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§1. Introduction.

For an element f of the complexification E of a simplex space FE, its
absolute value |f| can be considered in the second dual E”, which is an AM
space. In this paper, we shall investigate the property of this absolute value.
§ 2 is devoted to the study of the Riesz separation property concerning the
absolute values. In §3, we examine the absolute value |f| in case of a sepa-
rable simplex space and show that |f| satisfies the barycentric calculus and
is an upper semi-continuous function, if it is considered as a function on the
stump of the positive cone of the dual space endowed with the weak*-topo-
logy. These results will be applied to the study of spectral theory of positive
operators in a simplex space [8].

§ 2. Complexification of a simplex space and Riesz separation property.

Let E be a simplex space over the real field, i.e. an ordered Banach
space whose dual is a Banach lattice of type L [3, 5]. The stump X of the
positive cone of the dual space E’ is defined as the set

{xeE; x=0, |x|| =1},

endowed with the weak*-topology. Then X is a simplex [2, §28]. Ay(X)
[resp. A, o(X)] denote the space of real-valued [resp. complex-valued] con-
tinuous affine functions on X vanishing at 0. Then E may be identified with
Ay(X) [5, Th. 2.2].

For any f,, f;<E, there exists in E” the element

0é;/@ﬁ((cos ) fi+(sinb)f,),

since a simplex space £ may be considered as a subspace of the second dual
space E”, which is an order complete Banach lattice [3]. Therefore, for any
f=f.+if., we can define the absolute value |f| in E” by

|F1=1/tifel = ., (cosO)fi+(sinf)fz).

We also define the norm as usual



48 F. TAKEO NSR. 0.U., Vol. 30

I 7l=sup 1701 . (1)

The complexification E=E+iE of a simplex space E with the norm (1) is a
complex Banach space, which may be identified with Ag, o X).

PROPOSITION. For feﬁ, the norm || fl, defined by (1) is equal to the norm
1171l considered in the second dual E’.

PrROOF. It is clear that ||f|,<||f||l holds by the definition. Since the
second dual E” has an order unit 1 such as 1(x)=|x]| for x€E’ with x=0, we
have

| ((cos O)f14-(sin O)F)() | = | F) I F il el =17 112 1(x)

for f=f,+if, and x€E’ with x=0. This implies |f|<|7],-1 in E”. Therefore
=1/l holds //

For the absolute value, we have the following extension of the Riesz
separation property.

THEOREM 1. Let E be the complexification of a simplex space E. If hy, h,
=\fl, |8] in E”, for hy, hh&E and f, 8€E, then we can find an element kEE
such that :

hi, hozkz|f|, |&| in E".

PrOOF. Define A (x)=min {h,(x), ho(x)} and fo(x)=max{|fi(x)+if=(x)], |g:(x)
+igy(x)|} as functions on X, where f=f,+if, and §=g,+ig.. Then f, [resp.’
ho] is a continuous convex [resp. concave] function on X with f,(0)=h,0)=0.
Therefore, there exists k= A(X) such that h,=k=f,, since X is a simplex [2,
Th. 28.6]. Then k£ is a desired one. //

A face of a convex set S in a vector space is a convex subset F such
that if ax+(1—a)yeF with x, y&S and 0<a<1, then x, y=F. The refinement
of the above theorem is the following, which is the extension of [5, Th. 2.4].

THEOREM 2. Let E be a simplex space, E be its complexification, X be the
stump of the positive cone of E' and F be a closed face of X. Suppose fEE
and foeE satisfy' I<F, 51 << fy, x> for any xF. Then there exists he E such
that

h=fo, |

Irl=max{ll foll, 171}

and
<h, x>=Lfy, x> for any x<F.

And moreover if we suppose in addition that g=|\fl, fo in E” for some
g<=E, then there exists h,e E such that

gzhzl|fl, foin E”
and
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<hy, x>={fs, x> for any x<F.

PROOF. Put ¢(x)=max{[<f, x>, <fo, 20} for x€X, (x)=max{lf], | fl}
for xe X\(F\U{0}) and ¢(x)=<f,, x> for x&F\J{0}. Since F is a closed face
of X, ¢ [resp. ¢] is convex continuous [resp. concave lower semi-continuous]
with ¢=¢. Therefore, there is a continuous affine function ~2 with ¢<h<gb
since X is a simplex, and & is a desired one.

Next, put f/(x)=1<f, x>|. Then the function ¢, [resp. ¢;] equal to f, on
F and to f’ [resp. g] on the complement is convex and upper semi-continuous

[resp. concave lower semi-continuous] with ¢;=¢,. So in the same way, we
can find A,. //

Let 9,X be the set of extreme points of X. Then any element x of 9,X
is a one-point face of X, so we have '

COROLLARY 1. For any fEE and x€0.X, there exists heE such that
h=|f| and <h, x>=I<F, x|

The absolute value |f| of feE is affine but not continuous in general,
while |<{7, x>| is a continuous function on X but not affine and moreover,

[<F 1 =4, 171>

For x=0.X, we have the following.

COROLLARY 2. For any feﬁ and x€0.X, the equality

|<f, o=, 17D
holds.

v §3. The absolute value.

By using the unique maximal probability measure p, on a simplex X with
resultant x X, we know [6, Cor. 2.5] that a simplex space E is isomorphic
to the space {feC(X); f(x)=p(f) for all x& X and f(0)=0}.

We say a function f on X satisfies the barycentric calculus if JS)=p.(f)
for all xe X.

