map from F into R¥. In a
preceding paper [3] the author has proved that for a net (L;);c; of monotone
maps from E into RY pointwise convergence of (L;g);c; for all g&F implies
pointwise convergence of (L;f);c; for all elements f=E which are A(F)-affine
in the sence of [3]. The set of A(F)-affine elements is a linear subspace of
E containing F and coincides with E if and only if the A(F)-boundary of Y
equals Y. In the proof, the assumption that E is F*-bounded is essential.

In this paper, using a Hahn-Banach type theorem of Anger and Lembcke
([11) where sublinear functionals are replaced by hypolinear ones and endow-
ing E with a locally convex topology, we shall obtain the analogous theorems
without the assumption that E is F*-bounded.

Moreover, using these results, we shall define an integral with respect to
a finitely additive, positive real-valued set function on a ring of sets.

Further, in case Y is a compact Hausdorff space and A is.a continuous
positive linear map from E into C(Y), the analogous theorems with uniform
convergence instead of pointwise convergence will be obtained.

§2. The A(C)-boundary and A(C)-affine elements

Let E be an ordered vector space with a locally convex topology and &
a fundamental system of convex symmetric neighborhoods of 0. Suppose that C
is a convex cone in E. An element f=FE is called almost upper C-bounded if
it satisfies the following condition:

(B,) For every Vg there are ucV and geC with f<g-+u. The set of
all almost upper C-bounded elements in E is denoted by C}. Let Y be a set
and A be a monotone sublinear map from C into RY. For f€FE and yeY,
define

Af(y):=sup inf{Ag(y): ueV, gC, f=g+u}
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if feC¥ and Af(y):=+co elsewhere. Denote Af by the function: y— Af(y). -

In the sequel we shall assume that

(B)) Af(y)>—oco for every feE and every y=Y. Easily we have the
following properties of the envelopes. '

PROPOSITION 2.1. The map: f—Af from E into RY with R=(—o0, +o0]
has the following properties: ‘

(i) A(f+e)=Af+Ag,

(ii) AQf)=2Af (A=R*),
(iii) f=<g implies Af<Ag,
(iv) Ag=<Ag for every geC.

Consequently, the map: f— Af(y) is a monotone hypolinear functional on E.
Recall that a hypolinear functional on E means a sublinear functional on E
which may attain the value -+oco.

REMARK 2.1. If A is a monotone sublinear map from E into RY and

u— Au(y) is locally upper bounded, Af(y)>—co for every fcE. Indeed, for
>0 there exist M >0 and We @ satisfying Au(y)<M for every uc W. Assume
that f<g+u where geC and usW. Since Af(MN<Ag(y)+Au(y)=<Ag(y)+M,

it holds that Af(y)—M<=<inf{Ag(y): f<g+u, gC, ucW} and hence Af(y)=
Af(y)—M>—oo.

PROPOSITION 2.2. The hypolinear functional: f—Af(y) is lower semiconti-
nuous on E for each y€Y.

PROOF. Given f<E and an arbitrary real number a. Assume that Af(y)
>a. We shall show the existence of an open set G containing f such that

Ag(y)>a for all geG. If FEE\C¥ we may put G=E\C¥. Indeed, E\C¥ is
open and Ag(y)=+oco at ge E\C%. If feC%, there is V=3 such that

inf{Ag(y): geC, ueV, fSgt+u}>a
Take We @ satisfying W+ WcCV. Then
inf{An(y): hel, veW, fFfw=h+v}
=inf{AW(y): heC, usV, f<uth}
and hence A(f+w)(y)>a for each weW. It suffices to take G=f+W.

Let y be an element of Y. The set of all positive continuous linear
functional p on E satisfying u(g)<Ag(y) for every g<C is denoted by M,(C).

LEMMA 2.1. For each f€E and each y€Y it holds that (—A(—F)(),

AFNCTAp(f): peM(C} CL—A—F)y), AR Here, if —A(—=/N»=AF),
we use the convention (—A(=H(), AFN)={AF(»)}.

r 1
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PrOOF. By Propositions 2.1 and 2.2, the map: h— Ah(y) is a lower semi-
continuous hypolinear functional on E. Using Proposition 3.2 in [1] there

exists, for every as(—A(—7)(3), 4Af(»)), p=E’ such that
w(H=a and w(h)<Ah(y) for each heE.

Since g=<0 implies u(h)<Ar(y)<A0(y)=0, p is positive. If geC, it holds that
W)= Ag(»)<Ag(y). Consequently peM,(C). Further, let p=M,(C). If fe
E\C¥, then u(f)<+oco=Af(y). Assume that feC¥ For each ¢>0 there
exists Ve@ such that p(u)<e for every ueV since p is continuous. The
inequality f=<g+u(geC, ueV) implies p(f)=pu(g)+p(w)=Ag(y)+e and hence

w(H=inf{Ag(y): f<g+u, geC, ucVi+e<Af(y)+e.
Consequently p(f)<Af(y) for every f€E. Replacing f by —/, it follows that
w(N=z—A—1)).

An element f of E is called A(C)-affine if Af=—A(—f) on Y. Immedi-
ately the following corollary follows from the definition and Lemma 2.1.

COROLLARY 2.1. An element f of E is A(C)-affine if and only if the
Sfunction: p—p(f) is constant on M,(C) for each y&Y.

The set of all yeY for which M,(C) consists of one element is denoted
by 0(A(C)) and called the A(C)-boundary. By the definition and Lemma 2.1
we have the following Proposition 2.3 and Corollary 2.2.

PROPOSITION 2.3. A point y in Y belongs to 8(AC)) if and only if Af(y)
=—A(—f)y) for every f=E.

COROLLARY 2.2. 0(AC)=Y if and only if every element f of E is A(C)-
affine.

ExaMPLE 1. Let X be a locally compact Hausdorff space and put E=
Co(X) (with the uniform norm) and Y=X. Then it is obvious that the I(C)-
boundary with respect to the identity map I on E is equal to the Choquet
boundary of X with respect to C: the set of all points x=X for which

ExaMPLE 2. Let X and Y be locally compact Hausdorff spaces. Assume
that X has at least n+1 points and F is a linear subspace of C,(Y) satisfying

the following assumption : ;
Given any n distinct points of X, there exists g F such that g(x)=0 and

g(x)=0 exactly when x=x; for 1=1, 2, ---, n.
Denote by A a positive linear map from Cyo(X) into Cy(Y) of the form

(A)2):= 2 :gle)  (8CHX), yeT),
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where ¢,€C§(Y) and ¢, is a continuous map from Y into X for i=1, -, n.
Since A is a positive linear map form Co(X) into Co(Y) and for every yeV
the function g—(Ag)(y) is continuous at 0 in Cy(X), it follows from Remark

2.1 that Af(y)>—co for every f=E and every yeY. Further we have
0(A(F))=Y (cf. Proposition 2.3 in [3]).

ExamPLE 3. Let E be an ordered vector space with a locally convex
topology and F a subspace of E. A positive continuous linear functional A
on F is considered as a positive continuous linear map from E into RY where
Y consists of one point y. The point v is contained in 0(A(F)) if and only if

the linear functional A can be uniquely extended to a positive continuous
linear functional on E.

§3. Pointwise convergence

Let E be an ordered vector space with a locally convex topology and Y
be a set. A net (L;);e; of maps from E into RY is said to satisfy the condi-
tion (1) (resp. (1)) if it has the following properties (s) and (p):

(s) L; is monotone, subadditive (resp. superadditive) and satisfies L;(0)=0
for all 11,

(p) for each ¢>0 and for each yeY there exists V@ such that L;u(y)
<e (resp. Lyu(y)>—¢) for all uV and all i€l

THEOREM 3.1. Let (L;)ie; be a net satisfying the condition (1) and C be a
convex cone in E. Suppose that Tim L, g(y)<Ag(y) for every g&C and every
1

y€Y. Then the net (L.f(y))cr in R converges to Af(y) for every affine element
JfeE and every yeY.

PROOF. Let f be an affine element in E. Since Af(y)=—A(—s)(y) for all
ye€Y, it holds that Af(y)<co. Let y be a point of ¥ and given ¢>0. Then,
there is Ve @ satisfying L,u(y)<e for every uV by the assumption. Since
inf{Ag(y): f<g+u, ucv, g€C} <Af(y)+e, there are geC and ue V such that

f=<g+u and Ag(»)<Af(y»)+e. From the assumption it follows that L;g(y)<
Ag(y)+e for all i=1, for sufficiently great i,, Consequently

Lif(9)=Lig(y)+Lau(y)< Ag(y)+e+e<Afy)+3e,
whence

@3.1) Iim L; ()= Af(y) .
Replacing f by —f we have also
im L~ ) =AH(G).
By the subadditivity of L; and L,(0)=0, we have
(3.2) =A== —Tiiﬁ L(—=f)y= -—TTL,r—nT—sz(y))=1_iir9_ Lify).
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From (3.1), (3.2) and Af(y)=—A(—7)(»), it follows that lim Lif(nN=A4Af ).

Let F be a linear subspace of £ and A a positive linear map from F into
RY*. Then it holds that

(3.3) »—A(—f):%}gB supl{Ag: f=g—u, g€F, ucV} for every f€L.

THEOREM 3.2. F be a linear subspace of E and A a positive linear map
from F into RY. Assnme that a net (L;);e; satisfies the condition (1) or (II).

If lim L;g(y)=Ag(y) for all g€F and all y€Y, then lim L. f(»)=AF>y) for
every affine element f and every yEY.

ProoF. If a net (L,);c; satisfies (1), it follows from Theorem 3.1 that

1lim L; (y)=Af(y) for every affine element f.

Next, assume that a net (L;);c; satisfies (II). Using the sup’eradditivity of L,
the condition (p) and (3.3) we have

34) lim L (y)=z=—A(—f)y) for every fEE.

Replacing f by —f,
lim L~z —AR3),
whence z
(3.5) Afy)= —-li_im Li(—f)(y)éfi;ﬁl—Lz—f(y) .
From (3.4) and (3.5) it follows that
' Iign L, f(»)=Af(y) for every affine element f.

COROLLARY 3.1. Suppose that 6(A(C))=Y in addition to the assumptions of

Theorem 3.2. Then (L f(»))ier converges to Af(y) for every feE and every
yev.

PrOOF. This is an immediate consequence of Theorem 3.2 and Corollary
2.2.

§4. Uniform convergence

Let E be an ordered vector space with a locally convex topology and Y
a set. Suppose that a positive linear map A from E into RY satisfies the
following condition (B,):

(Bs) for each yeY the function: f— Af(y) from FE into R is continuous
at 0 in E.
Then, we have

PROPOSITION 4.1. For the envelop Af with respect to a linear subspace
F of E it holds that
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—A(—=)(N=Af(»)=<Af(y) for each f€FE and each yeY.

ProOF. Let y be a point of Y and f an element of E. For ¢>0, there
exists V€ ® such that Au(y)<e for all usV. The inequality f<g+u(geF,
ue V) implies

Ag(n)= Af(y)—Au(y)> Af(y)—e
and hence
inf{Ag(»): f<g+tu, g€F, ueV}=Af(y)—¢.

Consequently Af(y)=Af(y)—e. Since ¢ is an arbitrary positive number, it
holds that AAy)=Afy) for all f€E. Replacing f by —f, we have

A(=)N=A=)),
whence
—A(—HNZAfD=AF() .

In this section we assume that Y is a compact Hausdorff space and a
positive linear map A from E into C(Y) satisfies the condition (B;). Further,
a net (L;)e; of maps from FE into C(Y) is said to satisfy the condition (III)
(resp. (IV)) if it has the following properties (s) and (u):

(s) L; is monotone, subadditive (resp. superadditive) and satisfies L;(0)=0
for all i€, '

(u) for each ¢>0 there exists Ve 8 such that L;u(y)<e (resp. L;u(y)>—e¢)
for all i<, for all ueV and for all yeY.

