Some Remarks on Type $(\tau, 1)$ -cylindrical Measures

Michie Maeda

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received April 10, 1979)

Introduction.

We are concerned here with the study of cylindrical measures on The relation between vector measures and cylindrical Banach spaces. measures has been investigated by A. Goldman ([5]) and I. Kluvánek ([6]). Some kind of cylindrical measures are determined by the pair of the vector measure m and the probability P such that m is P-continuous. cylindrical measures are called to be of type $(\tau, 1)$. When we restrict our investigation to the field of type $(\tau, 1)$ -cylindrical measures, we can find several useful tools within the results concerning vector measures. In this paper we show two directions in these applications. Section 2 presents an improvement of the result of [8] stating about type $(\tau, 1)$ -cylindrical measures on Banach spaces with a Schauder basis. In section 3 we construct a tensor product of two cylindrical measures, however it is different from the definition of the tensor product of Gaussian measures in [2] and [3].

§ 1. Cylindrical measures and vector measures.

All the probabilities to be considered in this paper will be assumed to be Radon measures, i.e., Borel measures with the inner regularity. Let X be a real Banach space and $\mathfrak{F}(X)$ be the collection of all closed subspaces of X of finite codimension. Let $E \in \mathfrak{F}(X)$; the quotient space X/E is a finite dimensional vector space. Denote by π_E the canonical surjection $X \rightarrow X/E$. When $F \subset E$ and E, $F \in \mathfrak{F}(X)$, we can define a canonical surjection $\pi_{EF}: X/F \rightarrow X/E$ through the relation $\pi_E = \pi_{EF} \circ \pi_F$. The family $\{X/E, \pi_E; E \in \mathfrak{F}(X)\}$ forms a projective system. Suppose that on each finite-dimensional space X/E we are given a probability μ_E together with the relation $\mu_E = \pi_{EF}(\mu_F)$ if $E \supset F$. Such a projective system of probabilities $\mu = (\mu_E)_{E \in \mathfrak{F}(X)}$ will be called a cylindrical measure on X. We shall say that a cylindrical measure μ on X is a measure (or probability) if there exists a probability m on X such that μ_E is the image measure of m by π_E for every $E \in \mathfrak{F}(X)$, i.e., $\mu_E = \pi_E(m)$. We shall say that μ is the cylindrical

measure associated with m and write, by a convenient abuse of language, $\mu = m$.

We shall define the image measure of a cylindrical measure with respect to a continuous linear mapping. Let X and Y be two Banach spaces and u be a continuous linear mapping of X into Y. Let μ be a cylindrical measure on X. For every $G \in \mathfrak{F}(Y)$, the subspace $E = u^{-1}(G)$ of X belongs to $\mathfrak{F}(X)$ and u induces a linear mapping $u_G: X/E \to Y/G$. The measure λ_G on Y/G, the image of μ_E by μ_G , is defined by $\lambda_G = \mu_G(\mu_E)$ and denoted by $\lambda = \mu(\mu)$.

Let X' be the topological dual space of X. There is a one-to-one correspondence between continuous linear mappings $u: X \to \mathbb{R}^n$ and n-tuples (x'_1, \dots, x'_n) where each $x'_i \in X'$. Thus a cylindrical measure μ on X associates with each n-tuple (x'_1, \dots, x'_n) , a probability $\mu_{x'_1 \dots x'_n}$ on \mathbb{R}^n .

We shall denote by $L^0(\Omega, \Sigma, P)$, where (Ω, Σ, P) is a probability space, the space of all equivalent classes of real random variables, and we shall say that f is a random function defined on X' if f is a mapping of X' into $L^0(\Omega, \Sigma, P)$.

PROPOSITION 1.1 (cf. [9]). There exists a bijective correspondence between the cylindrical measures on X and the isonomy classes of linear random functions defined on X'.

