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Introduction.

We are concerned here with the study of cylindrical measures on
Banach spaces. The relation between vector measures and cylindrical
measures has been investigated by A. Goldman ([5]) and I. Kluvanek ([6]).
Some kind of cylindrical measures are determined by the pair of the vector
measure m and the probability P such that m is P-continuous. Such
cylindrical measures are called to be of type (z, 1). When we restrict our
investigation to the field of type (z, 1)-cylindrical measures, we can find
several useful tools within the results concerning vector measures. In this
paper we show two directions in these applications. Section 2 presents
an improvement of the result of [8] stating about type (7, 1)-cylindrical
measures on Banach spaces with a Schauder basis. In section 3 we con-
struct a tensor product of two cylindrical measures, however it is different
from the definition of the tensor product of Gaussian measures in [2] and

[3]-

§ 1. Cylindrical measures and vector measures.

All the probabilities to be considered in this paper will be assumed to
be Radon measures, i.e., Borel measures with the inner regularity. Let X
be a real Banach space and $(X) be the collection of all closed subspaces
of X of finite codimension. Let Ee (X); the quotient space X/E is a
finite dimensional vector space. Denote by =z, the canonical surjection
X—>X/E. When FCE and E, F e $%(X), we can define a canonical surjec-
tion 7g,: X/F-X/E through the relation n,=n;,07,. The family
{X/E, 75 E e F(X)} forms a projective system. Suppose that on each finite-
dimensional space X/E we are given a probability g, together with the
relation p,=m,(¢y) if EDF. Such a projective system of probabilities
t=(¢r)pesxr Will be called a cylindrical measure on X. We shall say that
a cylindrical measure # on X is a measure (or probability) if there exists
a probability m on X such that p, is the image measure of m by =, for
every Ee (X)), i.e., py=mny(m). We shall say that g is the cylindrical
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measure associated with m and write, by a convenient abuse of language,
p=nt.

We shall define the image measure of a cylindrical measure with respect
to a continuous linear mapping. Let X and Y be two Banach spaces and
u be a continuous linear mapping of X into Y. Let # be a cylindrical
measure on X. For every G e E(Y), the subspace E=u~%G) of X belongs
to ¥(X) and # induces a linear mapping u,: X/E—Y/G. The measure 1,
on Y/G, the image of p, by u,4, is defined by A,=u,(¢;) and denoted by
2=u(p).

Let X’ be the topological dual space of X. There is a one-to-one
correspondence between continuous linear mappings # : X—R" and n-tuples
(x{, + -+, x;) where each xje X’. Thus a cylindrical measure ¢ on X associ-
ates with each n-tuple (xj, ---, x7), a probability g, ., on R~

We shall denote by L%, 2, P), where (2, 2, P) is a probability space,
the space of all equivalent classes of real random variables, and we shall
say that f is a random function defined on X’ if f is a mappmg of X’
into LY, X, P).

ProrosiTION 1.1 (cf. [9]). There exists a bijective correspondence be-
tween the cylindrical measures on X and the isonomy classes of linear random
functions defined on X'. : |

DeriNITION. A cylindrical measure p is said to be of fype 1 (resp.
type o) if the associated linear random function f is continuous of X’
into LY, X, P) (resp. L=(2, 2, P)). Furthermore, a cylindrical measure y«
is said to be of zype (z, 1) if ¢ is of type 1 and the continuity of the function
f is guaranteed even if the space X’ is equipped with the Mackey topology
(X', X).

A set function m from a g-algebra X of subsets of a set £ to a Banach

space X is called a vector measure, if m(lfj E,,,):f‘I m(E,) in the norm
n=1 n=1

topology of X for all sequences (E,) of pairwise disjoint members of 2.

We denote by (m; 2, 3, P) the couple of a vector measure and a prob-
ability space such that m is defined on X and m is P-continuous. Let m,
be a vector measure and (2,, 2;, P;) be a probability space for i=1,2. The
couple (m;; 2,, 3,, P,) is said to be equivalent to (my; 2,, 3,, P,) if the family
of functions {(dx’ o m,)/dP; x' ¢ X'} is isonomous to {(dx’ o m,)/dP,; x' ¢ X'},
where (dx' o m,)/dP, is a Radon~Nikodym derivative. By assumption we
have x’' o m, &P, for every x' € X', and therefore the above equivalency is
well defined.

Now we shall show the next theorem. The result of this theorem has
been suggested in [5] and [6]. '

- THEOREM - 1.2. There exists a bijective correspondence between the type
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(z, 1)-cylindrical measures on a Banach space X and the equivalence classes
of the couples (m; 2, 2, P) of the vector measures with values in X and the
probability spaces.