THEOREM 4.1. Suppose that a net (L;)ie; of maps from E into C(Y') satisfies
the condition (IT) ov (IV) and F is a linear subspace of E. If (L;8);c; converges
uniformly to Ag for all g€F, then (L;f)ier also converges uniformly to Af for
each A(F)-affine element feE.

PROOF. Let f be an A(F)-affine element. Then, since the map A satisfies

the condition (B,), it holds that Af=—A(—f)=Af. As a similar method in
the proof of Theorem 3.2, it suffices to prove in case that (L,);c; satisfies
condition (). By (u) for each ¢>0 there exists V=& such that

(4.1) Lu(y)<e (el, ueV, yet).
Let y be a point of Y. For ¢>0, we can find g,€F and u,&V satisfying
fEg,tuy, and Ag,(0)<AfY)+e=Afy)+e

and hence, by continuity, find a neighborhood U, of y with Ag,<Af+e
on U,. Since Y is compact, there are finite points y,, .-, y, in Y with

AN

Yo Ql Uy, Put g,,=g. Then it holds that

4.2) min Ag;<Af+e on Y.

1gisn

From the assumption, there exists an index 17, such that for all i=>7,
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(4.3) Lig{n<Agy+te (y€Y, j=1, -, n).
The relations (4.1), (4.2) and (4.3) imply

L, f< 1m‘in Li(gj+ U= lm,in (Ligj‘l‘ L;u;)
£j=n £jsn

=minL;g;+e= ]mi§rl Ag;+2e<Af+3e.
sJsn

1£jsn

Replacing f by —f, we have

L(—f=A(—f)+3e for all i=1,
and hence

Lifz—L{—f)z—A(—f)—3e=Af—3e.

Therefore (L;f);e; converges uniformly to Af.

Let F be a linear subspace of E. We denote by Kor(F, A) the set of all
fe E satisfying the following assertion: '
For every net (L;);e; from E into C(Y) which satisfies the condition (1),

(L;f)ie; converges uniformly to Af if (L;f)ic; converges uniformly to Ag for
all geF.

THEOREM 4.2. An element feE belongs to Kor(F, A) if and only if it is
A(F)-affine.

PROOF. Let f be A(F)-affine. Then, from Theorem 4.1 and the definition
of Kor(F, A) it follows that feKor(F, A). Conversely, we can prove by the
same method as Theorem 3.4 in [3] that feKor(F, A) is A(F)-affine.

§5. An integration with respect to a finitely additive set function

Let A be a ring of subsets of X and m be a finitely additive set function
on A with 0Z<m(B)<co for each BeA. Further, assume that there is a
constant M >0 such that m(B)=<M for every BeA. In this section we shall
consider an integration with respect to m. Denote by E the set of all
bounded real-valued function f on X satisfying the following condition (7o) :

(i,) for each ¢>0 there exists Bl such that |f|<e on B¢ where B° is
the complement of B.

Then E is an ordered vector space with the usual order and also a normed
space with the sup-norm. Put

F:={3 aild): weR, A, neN},

i=1
Ag = ﬁ)l am(A;) for g= 5:)1 a;1,€F.

Then A is a positive linear functional on a linear subspace F of E and
satisfies

1) We denote by 1p the characteristic function of a set B.
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|Agl=M|gll for every geF.
Put

A—f::sgloa inf{Ag: f<g+u, geF, ucVy}
for each feE, where V.={uckE: |u|<e}.
PROPOSITION 5.1. Af>—oo for every f&E.

PrOOF. Let f be an element of E. From the assumption there is, for
e>0, Ac.eJ such that | f]|<e on A¢. Put h:=max(min(f, ¢), —e¢). Then heV,
and f=|fl14+h. Suppose that f=<g+u with g&F and usV.. Then

S=min([| /14, g)+max(u, h)
and max(u, h)e V.. Put
gy i=min(l| fl 14, &) -
Then g, €F and Ag,<A(|f|14). Hence
inf{Ag: f<g+u, geF, ucs Vs}‘
=inf{Ag: f=g+u, geF, g=|fl1ls, usVy.