DEFINITION. A cylindrical measure μ is said to be of type 1 (resp. $type \infty$) if the associated linear random function f is continuous of X' into $L^1(\Omega, \Sigma, P)$ (resp. $L^\infty(\Omega, \Sigma, P)$). Furthermore, a cylindrical measure μ is said to be of type $(\tau, 1)$ if μ is of type 1 and the continuity of the function f is guaranteed even if the space X' is equipped with the Mackey topology $\tau(X', X)$.

A set function m from a σ -algebra Σ of subsets of a set Ω to a Banach space X is called a vector measure, if $m(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n)$ in the norm topology of X for all sequences (E_n) of pairwise disjoint members of Σ .

We denote by $(m; \Omega, \Sigma, P)$ the couple of a vector measure and a probability space such that m is defined on Σ and m is P-continuous. Let m_i be a vector measure and $(\Omega_i, \Sigma_i, P_i)$ be a probability space for i=1, 2. The couple $(m_1; \Omega_1, \Sigma_1, P_1)$ is said to be equivalent to $(m_2; \Omega_2, \Sigma_2, P_2)$ if the family of functions $\{(dx' \circ m_1)/dP_1; x' \in X'\}$ is isonomous to $\{(dx' \circ m_2)/dP_2; x' \in X'\}$, where $(dx' \circ m_i)/dP_i$ is a Radon-Nikodym derivative. By assumption we have $x' \circ m_i \ll P_i$ for every $x' \in X'$, and therefore the above equivalency is well defined.

Now we shall show the next theorem. The result of this theorem has been suggested in [5] and [6].

THEOREM 1.2. There exists a bijective correspondence between the type

 $(\tau, 1)$ -cylindrical measures on a Banach space X and the equivalence classes of the couples $(m; \Omega, \Sigma, P)$ of the vector measures with values in X and the probability spaces.

PROOF. Given $(m; \Omega, \Sigma, P)$, we have $x' \circ m \ll P$ for every $x' \in X'$. Then there exists a Radon-Nikodym derivative $(dx' \circ m)/dP \in L^1(\Omega, \Sigma, P)$ for every $x' \in X'$. It is clear that the function f of X' into $L^1(\Omega, \Sigma, P)$ defined by $f(x') = (dx' \circ m)/dP$ is the linear random function on X'. Denote by μ the associated cylindrical measure with f. Now we shall show that μ is of type $(\tau, 1)$. The vector measure m is always of bounded semivariation, then we have $\sup_{\|x'\| \le 1} \int_{\Omega} |f(x')(\omega)| dP(\omega) < \infty$ and this means that μ is of type 1. Moreover, since the range of m is relatively weakly compact, we can show that μ is of type $(\tau, 1)$.

Conversely, let μ be a type $(\tau, 1)$ -cylindrical measure on X and f be the associated linear random function with the probability space (Ω, Σ, P) . The function f is continuous of X' equipped with the Mackey topology $\tau(X', X)$ into $L^1(\Omega, \Sigma, P)$. Through only elementary argument we can complete the proof. Q.E.D.

The following obvious result has been also suggested in [5].

PROPOSITION 1.3. Let μ be a type $(\tau, 1)$ -cylindrical measure on a Banach space X and $(m; \Omega, \Sigma, P)$ be the associated couple with μ . Then the followings are equivalent:

- (i) μ is of type ∞ .
- (ii) The set $\{m(A)/P(A); A \in \Sigma, P(A) \neq 0\}$ is bounded in X.

PROPOSITION 1.4. Let X, Y be Banach spaces, u be a continuous linear mapping of X into Y and μ be a type $(\tau, 1)$ -cylindrical measure on X. If the couple $(m; \Omega, \Sigma, P)$ is associated with μ , then $(u(m); \Omega, \Sigma, P)$ is associated with $u(\mu)$, where u(m) means $u \circ m$.

PROOF. It is clear that u(m) is a vector measure with values in Y and $u(m) \ll P$. Let $f: X' \to L^1(\Omega, \Sigma, P)$ be the associated linear random function with μ , then $f \circ {}^t u: Y' \to L^1(\Omega, \Sigma, P)$ is associated with $u(\mu)$. The couple $(u(m); \Omega, \Sigma, P)$ induces the linear random function h on Y'; $h: y' \mapsto (dy' \circ u(m))/dP = (d^t u(y') \circ m)/dP$. Thus we have $h = f \circ {}^t u$. Q.E.D.

