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1. Introduction

In [2] and [3], L. Schwartz has discussed the connection between cylindrical
measures on a locally convex Hausdorff space and random functions on its
topological dual space. A special case of this result is that cylindrical measures
on l? are representable as sequences of real random variables. As further
generalization of these discussions, the author has gotten the similar result for
every Banach space with a shrinking basis ([5]). If we restrict cylindrical
measures to be of type(r, 1), which will be defined later, the same result for more
general Banach spaces will be able to be verified. In this note we deal with the
relation between cylindrical measures of type(r, 1) on Banach spaces with
Schauder bases and sequences of real random variables. ‘

2. Preliminaries

First we present the following theorem, which is due to L. Schwartz.

THEOREM ([2]). Let E be a locally convex Hausdorff space and E' be a
topological dual space of E. There exists a bijective corvespondence between the
cylindrical measures on E and the isonomy classes of linear random functions on E'.
Moveover, the following two statements are equivalent. Let © be a saturated collection
of subsets of E.

(i) The cylindrical measure yu on E is séalarly S-concentrated.

(i) The associated vandom function f : Eg' — L°(R, m) is continuous if L°
1s equipped with the topology of convergence in probability, where Eg' means that E' is
endowed with ©-topology and L°(R2, m) is the space of all real random variables
defined on the probability space (2, m).

Now we explain the type(r, 1) cylindrical measures which have been discussed
in [3] and [4].

DerFiNiTION. Let X be a Banach space. A cylindrical measure x4 on X is
called to be of ¢ype(r, 1) if the associated linear random function f is a continuous
map from X’ equipped with the Mackey topology (X', X) into L1(£, m) (not only
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into L°). Of course, in this case the space L! is equipped with the usual norm
topology.

The above theorem shows that every type(r, 1) cylindrical measure is scalarly
concentrated on the saturated collection of weakly compact subsets of X.

3. Cylindrical measures on o(X, M’)

Let X be a Banach space with a Schauder basis {x,}%_., {#,}%-, its bior-
thogonal functionals and M’ the closed linear span of the set {x,}y-,. It is
checked that M’ is a closed subspace of X’ in the sense of its norm topology and also
dense in X’ for the weak* topology. Clearly, the pair (X, M’) is a dual system.
We denote by Y the space X equipped with the weak topology ¢(X, M’). In
this section we shall investigate the characterization of the cylindrical measures
on Y.

To begin with, we consider some sorts of topology on M’ which is the dual of
Y. The first one is the relative topology of the Mackey topology (X', X) on X’
and we denote it by #;. The next one is the Mackey topology +(M’, X) denoted by
¢,, and the last one is the relative topology of the norm topology on X', denoted by
ty. Obviously, £, is finer than or equal to #, and #; is finer than or equal to 4.
We denote by M’ the space M’ equipped with the topology #; and by &’ the class
of all continuous linear random functions from M," into L° for i=1, 2, 3.

The next result is easily verified from the result of [2] (p. 265, Th. 2); its proof
will be omitted.

PROPOSITION 1. Let E be a locally convex Hausdorff space, u a cylindrical
measure on E, f 1 E'—L° a linear random function associated with u, and M a set of
all Radon probabilities on R. The following conditions are equivalent:

(i) the map &\— &(u) from E' into M equipped with the narvow topology 1is
CONBINUOuUs

(ii) the random function f : E'—L° is continuous if L° is equipped with the
topology of convergence in probability.

Here we can consider arbitrary compatible topology on E’. Then we have
the next result.

PROPOSITION 2. If a linear random function f belongs to ', then every linear
random function which is isonomous to f, is contained in F for i=1, 2, 3.

This proposition shows that the condition that f belongs to &, depends only
on the isonomy class. Therefore, by the theorem in §2 we can classify the
cylindrical measures on Y in the following way. Let @° be the class of all
cylindrical measures on Y such that the associated random functions are
contained in § for i=1, 2, 3. Using the result that #; is finer than or equal to
t;—, for =2, 3, we have
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PRrOPOSITION 3. GlCG2CE3.