Suppose that f=g-+u with g&F, g=| fll14, and ue V.. If |gll=sup{g(x): x€ X},
it holds that |g| =]/l and hence Ag=—M|gl=—M|fll. If llgll=—inf{g(x):
x= X}, the relation
gzf—uzf—ez—|fll—e
implies
Agz=z—Mlgll=z—M( f|+e).
Therefore Ag=—M(| fll+¢) and hence

6.1 Afzsup{—M(|fl|+e): e>0=—M| fl|>—co.
REMARK 5.1. —A(—f)ZM]| f| for every feE by (5.1).

If feE is A(F)-affine, we call f integrable with respect to m and write
m(f):=Af=—A(=F).

Then f—m(f) is a positive linear functional on the linear space of integrable
functions and the relation (5.1) and Remark 5.1 imply

lm(F)I=M| fll for every integrable function f.
We consider a partition 4 of BeA:

(5.2) B= UB BinB;=2 (i#j), Bi=A.

Denote by ¢ the set of all pairs (B, 4) of B4 and a partition 4 of B. For
two pairs (A4,, 4,) and (A4,, 4,) in 2. We write (4,, 4)=(A,, 4,) if A,CA, and
4, is a refinement of 4,. ¢ is directed by the order relation. "For a pair
(4, B)=v given by (5.2) and for f=E, define
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M, f:= 3 (sup f(x))m(B.)
i=1 ZEB;
and
N, f:= 2 (inf f(x))m(B.).
1=1 ZEBy
Then M, (resp. N,) is monotone and sublinear (resp. superlinear) functional
on E. Further it holds that
|Mygl=Mlgl and |N,gl=Mlgll for every g€E.
Immediately we have
lim M,g=Ag and lim N,g=Ag for every g&F.
v v
From Theorem 3.2 it follows that

lim M, f=Af=lim N,f for each A(F)-affine element f.
Thus we have

PROPOSITION 5.2. For every A(F)-affine element f lim M,f and lim N, f
P v v
exist and both of them equal to Af.

Conversely, we have

PROPOSITION 5.3. If lim M, f=lim N, f, [ is A(F)-affine.

PrROOF. Put lim M, f=lim N, f=Fk. For ¢>0, there is veg with v=_(A4,, 4,)
v v
such that
k—e<N,fEM,f<k+te.

Since f is an element of E, there exists, for each 6>0, By A satisfying
|f1=<0 on B§. Put u=min(|f|, §)€V; Take a partition 4, of B; and (C, 4,)
€ ¢ satisfying (A, 4,)=(C, 4,) and (Bs, 4)=<(C, 4,). For (C, 4,)=v, given by

c:éci,'cmcjzg (i#)), Cie.

Put a;=sup f(x) and B;=inf f(x). Then
zECH zeCy

5.3) /= 3 adetu, A(E ade) =M, f<M, f
and
(5.4) f2 3 Bilo—u, A(Z Bile,)=NufZN,f.

Suppose that f=g+w where g=F, and 0=ZweV; Further, suppose that
g1—w,= f where g,€F and 0=w,=V;. Then g,—w,<g+w and hence

g:=8+201lp, where Suppg,CB,ed.
This implies Ag,=<Ag+ A(2015)=<Ag+20M. Using (5.3)
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Ag, <inf{Ag: fSg+w, g€F, we Vs +20M
=M, f+20M=M, f+20M .
From (5.4) and the previous inequality it follows that
Ny f=Ny, f<sup{Ag:: fizg:—wy, §:€F, w,eVy
<inf{Ag: f<g+w, g€F, weVs}+26M
=M, f+20M.
Converging 0 to zero, we have
k—e=N, fS—A(—N=Af=M, f<k+e.
Since ¢ is arbitrary, it holds that Af=—A(—f).
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