Thus we can use the results concerning vector measures for the study of type $(\tau, 1)$ -cylindrical measures. These applications will be shown in the ensuing sections.

§ 2. Application I.

We shall introduce the following theorem, which is due to Z. Lipecki and K. Musiał.

Through this section we assume X to be a Banach space with a Schauder basis. We denote by $\{x_n\}$ the Schauder basis of X and by $\{x'_n\}$ the biorthogonal functionals of $\{x_n\}$.

THEOREM 2.1 ([7]). Let (Ω, Σ, P) be a probability space and $\{f_n\}\subset L^1(\Omega, \Sigma, P)$ and a vector measure $\mathbf{m}: \Sigma \to X$ be such that

$$x'_n \circ m(E) = \int_E f_n dP$$
 for $E \in \Sigma$ and $n = 1, 2, \dots$

Then the following arguments are equivalent:

- (i) m has a Pettis P-integrable Radon-Nikodym derivative.
- (ii) $\sum_{n=1}^{\infty} f_n(\cdot)x_n$ converges strongly P-a.e.
- (iii) $\sum_{n=1}^{\infty} f_n(\cdot)x_n$ converges weakly in probability P. Either of them implies that

$$m(E) = (P) \int_{E} \sum_{n=1}^{\infty} f_n(\cdot) x_n dP$$
 for $E \in \Sigma$.

To each type $(\tau, 1)$ -cylindrical measure μ on X, there corresponds a linear random function f of X' into $L^1(\Omega, \Sigma, P)$. Let $f_n(\cdot) = f(x'_n)(\cdot)$ for $n=1, 2, \cdots$ and M' be the closed linear span of $\{x'_n\}$. Then $\sum f_n(\cdot)\langle x_n, x'\rangle$ converges in $L^1(\Omega, \Sigma, P)$ for every $x' \in M'$. Conversely, to each sequence of real random variables $\{f_n\}$ satisfying a certain condition, there corresponds a type $(\tau, 1)$ -cylindrical measure μ , which induces the linear random function f such that $f(x'_n) = f_n$ (see [8]). Therefore, the sequence $\{f_n\}$ is said to be the associated sequence with μ . Using the above theorem, we can get the next result.

THEOREM 2.2. Let μ be a type $(\tau, 1)$ -cylindrical measure on X and $\{f_n\}$ be the associated sequence with μ . Then the following statements are equivalent:

- (i) μ is a (probability) measure.
- (ii) $\sum_{n=1}^{\infty} f_n(\cdot) x_n$ converges strongly P-a.e.
- (iii) $\sum_{n=1}^{\infty} f_n(\cdot) x_n$ converges weakly in probability P.

PROOF. We only have to prove that the vector measure m has a Pettis P-integrable Radon-Nikodym derivative if and only if μ is a measure, where $(m; \Omega, \Sigma, P)$ is the associated couple with μ . Suppose that m has a Pettis P-integrable Radon-Nikodym derivative $\varphi: \Omega \rightarrow X$. It is easily seen that $\mu = \varphi(P)$ and as a consequence that μ is a measure.

Conversely, we assume that μ is a measure and denote by f the associated linear random function with μ . Since the points of X are separated by the countable subset $\{x'_n\}$ of X', there exists a weakly measurable function

 $\psi: \Omega \to X$ such that for each $x' \in X'$ the function $\langle \psi(\cdot), x' \rangle$ is equal to f(x') in the sense of random variables (see [9]). Therefore the proof is complete. O.E.D.

We have the next result as an obvious consequence.

COROLLARY 2.3. Let μ be a type $(\tau, 1)$ -cylindrical measure on X and $(m; \Omega, \Sigma, P)$ be the associated couple with μ . If μ is of type ∞ , then μ is a measure if and only if m has a Bochner integrable Radon-Nikodym derivative with respect to P.

§ 3. Application II.

