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Let T be a positive linear operator on a Banach lattice. A reduction of
T to its irreducible components was investigated by the authors in the case
of a sub-Markov operator in C(X) [7]. Later S. Miyajima obtained the
theory in the case of AM- or AL-space [3] [4]. In these papers, the relation
between the spectrum of T and those of component operators in corresponding
spaces was established. The purpose of this note is to prove a theorem
which is a generalization of these results to the case of an arbitrary Banach
lattice. Recently S. Miyajima found a reduction method of Banach lattices
and applied it to reduction of operators in Banach lattices [5]. = This reduc-
tion method works effectively throughout our note.

We shall begin with preliminaries which are taken from [5] and are
fundamental in this note. Let E be a Banach lattice and 7 on E be uni-

formly ergodic. Then the uniform limit of (Ni;l T")/N, denoted by' P, is
k=0

a positive projection whose range PE is the eigenspace of T for 1. We
assume PE contains a quasi-interior element e of E. Let E, be the order
ideal in E generated by e, which ideal is lattice isomorphic to C(£) and let
the image of x in E, by this isomorphism be denoted by X. We shall define
similary (PE), and C(4). To each 1¢ 4, corresponds a Banach lattice E,,
to which there exists a lattice homomorphism from E,. The image of x
in E, by the homomorphism is denoted simply by x; in place of [x;] in
[5]- Let T, and P, be the operators induced on E; from T and P respec-
tively. The order ideal I,={x; ¢ E;; P;|x,|=0} is T;-invariant. Let T,/I,
and P,/I, be the operators induced on E,/I;, from T, and P, respectively.
The operators T; and P, (resp. T,/I, and P,/I;) have similar properties as
T and P have, for example, positivity and uniform ergodicity. Moreover
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P,E, is one dimensional and T,/I, is irreducible. Further informations on
these matters are found in I. Sawashima and F. Niiro [7] and S.
Miyajima [5]. ‘ ‘

THEOREM. Let T be a linear operator on a Banach lattice E which .
satisfies the following conditions:

1) T is positive, :

2) the mean of the operators {T"},.,.y converges uniformly to P as N
tends to oo,

3) E has quasi-interior element e which satisfies Te=e. Then the follow-
ing equality holds:

o(TYNT = ( 9) 0(T1)>— Nl= ( 9) o(TZ/Ix)>— nr,
where I' is the unit circle in the complex number plane.

Before proving the theorem, we start with the following:

LeMMA. For each v in an index set A, let T, and P, be positive linear
operators in a Banach lattice E, which have the following properties;

1) the spectral radius of T, is equal to 1,

2) PT,=P,
and let sup ||P,||< oo and sup |T,||<oco. Suppose a complex number ay=1 with
la| =1 in AnA‘o(Ty) satisfies the condition

3) sup||R(as T, )| <oo-
Then there exists a positive number ¢ such that for every ve A

4) ‘”Plevl ”gc”PVIaﬂxv_TVXVI ”
holds for each x, e E, satisfying

5) Ikl2=]Px -

Proor. Let the conclusion of this lemma be not true. Then for an
arbitrary ne N, there exist v, € 4 and x,€E, such that

1
T | xw S P% xn
2|| | S 1Pl x4l
and
Palxa] || > 7| Pl oy, — T x| |

where T, and P, are denoted simply T, and P, respectively. (Note that
vy, vy, - - - are not necessarily different from each other.)

Since x, is not 0, we may assume |jx,/|=1 without loss of generality. Then
1/2<||P,|x,||| follows immediately. On the other hand, it is clear that
||P.]aox,— T x,||| converges to 0 as n—oo. Put b=sup|R(a,, T,)||. Let d
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be a positive number satistying bd<1 and let @« be a complex number
such that |a—ay|<d. Then a is in np(T%) and [|R(ay, T,)—R(a, T,)[|=
bzd/(l——bd) for every ne N, by the expansmn of R(a, T,) at a;: R(a, T,)=
kZl(a—a(,)" ‘R(ay, T,)*. Since P, is positive, it follows that, for y, € E,

PR (@0, Tl [SIPAR(@ Tyl 25 AP 1

Further, if |a|>1, then

Po|R(a; To)yu| S PuR(|s T')| yal
1

:EI—_TPnlynl .