THEOREM 1. There exists a bijective corvespondence between the cylindrical
measures on Y belonging to €3, and the isonomy classes of sequences {p,} of real
random variables satisfying the condition that for every x'M’, the series Y .pp<%Xy,
x'> converges in probability.

The proof will be followed by the same method of [5] (p. 3, Th. 2). Avoiding
duplication, we omit to state this proof.

ReEMARK 1. We assume X to be a dual of some Banach space, i.e. X=4'
where 4 is a Banach space. It follows immediately from [1] and the hypothesis
that X has a Schauder basis, that 4 has a shrinking basis, and we denote it by
{a,}. We have the biorthogonal functionals {a,’} of {a,}. Since the sequence
{a,’} is a Schauder basis of X (not necessarily the same basis as original one), we
can define several terms, e.g. M,’, Y,, ¥, and 6,° respectively corresponding
to M', Y, & and 6/, using the new basis {a,’}. In this case, we have a bijective
correspondence between the cylindrical measures on Y, belonging to €,2, and the
isonomy classes of sequences {i,} of real random variables satisfying the condition
that for every y'eM,’, the series 3 4,(a’,, ') converges in probability, because
M, coincides with 4 and so €,* coincides with €,3.

REMARK 2. Through this section, we can replace the space L° by L* and the
topology of convergence in probability by the usual norm topology, and in this
case we say C’ instead of §'.

4. Cylindrical measures on X

We adopt the same notation employed in the preceding section.
The next result has been shown by L. Schwartz.

THEOREM ([2]). Let E and F be locally convex Hausdorff spaces and j : E—F
a conbinuous, injective, linear map. If u and v are two cylindrical measures on E,
both scalarly concentrated on a collection of balanced, convex, weakly compact subsets
of E, and if j(u)=j(v), then p=v.

ProroSITION 4. Let 1 be an 1dentity map from X onto Y. If u and v are two
cylindrical measures of type(r, 1) on X, and if 1(u)=:i(v) then p=v.

' Proposition 4 is an easy consequence of the above theorem, and also it is
clearly seen that ¢(u) belongs to C1if y is of type(r, 1).
We now pass to the following theorem.

THEOREM 2. There exists a bijective corrvespondence between the cylindrical
measures of type(r, 1) on X and the cylindrical measures on 'Y belonging to CL.

Proor. We have already checked that the identity map ¢ induces an injective
map from the collection of all cylindrical measures of type(r, 1) on X into the
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collection C'. It is remained to show that the map is surjective. Given any
cylindrical measure u of C!, we have the associated random function f which is
continuous from M’ into L' if M’ is equipped with the topology #,. We recall
the next result that M’ is the closed subspace of X’ in the sense of its norm
topology and dense in X’ for the weak* topology, and therefore also for the
Mackey topology. Then there exists the extension f of f such that f is continuous
from X' into L' if X' is equipped with the Mackey topology (X', X). We have
the cylindrical measure of type(r, 1) associated with f, say A. It is obvious that
1(A)=u. Thus the proof is complete.

It follows from Theorems 1 and 2 that every cylindrical measure of type(r, 1)
on X is representable as a sequence of real random variables, which is uniquely
determined, in disregard of isonomy. However, at present we do not get the
sufficient condition for the sequence of real random variables to define the
cylindrical measure of type(r, 1).

The restriction of cylindrical measures to type(r, 1) is not essential damage for
the investigation of cylindrical measure theory. This is supported by the fact that
every cylindrical Gauss measure on an arbitrary Banach space is of type(r, 1).

Finally, we add some argument about bases of Banach spaces. A sequence
{x,}%-, in a Banach space X is called a Schauder basis of X if for every x&X
there is a unique sequence of scalars {o,}3-, so that = % ®,%,. The impor-

n=1

tant examples of Schauder bases are the Haar system in L?(0, 1)(1<p<co),
the Schauder system in C(0, 1) and the sequence of unit vectors in each of the
spaces ¢, and /?(1<<p<oo0). In particular, each of the spaces L#(0, 1), I#(1< p< o)
and ¢, has a shrinking basis, i.e. its dual has a Schauder basis. The object of

this note is a generalization of the theory for the spaces which have Schauder
bases but not shrinking bases.
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