In this section we shall try to construct a product measure of two cylindrical measures. First of all, we show the following theorem, which is due to M. Duchoň and I. Kluvánek.

THEOREM 3.1 ([4]). Let probability spaces $(\Omega_1, \Sigma_1, P_1)$ and $(\Omega_2, \Sigma_2, P_2)$, Banach spaces X and Y, and vector measures $\mathbf{m}_1 : \Sigma_1 \rightarrow X$ and $\mathbf{m}_2 : \Sigma_2 \rightarrow Y$ be given. If we denote by $\Sigma_1 \otimes \Sigma_2$ the σ -algebra generated by the sets of the form $E \times F$, $E \in \Sigma_1$, $F \in \Sigma_2$, and by $X \otimes_{\varepsilon} Y$ the completed inductive tensor product of the spaces X and Y, then there exists a unique vector measure $\mathbf{m} : \Sigma_1 \otimes \Sigma_2 \rightarrow X \otimes_{\varepsilon} Y$ such that the relation

$$m(E \times F) = m_1(E) \otimes m_2(F)$$
, $E \in \Sigma_1$, $F \in \Sigma_2$

holds. We denote the measure m by $m_1 \otimes_s m_2$.

Moreover, if $m_1 \ll P_1$ and $m_2 \ll P_2$, then $m_1 \otimes_{\epsilon} m_2 \ll P_1 \otimes P_2$, where $P_1 \otimes P_2$ is the usual product measure of P_1 and P_2 defined on $\Sigma_1 \otimes \Sigma_2$.

REMARK. If both $(\Omega_1, \Sigma_1, P_1)$ and $(\Omega_2, \Sigma_2, P_2)$ are Radon probability spaces, then $(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, P_1 \otimes P_2)$ is extensible to a Radon probability space (see [9]). But we do not need to use the extended probability space in the ensuing arguments, because we can remove the assumption that (Ω, Σ, P) is a Radon probability space from the definition of random functions.

Theorem 3.1 and the above remark suggest a possibility of making another type $(\tau, 1)$ -cylindrical measure from two type $(\tau, 1)$ -cylindrical measures.

LEMMA 3.2. Let X_i , Y_i (i=1,2) be four Banach spaces, $(\Omega_i, \Sigma_i, P_i)$ (i=1,2) two probability spaces and m_i (i=1,2) two vector measures such that $m_1: \Sigma_1 \rightarrow X_1$ and $m_2: \Sigma_2 \rightarrow Y_1$. Let u (resp. v) be a continuous linear map of X_1 into X_2 (resp. of Y_1 into Y_2). If we denote by $u \otimes_{\varepsilon} v$ the extension of $u \otimes v$ as a continuous linear map of $X_1 \otimes_{\varepsilon} Y_1$ into $X_2 \otimes_{\varepsilon} Y_2$, then we have $(u \otimes_{\varepsilon} v)(m_1 \otimes_{\varepsilon} m_2) = u(m_1) \otimes_{\varepsilon} v(m_2)$.

PROOF. If a set G is of the form $G = \bigcup_{i=1}^k E_i \times F_i$ where the union is disjoint and $E_i \in \Sigma_1$, $F_i \in \Sigma_2$, then we have

$$(u \widehat{\otimes}_{\varepsilon} v)(\mathbf{m}_{1} \otimes_{\varepsilon} \mathbf{m}_{2})(G) = (u \widehat{\otimes}_{\varepsilon} v) \left(\sum_{i=1}^{k} \mathbf{m}_{1}(E_{i}) \otimes \mathbf{m}_{2}(F_{i}) \right)$$

$$= \sum_{i=1}^{k} u(\mathbf{m}_{1})(E_{i}) \otimes v(\mathbf{m}_{2})(F_{i})$$

$$= (u(\mathbf{m}_{1}) \otimes_{\varepsilon} v(\mathbf{m}_{2}))(G).$$

According to the same step used in Theorem 3.1, we can see that $(u \widehat{\otimes}_{\epsilon} v)(m_1 \otimes_{\epsilon} m_2)(G) = (u(m_1) \otimes_{\epsilon} v(m_2))(G)$ is held for every $G \in \Sigma_1 \otimes \Sigma_2$. Q.E.D.

Theorem and Definition 3.3. Let μ_1 and μ_2 be type $(\tau, 1)$ -cylindrical measures on respective Banach spaces X and Y, $(\mathbf{m}_1; \Omega_1, \Sigma_1, P_1)$ and $(\mathbf{m}_2; \Omega_2, \Sigma_2, P_2)$ be the couples associated with μ_1 and μ_2 respectively. If we denote by $\Sigma_1 \otimes \Sigma_2$ the σ -algebra generated by the sets of the form $E \times F$, $E \in \Sigma_1$, $F \in \Sigma_2$, and by $X \hat{\otimes}_{\varepsilon} Y$ the completed inductive tensor product of the spaces X and Y, then there exists a unique type $(\tau, 1)$ -cylindrical measure μ on the space $X \hat{\otimes}_{\varepsilon} Y$, which induces the couple $(\mathbf{m}_1 \otimes_{\varepsilon} \mathbf{m}_2; \Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, P_1 \otimes P_2)$. We denote the measure μ by $\mu_1 \otimes^{\varepsilon} \mu_2$. The cylindrical measure $\mu_1 \otimes^{\varepsilon} \mu_2$ is said to be the tensor product of the cylindrical measures μ_1 and μ_2 .

PROOF. According to Theorem 3.1 and Remark, the existence of μ is clear. We only have to check the uniqueness. Denote by W the space $X \otimes_{\epsilon} Y$ and by W' the topological dual space of W. It is easily seen that $X' \otimes Y'$ is dense in the space W' equipped with the Mackey topology $\tau(W', W)$. It is therefore sufficient to see that for every $x' \otimes y' \in X' \otimes Y'$ the probability $(x' \otimes y')(\mu)$ is uniquely determined, independent of the choice of associated couples $(m_1; \Omega_1, \Sigma_1, P_1)$ and $(m_2; \Omega_2, \Sigma_2, P_2)$. For each $x' \otimes y' \in X' \otimes Y'$,

$$(x' \otimes y') \circ (m_1 \otimes_{\epsilon} m_2) = (x' \circ m_1) \otimes_{\epsilon} (y' \circ m_2)$$
 (by Lemma 3.2)
= $(x' \circ m_1) \otimes (y' \circ m_2)$,

where the last one means the usual product measure of two scalar-valued measures. Hence,

$$\frac{d(x'\otimes y')\circ (m_1\otimes_{\varepsilon}m_2)}{dP_1\otimes P_2}=\frac{d(x'\circ m_1)\otimes (y'\circ m_2)}{dP_1\otimes P_2}=\frac{dx'\circ m_1}{dP_1}\cdot \frac{dy'\circ m_2}{dP_2}.$$

Then, it is enough to show that h=fg is isonomous to h'=f'g' if f and g are respectively isonomous to f' and g', where $f \in L^1(\Omega_1, \Sigma_1, P_1)$, $f' \in L^1(\Omega_1', \Sigma_1', P_1')$, $g \in L^1(\Omega_2, \Sigma_2, P_2)$ and $g' \in L^1(\Omega_2', \Sigma_2', P_2')$. Checking the characteristic functions of the image measures $h(P_1 \otimes P_2)$ and $h'(P_1' \otimes P_2')$, we can complete the proof.

Q.E.D.

The following propositions will give some characterizations of the tensor product of two type $(\tau, 1)$ -cylindrical measures.

PROPOSITION 3.4. Let μ_1 , μ_2 be type $(\tau, 1)$ -cylindrical measures on Banach spaces X and Y respectively. If both μ_1 and μ_2 are of type ∞ , then the tensor product $\mu_1 \otimes^{\epsilon} \mu_2$ is also of type ∞ .