Therefore,

[Pal R(to, Ta)yal | = Palyal |4+ Pl 1l -

| | 1—bd

From this together with the uniform boundedness of {P,}, it is easily
proved that, if ||P,|y.||| converges to 0 as n—oo and if sup|y,||<oo, then

IP.n|R(cty, T,)yal|| also converges to 0 as n—oo. Putting y,=ax,—T,x,, we have
lim ||P,|x,|||=0
which is a contradiction.
Clearly we have

CoROLLARY. Under the same condition of Lemma, assume further that
P,E, is one dimensional for each v ¢ A, then there exists a positive number ¢
such that for every ve A

P,|x,|<cP,|ax,—T,x,)|
holds for every x,e E, which satisfy

Pjx,|=Lx,) .
2

The following remarks for the lemma are easily seen from the proof:

ReEMARK 1. If A is a finite set, then the assumption P, T,=P, may be
replaced by P,T,=T,P,.

ReEMARK 2. In the inequality 5), the number 1/2 does not have any
special meaning but only to be a positive constant independent of ve 4
and x, e E,.
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ReMARK 3. For T,, ve 4, in the lemma, the assumption of positivity,
1) and 2) may be replaced by the ones that there exists a positive operator
S, in E, with r(S,)=1 and P,S,=P, such that |T x,|<S,|x,| for every x, € E,.

With above preparations we shall prove the theorem.

Proor oF THEOREM. It was already proved that

( U o(Ty)>* A= <ZLGJA o(T, /12))_ nr

ed
and

sT)NT> <H o(T1)>— nr

in Theorem 3 in [5]. So, to prove the remaining equality, we assume
@ e a(T)NT N <ﬂ p(Tz))

and will derive a contradiction. If sup ||R(«,, T;)||=cc, then the discussion
led

in the proof of Theorem 6 in [7] leads to a contradiction. Therefore
we assume further

*) sup [[R(a, T)l| <o -
Since a,ed(T)NI" and E, is dense in E by Condition 3), there exists a
sequence x™ in E, such that

[le®]|= 1 and lim ||agx™ — Tx||=0 .

T|x"™|>]x"™| —|ax™ —Tx| is clear. Then the following inequality
((I=P)|x")VO= R(ar, T)[apx™ —Tx|+(a—1){(R(a, T)(I—P)|x*[)\/ 0}

holds for @>1, as in the proof of Lemma 2 in [6] or Lemma 5 in [7].

Since Condition 2 is equivalent to the one that a=1 is a pole of the

resolvent R(a, T') of order 1 and P is the leading coefficient of its Laurent’s

expansion by Theorems 4 and 5 in [1], sup||R(a, T)(I—P)| is finite.
a>1l

Therefore ||((I—P)|x"™|)V/0|| converges to 0 as n— co. Put
W= (U= P)" V0.
Then it is an immediate consequence that
|x™|=w™ =0

and

lim [w™]|=0 .

n—r
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Let f,(») be the complex valued function defined on 2 by
arg f(0)=arg ¥™(w)  if F»(0)%0
|[fa(@) = |2 (@) —#"Y(o) .

Since f, is clearly in C(£), we can define a new sequence y* in E, which
corresponds to f,, i.e., p"™=f,. Then,

lx('n) _yon)l:I Ix(ml_ |y<n)| I#w‘”’
and |
Plx(,n)l z Iy(n)I: lx(n)l_w(%)go

are clear by the definition. Therefore this new sequence y™ in E, has the
following properties;

tim [[y»=1,

lim flagy ™ — Ty~]|=0
and
) YIS Pl Pw.
Hence, for every Ae /4 and every neN

|y S Paly™a| +Paw™,

holds. If P,w'™,<P,|y™;|, then ||y™,[|/2<||P;|y™||| is clear. By Theorem
2 in [5] and Assumption (*), all the hypotheses in Corollary of Lemma
for T;, P;, Ae 4 and «a, are satisfied. Then, there exists a positive number
¢ such that for every 2

Py S ePilagy™, — Ty

bolds for y™, e E, satisfying P,w™,<P,|y™,|. Since P,E,, is one dimen-
sional, P,w™, L P;|y"™| means P,w™;>P;|y"™,;|. Therefore, the following
inequality

Py SPaw™ - cPolagy™, — Ty
holds for every 4 and for every n. Applying Corollary 3 in [5], we have
Ply™| < Pw™ +-cPla,y™ —Ty™| .
Hence,
|| S2Pw e +cPlagy™ —Ty |
follows from the inequality (¥). Thus, we have

[yl = 202w |+ l|Pl[[Jeroy ™ — Ty =] -
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Since, the right side of the inequality tends to 0 as n—oo0, ||y*|| also con-
verges to 0 as n—oo. This contradicts

lim [[y®|=1.
N~—+00
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