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§ 0. Introduction.

Characterization of spaces on which Green function associated with Laplacian
4 exists, has been treated as the classification theory of Riemann surfaces. In
particular, it is well known that the existence of a nonconstant positive harmonic
function implies the existence of a Green function [3]. Similar result has been

obtained for the partial differential operator of the form A4+ f}a,-(x)b/ax,- in the
i=1

n-dimensional space by the computational method in the theory of partial
differential equations.

Such problem is investigated as that of potential theory. On the other hand,
G. Hunt [2], K. Yosida [5], A. Yamada [4] and others have treated Green func-
tion as an operator in certain function space and characterized the corresponding
operator, such as Laplacian, as the generator of a suitable semigroup of operators.

In the present paper, we consider an operator L satisfying certain axioms
and, by means of abstract method, characterize the space where a Green operator
associated with L exists. Main difference of our results from those of Hunt and
Yosida is as follows; we first give an operator L and discuss the existence of the
corresponding Green operator; we choose axioms for L in such a way that our
result contains the case of differential operators of the form A--first order terms,

and we do not restrict the function space to Co(X)(=the completion of the space of

all continuous functions with compact support with respect to the supremum
norm). '

§1. Preliminary notions and the main result.

Throughout this paper, all functions are assumed to be real valued.

Let X be a locally compact and o-compact Hausdorff space, C(X) be the set
of all continuous functions on X and Cy(X) be the set of all functions in C(X) with
compact support. For any subdomain D of X, C(D), Cy(D) and Cy(D) are defined
analogously. We define the norm | f|| of any bounded function f on X (or D, D)
by ||f]=sup|f(¥)|, and denote by Co(X), Co(D) respectively the completion of
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Co(X) and Cgy(D) with respect to the norm.

Let L be the linear operator defined as follows and satisfying the axioms (x),
(8), (y) and (8) mentioned later. The domain (L) is a linear subspace of C(X)
such that @ (L)NC,y*(D) is dense in Cy*(D) for any subdomain D of X. L isa linear
operator (generally unbounded) of 2(L) into C(X); in particular, any constant ¢
belongs to (L) and Le=0. Furthermore L is assumed to be a local operator, that
is, if fe z7(L) and f(x)=0 in a neighborhood of a point x, € X, then (Lf)(x,)=0.

For any subdomain D of X, let

9(Lp) = {geC(D) | g=flp for some feo(L)}

and define Lpg=(Lf)|p. Then, since L is a local oprator, Lp is defined
independently of the chocie of f, and accordingly Lp is a linear operator of
2(Lp) into C(D). Hereafter we shall denote Lp by L briefly.

DerFiNiTION 1. A subdomain D of X is called a regular domain if the closure
D is compact and, for any @ € C(dD), there exists a solution % € #(L)NC(D) of
the boundary value problem: Lu=0 in D and u=¢ on 2D.

DEerINITION 2. A function # on a domain D ¢ X is said to be L-harmonic if
u € 9 (L) and satisfies Lu=0 in D.

DerFiNITION 3. A linear operator G of Cy(X) into C(X) is called a Green

operator associated with L if, for any fe o(L)NCy(X), #=Gf belongs to (L)
and satisfies Lu= — f on X.

The main purpose of this paper is to prove the following:

THEOREM 1. If the space X admats a positive nonconstant L-harmonic func-
tion, then exisis a Green operator associated with L.

We assume that the operator L satisfies the following axioms; these are
justified not only in the case of usual Laplacian, but also in the case of differential
operators of the form 4+ ‘iz, a;(x)o/ox; mentioned in §0 ([1], [7]).

() If Lu=0and » isl;llonconstant in D, then # does not take its maximum
in the interior of D (maximum principle).

(f) If {u,} and {Lu,} are uniformly bounded on D, then a subsequence {#,}
of {u,} converges uniformly on every compact subset of D (cf. Harnack theorem).

(y) For any regular domain D, any A>0 and any fe g (L)NC(D), there
exists u € 2(L)NCy(D) satisfying (A—L)u=f.

The dual space of C(D) is the set of all signed measures on D, which is denoted
by M(D). We denote by My(D) the set of peM(D) whose support is a compact set
in the interior of D, and by L* the dual operator of the restriction of L on C(D)
N2(L). Here we add the following axiom which corresponds to Weyl’s lemma
in the case of Laplacian. ‘

(8) If w e (D) satisfies (u, L*p) = 0 for any p € o(L*), then e 2(L) and
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Lu=0.

We assume that there exist sufficiently many regular domains, that is, for
any domains D; and D, satisfying D,cD,, there exists a regular domain D such
that D,cDcD,. '

§ 2. Preliminary lemmas.
Lemma 1. If uwe 2(Lp) takes its maximum at x%g€ D, then Lu(xy)=0.

LemMA 2. Suppose A>0. If A—Lyu=<0 in D, then u does not take ils
maximum in the interior of D. If (\—L)uz=0 in D, then u does not take its minimum
in the interior of D.

LEMMA 3. Suppose >0, fe a(LYNC(D) and ue a(LYNCy(D). If A—L)u
=f, then |ul|=|fl/A. Accordingly the function w in (y) is uniquely determined
by f.

LeMMmA 4. If f=0 in (y), then the corrvesponding u is =0.

LemMA 5. The function u in Definition 1 is uniquely determined by ¢.

Lemma 1 is proved from the axiom («). Lemmas 2 and 3 easily follow
from Lemma 1. Lemmas 4 and 5 may be proved by using Lemma 2.

LemMA 6. Suppose that {u,} and {Lu,} are uniformly bounded in D, and that
fa=—Lu,e o(L). If lim f,=0 wuniformly on every compact subset of D, then a
n—roo

subsequence {un,} of {u,} converges to a function u e o(L) and Lu=0 holds in D.

Proor. The existence of convergent subsequence {us,} of {u,} is assured
by (B); we shall denote the subsequence simply by {#,} again. For any p € o(L*)
NMy(D) we have {(u,, L*p) = (Lu,, p) = {—f,, p). Accordingly
(u, L*p) = lim (u,,, L*p) =lim (— f,, p) = 0.

7—>00

Hence # € (L) and Lu=0 by (5).

§ 3. The existence of Green operator in the case of compact domain.

We fix a regular domain D. Suppose A>0 and fe2(L)NC(D). Then by (y)

there exists u € (L) NCy(D) such that A—L)u=f. