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§ 1. Introduction.

The peripheral spectrum of positive operators in Banach lattices has been
studied by many mathematicians. Among them, it is well known that if a
positive operator T is irreducible and #(T)=1 is a pole of R(A,T), then the
peripheral spectrum of T is a group of roots of unity consisting entirely of simple
poles of R(A, T) [4, 5]. Moreover, if either an operator T is quasi-compact [1, 8],
or »(T)=1is a pole of R(A, T) of a positive operator 7" and the residuum P of R (A,
T) at A=1is of finite rank [3, §], then the peripheral spectrum of 7" consists entirely
of poles of R(A,T). M.A. Kaashoek and T.T. West showed that the peripheral
spectrum of an element T in a Banach algebra is a set of simple poles, including
7(T)=1 if and only if A(T) is locally compact, semi-simple and strict (Th. III.
2.1 of [2]), by examing the connection between the structure of locally compact
semi-algebra and spectral theory.

Recently, author has extended the relationship between uniform ergodicity
for a positive operator T and a simple pole of R(A, T) to that between convergence
of a certain sequence of polynomials {f; ,(7)} and poles of order £ [7]. In this
paper, by examing the structure of the cone to which the polynomial f; ,,(T) belongs,
we have obtained a necessary and sufficient condition for the peripheral spectrum
to consist entirely of poles which are not necessarily simple poles.

§2. Preliminary and definitions.
Let E be a Banach space. The peripheral spectrum of T € #(E) is the set
Per o(T) = {Aea(T): |A| =7(T)} .
Let S(T) be the norm closure in #(E) of the set
r,r>----1,
A(T) be the norm closure of the set

m .
a1 a; =0, meZ+}
i=1

and Ci(T) be the set
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In case of k=1, T, ;=T* and the norm closure of C,(7) is A(T). In case of k=1,
Ciy(T) is not semi-algebra, but a cone, although A(T) is semi-algebra. A semi-
algebra A(T) is called strict if A(T)N(-A(T))={0} and locally compact if A(T) con-
tains nonzero elements and the set

{xed(): Ixl=1)
is a compact subset of Z(E).

DeriNiTiON. We call a cone Ci(T)) k-relatively locally compact if the set
(e(T) e CilT): sup lg(BT)(I —BD)* =1}
1s a velatively compact subset of & (E).

If A(T) is locally compact, C;(7T) is 1-relatively locally compact. The converse
is not necessarily true. But we have

LeMMA 1. Let T be an element in & (E) with v(T)=1. Then the following are
equivalent.

i) A(T) us locally compact, semi-simple*) and strict.
i) S(T) is compact and 1€ o(T).
ii) For any o, |a|=1, Cy(aT) is 1-relatively locally compact, the set {|T"|:
n=1, 2,-++} s bounded and 1'co(T).
iv) Cy(T) s 1-relatively locally compact, the set {|T*|: n=1, 2,---} is bounded
and 1eo(T).

Proor. By III. 2.3 of [2], i) and ii) are equivalent. ii)=siii): Let D={Ax:
JAl =1, xeS(T)}. Then co D (convex closure of D) is compact by ii).
For «, |a|=1, consider

F, = {g(oT) € Cy(oT): Sup | gn)| =1} .

*) A semi-algebra A4 is said to be semi-simple if the zero ideal is the only closed two-
sided ideal J in 4 with J2=(0).
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For g(aT) €F,, g(T) is written as

and we have
= a5 7(e(1) = 1)l < sup Ig(PT <1,
by using 1€o(T) and the spectral mapping theorem. Therefore

glaT) = 3 a,(aT) ccoD.

1

iMs

Hence F,c coD, that is, F, is relatively compact. So Ci(aT) is 1-relatively
locally compact. :

iii)=siv) 1is obvious.

iv)=ii): By iv), there exists M=0 such that |T*|<M for n=1, 2,---. Since
!S;'IBIH (BT)*|=|T*|=M, we have S(T) < closure of {g(T) e Cy(T): lfqllg)]]lg(ﬂT) | =M}

Therefore S(T) is compact.

§ 3. Main result.

In the definition of A-relatively locally compact, we consider the norm
lg(TYI—T)*-1). As for the relation between this norm and the spectral radius,
we have the following lemma.

LeEMMA 2. Let T be an operator with the spectral radius »(T)=1 in a Banach
space and 1 be a pole of R(A, T) of order k. Then there exists L=0 such that
r(h (D)) = L|A(T)IT-T)*|
for every polynomial h(A).
Proor. If k=1, L=1 satisfies the lemma. We suppose 2=2. Let P; be
the spectral idempotent of 7" corresponding to the spectral set {1}. Put Q;_;=

P (I-T)*1'. Then Q4,740 and TQp— =0, since 1 is a pole of order 2=2. We
have 7(W(T)P,)=|h(1)|, by using the relation

| o (B (T)Py)=o (h(TPy)) =h(c(TPy)) = {h(1)}.
On the other hand, we have
V(T I~T)Py | = () Qaerl = 1(1)Qposl
= [B() [ 1Qasl -
Therefore we have
r(WT)Py) = |MT)I—T)*Py]|/|1Qs-1l
< IROE—TYH P 1Qs-1 ] -
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Since (I—T)*-1is invertible on (I—P;) E by the definition of P,, there exists S, €
&(E) such that

(I—P)I-T)*1S, =I—P,.
So we have
MDY T—Py)™| = |(MT)T—T )T —P1) Sp)"|
= WWT)I=T)* " |(I—Py) Sy™
and '
r(WT)I—Py)) = |(IT—Py) Syl IMT)(I~T)*] .

Therefore we have

7(K(T)) = #(H(T)Py + K(T)(I—Py)
< 7T)Py) + r(T)I—Py) < LIMT)I -T2,

where
L =||Py|[/|Qs-1) + |(T—Py) S4ff .

‘As a relation between polynomials and poles, author has obtained Theorem 2
of [7]. The polynomial f; ,(7) in Th. 2 of [7] can be rewritten as follows:

n—~k
JonlD) = Eo bp,i Ty, (1)

where
Tk,O = I )

Ty, sis defined in §2 for ¢>1,

» nt+k—2 n+2k—2
bk"’“l—-( 2k—1 )/( 2k—1 )
n+k——i—2>/< n+2k—2

d P
an s ( 2k—2 2k—1

) for 12>1.

—k
Here'f% by,;=1 and b, ;=0. Therefore f; .(T) is the convex combination of T} ;

7

and (f; n(T)—bs,I) belongs to Cix(T). By using Th. 2 of [7] and the above

lemma 2, we obtain the following theorem.

THEOREM. Let E be a Banach space and T be an element in & (E) with »(T)
=1. Then the following statements are equivalent for k=1.

1) Per o(T) is a set of poles of R(X,T) of order at most k and the maximal ovder
of the poles in Per o(T) is k.

ii) For each o, |a|=1, Ci(oT) s k-relatively locally compact and the order
1T 4s nk-1%)

ProoF. 1i)=ii); In order to show that Cy(T) is k-relatively locally compact,

*%)  This means that the set (|| T#/n#-1|: #=1,2,...} is bounded, but the set {|T#/n*-2]:
n=1,2,-+-} is not bounded.
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take g,(T) € C4(T) and assume sup lgs(BT)I—BT)*-1 <1 for n=1, 2,--.. We

will prove that the sequence {g,(7)} has a convergent subsequence. Here g,(7T)
is written as

6ul) = 3 ailn) T

where a;(n)=0 and a,;(n)=0 for ¢ sufficiently large. Let o, be the pole of R(A,
T) of order k. Then 1 is a pole of R(A, ay~*T) of order 2 and we have

élai(n) L= g}l a;(n) € o(g, (0g™1T))

by the spectral mapping theorem and the relation

_ N N S R—1 1
= (Mg ()

s 1+s

Therefore we have
3 ai(n) = |3 ailr)| S7 (g (1)
= gulo™ DI~y T L<L (2)

by lemma 2 and assumption. By using compactness arguments and the
diagonal process, we obtain an increasing sequence {#;} in Z+, such that for each s,
the sequence {a;(n;)} converges. By passing to this subsequence, we may
suppose that b;=lim a;(n) exists. Observe that

n

b;=0 and b <L. (3)
i=1

Let P, be the spectral idempotent associated with the spectral set {A €o(T): |A|
=1} and put S=T(I—P,). Since #(S)<1, we see that the set {|n*~15"|: »
=1, 2,---} is bounded and therefore the set

USeill: 2=1,2,--+} (4)
is bounded.
This and (3) imply that the sequence {f: b;S;,;} converges in the norm of #(E).
i=1 v

Let D be its sum, i.e.
D=3 b;5.
i=1

Then we have D=lim g,(T)(I—P,) by using (2), (3) and (4).
n
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Now g,(1)=gu(T)(I—Pgy)+ g4(T)P, for each n e Z+.. Hence in order to prove
that {g,(7)} has a convergent subsequence,. it suffices to show that {g,(T)P,)}
has a convergent subsequence in the closed subalgebra of Z(E) generated by
TP,. 1If 1ep(T), I-T is invertible and

| gD = HeuDUI—T) |R(1L, T))*-
< |R(L T
If 1e€0(T), 1is a pole of R(A, T) of order at most 2 Let P’ be the spectral
idempotent associated with the spectral set {1}. Then we have g,(7)P'=
f}la,-(n)Tk,,-P’=§]a,-(n)P’ and the set {|gu(T)P’|; n=1,2,---} is bounded. Since
i= =1

I-Tis invertil;e on (Py—P')E, the set {Jgu(T)(Py—P")|: n=1,2,---} is bounded.
Therefore {g,(T)P,} is a bounded sequence in the closed subalgebra of & (E)
generated by TP,. From the spectral properties of 7" it follows that this algebra
is finite dimensional. So {g,(I)P,} has a convergent sﬁbséquence.

For any o, |a|=1, we can replace 7 by of in condition i). So we can
prove Cp(aT) is k-relatively locally compact in the same way.

Next, let Per o(T)={Ay,-++, A} and Py,---, P, be the associated spectral
idempotents. Then Py=P;+-.--+P,. Since »(T(I—P,) )<1, we have

THI—Py) -0  (n—>c0).
Since each A; is a pole of order at most %, we have-
k-1 n
T"Pj = )tj"Pj + 3 < )1\]'”""‘ Qj,m for n =%
m=1\ "

where Qj,m = P]()\]I—T)m 1 =m= k—1

and therefore

T s T"P] 1 .
WAl = bl k-1 T(I_PO)
S /\]" k-1 1 - n " 1 ”

So the set {|T*/#*-Y): n=1,2,--.} is bounded. If the set (|T%/n*-2|: n=
1, 2,---} is bounded, the maximal order is at most 2-1 by Th. 2 of [7], which is a
contradiction. So the order of | 7] is n*-1.

ii)=i): Since the order of || T#|| is n*-1, we have the set {|| f;,,(8T)(I—pT)*-1):
|fl =1, n=1, 2,---} is bounded (see p. 57 of [7]), where f; ,(T) is defined in (1)
above. Since Ci(aT) is k-relatively locally compact for any o, |al=1, {f;,4(aT)}
has a convergent subsequence. Therefore, by Th. 2 of [7], this means 1 is either in
p(aT) or else a pole of R(A, oT) of order at most %, that is, a1 is either in p(T) or
else a pole of R(x,T) of order at most k. So Per o(T) is a set of poles of R(A, 7).
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If the maximal order is at most k-1, we get the set {|T*/n*-%|: n=1,2,---} is
bounded, which is a contradiction. So the maximal order is Z.

It is well known that if an operator T in an ordered Banach space is
positive and 7(T) is a pole of R(A, T), it is of maximal order in Per o(T) [6].
Taking account of this fact, we have the following Corollary.

COROLLARY. Let E be a Banach space and T be an element 1n & (E) with r(I)=
1. Then the following statements are equivalent for k=1.
i) Per o(T) ¢s a set of poles of R(X, T) of order at most k and 1 is a pole of order

1) For any a, |a|=1, Cy(aT) is k-relatively locally compact, the order of | T
is n*-1 and A(T) is strict.

Proor. By Th. II. 1.2 and Th. IV. 1.7 of [2], we can prove easily.

ReEMARK. In case of 2=1, the above Corollary is the same with Kaashoek
and West’s theorem (Th. II1.2.1 of [2]) by lemma 1.
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