Proor. Given (m; 2,2, P), we have x’ o m&P for every x’ ¢ X’. Then
there exists a Radon-Nikodym derivative (dx’' o m)/dPc L}, 3, P) for
every x’ € X'. It is clear that the function f of X’ into L2, %', P) defined
by f(x')=(dx' o m)/dP is the linear random function on X’. Denote by p
the associated cylindrical measure with f. Now we shall show that g is
of type (z, 1). The vector measure m is always of bounded semivariation,

then we have sup S | f(x")Y(w)] dP(w)< oo and this means that p is of type
lerli<1 Jo
1. Moreover, since the range of m is relatively weakly compact, we can

show that g is of type (z, 1).

Conversely, let ¢ be a type (z, 1)-cylindrical measure on X and f be
the associated linear random function with the probability space (2, 2, P).
The function f is continuous of X’ equipped with the Mackey topology
- (X', X) into LY, 2%, P). Through only elementary argument we can
complete the proof. v Q.E.D.

The following obvious result has been also suggested in [5].

ProrosiTioN 1.3. Let p be a type (z, 1)-cylindrical measure on a Banach
space X and (m; 2, 3, P) be the associated couple with yr. Then the followings
are equivalent. |

(i) p is of type oo.

(ii) The set {m(A)/P(A); Ac 2, P(A)+0} is bounded in X.

ProrosiTiON 1.4. Let X, Y be Banach spaces, u be a continuous linear
mapping of X into Y and p be a type (z, 1)-cylindrical measure on X. If the
couple (m; 2, X, P) is associated with ., then (u(m); 2, 2, P) is associated with
u(y), where u(m) means u o m.

Proor. It is clear that u(m) is a vector measure with values in ¥ and
u(my<P. Let f: X'>LY2, Y, P) be the associated linear random function
with g, then fo'u:Y'—ILY2, 2, P) is associated with u(x). The couple
(u(m); 2, 2, P) induces the linear random function %2 on Y’; h: y'—
(dy’ o u(m))|dP=(d‘u(y") o m)/dP. Thus we have h=f o ‘u. Q.E.D.

Thus we can use the results concerning vector measures for the study
of type (7, 1)-cylindrical measures. These applications will be shown in
the ensuing sections.

§2. Application I

We shall introduce the following theorem, which is due to Z. Lipecki
and K. Musial.
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Through this section we assume X to be a Banach space with a Schauder

basis. We denote by {x,} the Schauder basis of X and by {x;} the bior-
thogonal functionals of {x,b}.

THEOREM 2.1 ([7]). Ler (2,2, P) be a probability space and {f,}C
L2, 2, P) and a vector measure m:. X—X be such that

x;om(E):S fadP for Ec2 and n=1,2,....
E

Then the following arguments are equivalent:
(i) m has a Pettis P-integrable Radon-Nikodym derivative.

(ii) fl fa(+)x, converges strongly P-a.e.

~(dii) Zw: Sfa(#)x, converges weakly in probability P.
n=1
Either of them implies that

m(E):(P)SEé‘lfn(-)xndP for Ec3.

To each type (7, 1)-cylindrical measure g on X, there corresponds a
linear random function f of X’ into LY, Y, P). Let f,(+)=f(x,)(+) for
n=1,2, ... and M’ be the closed linear span of {x;}. Then ] f,(+){x,, x")
converges in LY, 2, P) for every x’ ¢ M’. Conversely, to each sequence
of real random variables {f,} satisfying a certain condition, there corresponds
a type (7, 1)-cylindrical measure y, which induces the linear random func-
tion f such that f(x,)=f, (see [8]). Therefore, the sequence {f,} is said
to be the associated sequence with p. Using the above theorem, we can
get the next result.

THEOREM 2.2. Let u be a type (t, 1)-cylindrical measure on X and {f,}
be the associated sequence with p. Then the following statements are equivalent:
(i) p is a (probability) measure.

(ii) i‘ fu(#)x, converges strongly P-a.e.
%=1

(iii) }E fu(+)x, converges weakly in probability P.
n=1 )

Proor. We only have to prove that the vector measure m has a Pettis
P-integrable Radon-Nikodym derivative if and only if ¢ is a measure,
where (m; 2, %, P) is the associated couple with z. Suppose that m has a
Pettis P-integrable Radon-Nikodym derivative ¢ : 2—X. It is easily seen
that #=¢(P) and as a consequence that g is a measure.

Conversely, we assume that x is a measure and denote by f the associ-
ated linear random function with x. Since the points of X are separated
by the countable subset {x}} of X”, there exists a weakly measurable function
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¢ : 2—X such that for each x’ ¢ X’ the function {¢(-), x") is equal to f(x')
in the sense of random variables (see [9]). Therefore the proof is complete.
Q.E.D.

We have the next result as an obvious consequence.