PROOF. Let $(m_i; \Omega_i, \Sigma_i, P_i)$ (i=1, 2) be the associated couples with μ_i (i=1, 2). For i=1, 2; μ_i is of type ∞ , then we have a positive number M such that $||m_i(A)|| \leq MP_i(A)$ for every $A \in \Sigma_i$. This result implies that there exists a constant number M' > 0 satisfying $||m_1 \otimes_{\epsilon} m_2(G)|| \leq M' P_1 \otimes P_2(G)$ if G is of the form $G = \bigcup_{i=1}^k E_i \times F_i$ where $\{E_i \times F_i\}_{i=1}^k$ are mutually disjoint and $E_i \in \Sigma_1$, $F_i \in \Sigma_2$. Once more we can use the same technique used in Theorem 3.1.

PROPOSITION 3.5. Let X_i , Y_i (i=1,2) be four Banach spaces and μ_i (i=1,2) be two type $(\tau,1)$ -cylindrical measures on X_1 and on Y_1 respectively. If u (resp. v) is a continuous linear map of X_1 into X_2 (resp. of Y_1 into Y_2), then

$$(u \widehat{\otimes}_{\varepsilon} v)(\mu_1 \otimes^{\varepsilon} \mu_2) = u(\mu_1) \otimes^{\varepsilon} v(\mu_2)$$
.

PROOF. According to Proposition 1.4 and Lemma 3.2, this result is obvious. Q.E.D.

PROPOSITION 3.6. Let μ_i (i=1,2) be two type $(\tau,1)$ -cylindrical measures, respectively on X and on Y. For any $x' \otimes y' \in X' \otimes Y'$,

$$x'(\mu_1) \otimes^{\varepsilon} y'(\mu_2) = h(x'(\mu_1) \otimes y'(\mu_2))$$
,

where h is the mapping of $\mathbf{R} \times \mathbf{R}$ into \mathbf{R} , which is defined as follows:

$$h:(x, y)\mapsto xy$$
.

PROOF. It is clear that $(\mathbf{R}, \mathfrak{B}(\mathbf{R}), x'(\mu_1))$ is a probability space, where $\mathfrak{B}(\mathbf{R})$ is the Borel σ -algebra on \mathbf{R} . Therefore we can take the measure

$$m_1(A) = \int_A f(t) dx'(\mu_1)(t)$$
 for $A \in \mathfrak{B}(\mathbf{R})$,

where f is the identity map of \mathbf{R} onto \mathbf{R} , and the above-mentioned probability space $(\mathbf{R},\mathfrak{B}(\mathbf{R}),x'(\mu_1))$ as the associated couple with $x'(\mu_1)$. Since μ_1 is of type $(\tau,1)$, it is easily checked that f belongs to $L^1(\mathbf{R},\mathfrak{B}(\mathbf{R}),x'(\mu_1))$. By the same method we have the probability space $(\mathbf{R},\mathfrak{B}(\mathbf{R}),y'(\mu_2))$, the identity map g of \mathbf{R} onto \mathbf{R} and the measure $m_2 = \int g \, dy'(\mu_2)$. In this case, actually both measures m_1 and m_2 are scalar-valued measures, then we have $m_1 \otimes_{\epsilon} m_2 = m_1 \otimes m_2$ and also $(dm_1 \otimes m_2)/(dx'(\mu_1) \otimes y'(\mu_2)) = fg = h$. This implies $x'(\mu_1) \otimes^{\epsilon} y'(\mu_2) = h(x'(\mu_1) \otimes y'(\mu_2))$. Q.E.D.

REMARK. As referred to earlier, the set $X' \otimes Y'$ is dense in $(X \widehat{\otimes}_{\epsilon} Y)'$ equipped with $\tau((X \widehat{\otimes}_{\epsilon} Y)', X \widehat{\otimes}_{\epsilon} Y)$ and the type $(\tau, 1)$ -cylindrical measure μ

on $X \widehat{\otimes}_{\epsilon} Y$ is uniquely determined by the family of the scalar-valued measures $\{(x' \otimes y')(\mu); x' \otimes y' \in X' \otimes Y'\}$. Moreover, Proposition 3.5 implies that $(x' \otimes y')(\mu_1 \otimes^{\epsilon} \mu_2) = (x'(\mu_1)) \otimes^{\epsilon} (y'(\mu_2))$. Therefore it is easily seen that Proposition 3.6 gave the most important characterization of the tensor product of type $(\tau, 1)$ -cylindrical measures.