An element of E” can be considered as a function on X, but does not
necessarily satisfy the barycentric calculus as Choquet’s example shows [1,
Example 1. 2.107, since the topology on X is the weak*-topology. But if F is
separable, the following theorem holds for the absolute value |f| of feﬁ,
which is an element of E”.

THEOREM 3. Let E be a separable simplex space and E be its complexifi-

cation. Then for any fEE, the absolute value |f| satisfies the barycentric
calculus.
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In the proof of the theorem, we shall apply the following notation for the
oscillation of a real valued function f over a subset ¥ of its domain X;

OA(Y)= sup, |/(D—1(3)!.

In case of a separable simplex space, X is metrizable [4, Th. V. 5.17, and so
- the maximal probability measure p, with resultant xe X is supported by the
set of extreme points d.X of X (Choquet’s theorem [7, Sec. 3]). The absolute
value |f] of f€E in E” is not continuous, but as for the oscillation of |f]
and the maximal measure p, with resultant x X, we have the following.

LEMMA. For aﬁy e>0 and every Borel subset B of X with p,(B)>0, there
exists a Borel set DCB such that p,(D)>0 and O|F|(Co D)<e, where o D means
the convex closuve of D.

PrOOF. Since X is metrizable, 0,X is a Borel set and the maximal proba-
bility measure p, is supported by 0,X. So we have

ﬂx(B>:ﬂx(Bman)
=sup{p.(K); K is compact and KCBN0. X},
by the regularity of p,. Therefore there exists a compact set KCd.XN\B
such that ¢,(K)>0. Since feﬁ is a complex-valued, continuous affine function,
the range of f is a bounded set of a complex plane. So the range of 7 may

be included in a finite union of disjoint rectangles Q;, each of the diagonal
length less than e. This induces a decomposition of K into a finite union of

disjoint Borel sets
D;=F"Q)NK.
Since Q; is convex and f is affine, f-(Q,) is convex and so co D, (convex hull
of D;) is contained in f7%(Q,), that is, f(coD,) is contained in Q, By the
continuity of 7, 7(co D,) is contained in Q; (closure of Q,). Put
Ii={|&+inl; & neQ;}.

Then I, is a closed interval of length less than e, i.e.

TJ'_:[C]'J dJ] Wlth Cjédj<cj'+€ . (41)
For any xe€co D;, |f(x)| €I, which implies |f(x)|=c,. By the definition of
171, 1/1(0=17(x)] for any x=X. Therefore

Ifl(x)zcj for any xeco D;. 4.2)

Put gj(x):[f(x)l for x€D;. Then there exists a continuous affine extension
g on X of g; such that
g(x)=d; for any xX,
as
d; =z |f(x)|=gix) for x€D,.

Since co D; is a closed face [2, Prob. 27.7], we get heE such that
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h=|f] and h(x)=g(x)<d; for x&co D, (4.3)

by applying Theorem 2 with g and 7. From (4.1), (4.2) and (4.3), we have
O|f|(co Dj)=e. Now 2 p,(D;)=p(K)#0 and so there is at least one index &
g

such that p,(D,)+0. By defining D=D,, we have the desired result. //
PROOF OF THEOREM 3. For fEEN and a maximal measure g, on X, the

above lemma shows that the assumption of Lemma 1. 2.5 in [1] is satisfied.

So there exists a sequence {D,} of pairwise disjoint Borel subsets of X such

that
Olf1(@ D)<e n=l, 2, - (4.4)

Choose a natural number N such that

A= 2 pa(Dp)=e (4.5)
n>N
and define
An=p(D,) for n=1, 2, ---, N.
Define
Un=2"pz1D, for n=1,2, -, N
and

,Uo:;fo_lﬂle\(Dlu - \UDy)) if 2,#0
te=0 if 2,=0.
N
Then we can express g, as a convex combination p,= Z}Oln,an. Letting x,
n=

be the resultant of g, and using the fact that g, is concentrated on D,, we
obtain x,eco D, for n=1, 2, ---, N. By (4.4), this gives

| Fxn)—pa(F)| Se, n=L,2, -, N. (4.6)

N
Clearly the resultant x of p, is X A,x, and so by (4.5), (4.6) and by the affine
~ n=0
nature of f, we have

~ ~ N ~ N ~
|f(x)_/4‘z(f)| - l Eoznf(xn)b__ anQ'LLﬂn(f)l
N ~ ~ ~
< 3 2l flm) = gl P =<1 1.
This completes the proof since ¢>0 was arbitrary. //
Using the above theorem, we have

THEOREM 4. Let E be a separable simplex space and E be its complexifica-
tion. For any fe E, the absolute value | 7| is an upper semi-continuous function
on X with the weak*-topology and |f|(x)=inf{g(x); g€E, g=|f| in E"}.

PrROOF. Let h(x)=inf{g(x); g€E, g=|f| in E”}. It is clear that
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r()= | F1(). %
For x=0,X, there exists g FE such that

g=|fl and g(x)=|7x)|
by Corollary 1 of Theorem 2. Therefore

H)=g()=F0I =171,
which implies A(x)=|f|(x) by (4.7). So
118, X=713.X. 4.8)

For any xcJX, there corresponds a maximal probability measure p, with
resultant x supported by 0.X. By the definition of 4 and Theorem 1, % is an
upper semi-continuous, affine function on X and so satisfies the barycentric
calculus [1, Th. I. 2.6], i.e. h(x)=p,(h). Therefore we have by Theorem 3
and (4.8),

m=pa={, hdp=( 1Fdp=p17)=17102),

which completes the proof. //
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