CoROLLARY 2.3. Let p be a type (z, 1)-cylindrical measure on X and
(m; 2, 2, P) be the associated couple with p. If p is of type oo, then p is a
measure if and only if m has a Bochner integrable Radon-Nikodym derivative
with respect to P.

§ 3. Application II

In this section we shall try to construct a product measure of two
cylindrical measures. First of all, we show the following theorem, which
is due to M. Duchon and I. Kluvanek.

THEOREM 3.1 ([4]). Let probability spaces (£, 2, P;) and (2,, 2,, P,),
Banach spaces X and Y, and vector measures m,: 2, —X and m,: Y,—Y be
given. If we denote by ¥ ,®2, the g-algebra generated by the sets of the form
ExXF, EcX,, Fel, and by X@eY the completed inductive tensor product of
the spaces X and Y, then there exists a unique vector measure m: 3,Q%;—
X@EY such that the relation

m(E X F)=m(E)®myF), Ecl,, Fel,

holds. We denote the measure m by m,Q.m,.
Moreover, if m &P, and m,&P,, then mQm, L P,QP,, where P,QP, is
the usual product measure of P, and P, defined on 2,®2%,.

ReMARrRk. If both (2,, Y, P,) and (£2,, X,, P,) are Radon probability
spaces, then (2,x£,, ¥,Q2%,, P,QP,) is extensible to a Radon probability
space (see [9]). But we do not need to use the extended probability space in
the ensuing arguments, because we can remove the assumption that (2, 2, P)
is a Radon probability space from the definition of random functions.

Theorem 3.1 and the above remark suggest a possibility of making
another type (r, 1)-cylindrical measure from two type (r, 1)-cylindrical
measures.

LemMa 3.2. Let X,, Y, (i=1,2) be four Banach spaces, (£, 2;, P;)
(i=1, 2) two probability spaces and m; (i=1, 2) two vector measures such that
m: 2 —X, and m,: 3,—Y,. Let u(resp. v) be a continuous linear map of X,
into X, (resp. of Y, into Y,). If we denote by u@ev the extension of u®v as a
continuous linear map of X1®SY1 into Xz@)sYz, then we have (u@sv)(m1®sm2)=
u(m,)Qv(m,).
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13
Proor. If a set G is of the form G=|J E; X F, where the union is -
~

(2

disjoint and E,e ¥,, F,c %,, then we have
~ A~ k
(48 )@ ,ms)(G) = (4 0)( 2 m(E)Sm(F,))

- é u(m,)(E)Qv(my)(F,)
= (u(rm,)®,v(my))(G) .

According to the same step used in Theorem 3.1, we can see that
(1R 0)(mM,Q my)(G) = (u(m,)® v(m,))(G) is held for every Ge 2,®%,. Q.E.D.

THEOREM AND DEFINITION 3.3. Let p, and p, be type (t, 1)-cylindrical
measures on respective Banach spaces X and Y, (my; 2,, 2, P,) and (my; 2,, ,, P,)
be the couples associated with g, and p, respectively. If we denote by ¥ ®23,
the g-algebra generated by the sets of the form EXF, Ec2X,, Fe2,, and by
X&.,Y the completed inductive tensor product of the spaces X and Y, then there
exists a unique type (v, 1)-cylindrical measure g on the space X®,Y, which
induces the couple (m@ my; 2,%x 2,, ¥,Q3,, P,QP,). We denote the measure p
by &y, The cylindrical measure p,Q°y, is said to be the tensor product
of the cylindrical measures p, and p,.

PrRoOOF. According to Theorem 3.1 and Remark, the existence of p is
clear. We only have to check the uniqueness. Denote by W the space
X®,Y and by W' the topological dual space of W. It is easily seen that
X'®Y"’ is dense in the space W’ equipped with the Mackey topology =(W’, W).
It is therefore sufficient to see that for every xX’'®)’ ¢ X'®Y” the probability
(¥’®y’)(1) is uniquely determined, independent of the choice of associated
couples (my; 2,, X, P,) and (m,; 2,, ¥,, P;). For each ¥®y ¢ X'QY”’,

(X'Qy") o (M,Qmy)=(x" o m)Q () o my) (by Lemma 3.2)
=(x" o m)Q(y o m,),

where the last one means the usual product measure of two scalar-valued
measures. Hence,

d(x'®y") o (mQ.my) _ d(x’ o m)Q(y' om;) _dx' omy dy' om, .
dP,QP, dP,QP, dp, dpP,

Then, it is enough to show that A=fg is isonomous to #'= f’g" if f and g are
respectively isonomous to f” and g’, where f € LY(%2,, 3, P,), f’ € L\(2], 21, P}),
ge L{Q,, X, P,) and ¢’ e L2}, X}, P]). Checking the characteristic func-
tions of the image measures A(P,®P,) and A'(Pi®P}), we can complete the
proof. : -~ 'Q.E.D.