The next example points out the fact that the above definition of tensor product of type $(\tau, 1)$ -cylindrical measures is different from the tensor product of Gaussian cylindrical measures defined by R. Carmona and S. Chevet ([2] and [3]).

EXAMPLE. Let H be a real separable Hilbert space. We identify H' and H. Let γ be the Gaussian cylindrical measure on H with variance I, where I is the identity map (see [1]). It is clear that γ is of type $(\tau, 1)$. Indeed, every Gaussian cylindrical measure on a real Banach space is of type $(\tau, 1)$. We shall show that the tensor product $\gamma \otimes^{\epsilon} \gamma$ on $H \widehat{\otimes}_{\epsilon} H$ is not a Gaussian cylindrical measure. For $x' \otimes y' \in H' \otimes H'$, ||x'|| = ||y'|| = 1,

$$(x'\otimes y')(\gamma\otimes^{\varepsilon}\gamma)=(x'(\gamma))\otimes^{\varepsilon}(y'(\gamma))$$
$$=h(x'(\gamma)\otimes y'(\gamma)),$$

where h is the same mapping used in Proposition 3.6, and also, $x'(\gamma)(A) = y'(\gamma)(A) = \frac{1}{\sqrt{2\pi}} \int_A \exp\left(-\frac{x^2}{2}\right) dx$ for every $A \in \mathfrak{B}(\mathbf{R})$. Denote by $\varphi(t)$ the characteristic function of $h(x'(\gamma) \otimes y'(\gamma))$. We have

$$\varphi(t) = \int_{\mathbb{R}} \exp(itu) \, dh(x'(\gamma) \otimes y'(\gamma))(u)$$

$$= \int_{\mathbb{R} \times \mathbb{R}} \exp(ith(\omega)) \, d(x'(\gamma) \otimes y'(\gamma))(\omega)$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^2 \int_{\mathbb{R}} \exp\left(-\frac{y^2}{2}\right) \left(\int_{\mathbb{R}} \exp\left(itxy - \frac{x^2}{2}\right) dx\right) dy$$

$$= \frac{1}{\sqrt{1+t^2}} \int_{\mathbb{R}} \exp\left(-\frac{(1+t^2)y^2}{2}\right) dy$$

$$= \frac{1}{\sqrt{1+t^2}}.$$

This implies that $\gamma \otimes^{\epsilon} \gamma$ is not a Gaussian cylindrical measure.

More detailed characterization of the tensor product $\mu_1 \otimes^e \mu_2$, which is introduced in this paper, will appear elsewhere.

Finally, the author wishes to thank Professor Ohba who offered many materials for study about the product of vector measures.

References

1) P. Baxendale: Gaussian measures on function spaces, Amer. J. Math. 98 (1976), 891-952.

- 2) R. Carmona: Tensor product of Gaussian measures, Lecture Notes in Math. 644 (1978), 96-124.
- 3) S. Chevet: Quelques nouveaux résultats sur les mesures cylindriques, Lecture Notes in Math. 644 (1978), 125-158.
- 4) M. Duchoň and I. Kluvánek: Inductive tensor product of vector-valued measures, Matematický časopis 17 (1967), 108-112.
- 5) A. Goldman: Mesures cylindriques, Mesures vectorielles et questions de concentration cylindrique, Pacific J. Math, 69 (1977), 385-413.
- 6) I. Kluvánek: Cylindrical measures and vector measures, (Preprint).
- 7) Z. Lipecki and K. Musiał: On the Radon-Nikodym derivative of a measure taking values in a Banach space with basis, Lecture Notes in Math. 541 (1976), 243-246.
- 8) M. Maeda: On type $(\tau, 1)$ -cylindrical measures on Banach spaces with Schauder bases, Natur. Sci. Rep. Ochanomizu Univ. 29 (1978), 107-110.
- 9) L. Schwartz: Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, 1973.