The following propositions will give some characterizations of the tensor
product of two type (r, 1)-cylindrical measures.
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ProrosiTION 3.4. Let p,, p, be type (v, 1)-cylindrical measures on Banach
spaces X and Y respectively. If both p, and p, are of type co, then the tensor
product p, @, is also of type co.

Proor. Let (m; 2, X;, P;) (i=1, 2) be the associated couples with g,
(i=1,2). For i=1,2; p, is of type oo, then we have a positive number
M such that ||my(A)||< MP,(A) for every A€ X,. This result implies that
there exists a constant number M'>0 satisfying ||m,Qm,(G)||<M'P,QP,G)

if G is of the form G= U E,x F; where {E;x F;}t_, are mutually disjoint

and E;e2,, F,e 2, Once more we can use the same technlque used in
Theorem 3.1. ' Q.E.D.

ProposIiTION 3.5. Let X;, Y, (i=1,2) be four Baﬁach spaces and p; (i=
1, 2) be two type (t, 1)-cylindrical measures on X, and on Y, respectively. If u
(resp. 'v) is a continuous linear map of X, into X, (resp. of Y, znta Yz) ‘then

(”® V) (1, R° ) = u(ﬂ1)® () -

PrOOF. According to Propos1t1on 1.4 and Lemma 3.2, this result is
obvious. Q.E.D.

PROPOSITION 3.6. Let p, (i=1, 2) be two type (z, 1)-cylindrical measures,
respectively on X and on Y. For any x¥'Qy' € X'QY’,

X (1)@ Y () = B(x (1) B ' (1))
where h is the mapping of RXR into R, which is defined as follows:

hi(x, p—xy.

Proor. It is clear that (R, B(R), x'(y,)) is a probability space, where
B(R) is the Borel g-algebra on R. Therefore we can take the measure

m(A)=| f0dr(u)s) for AeBER),

where f is the identity map of R onto R, and the above-mentioned prob-
ability space (R, B(R), x'(¢,)) as the associated couple with x'(g,). Since
¢, is of type (7, 1), it is easily checked that f belongs to L}R, B(R), x'())-
By the same method we have the probability space (R, B(R), y'(y,)), the
identity map g of R onto R and the measure mzzx g dy'(¢;)- In this case,

actually both measures m, and m, are scalar-valued measures, then we have
mQm,=m@m, and also (dm,®m,)/(dx'(¢,)RY'(¢,))=f9=rh. This implies
x'(¢1)®° Y (a) = (X' (111)Q y" (125)) - Q.E.D.

REMARK. As referred to earlier, the set X'®Y’ is dense in (X® X))
equipped with 7((X Ry, X& Y) and the type (r, 1)-cylindrical measure g
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on XY is uniquely determined by the family of the scalar-valued meas-
ures {(x'®y')p); x¥®y' € X'QY’}. Moreover, Proposition 3.5 implies that
(X'Q YN @) = (X' (111))®*(¥'(125))- Therefore it is easily seen that Proposi-
tion 3.6 gave the most important characterization of the tensor product of
type (z, 1)-cylindrical measures. '

The next example points out the fact that the above definition of tensor
product of type (z, 1)-cylindrical measures is different from the tensor product
of Gaussian cylindrical measures defined by R. Carmona and S. Chevet

([2] and [3]).

ExampLE. Let H be a real séparable Hilbert space. We identify H’
and H. Let y be the Gaussian cylindrical measure on H with variance I,
where [ is the identity map (see [1]). It is clear that y is of type (7, 1).
Indeed, every Gaussian cylindrical measure on a real Banach space is of
type (v, 1). We shall show that the tensor product y®‘r on H® H is not
a Gaussian cylindrical measure. For ¥®y' e H'QH', |x||=|y=1,

Y ® )=V (1)

=h(x'(r)®y'(r)) »
where h is the same mapping used in Proposition 3.6, and also, x'(y)(4)=
y (T)( )———: S exp <—-§) dx for every AcB(R). Denote by ¢(f) the
A

charactenstlc function of A(x'(7)®y'(r)). We have
p(0)=\_exp (itu) dh(x' ()R (r))(®)

|, xp (ith(@)) A ()@Y (1)(@)

(75 Loe (=)o (mo-3) ) @

1
CVIEE
This implies that y®y is not a Gaussian cyhndrlcal measure.
More detailed characterization of the tensor product yp,®¢°y,, which is
introduced in this paper, will appear elsewhere.
Finally, the author wishes to thank Professor Ohba who oﬂ'ered many
materials for study about the product of vector measures.

I
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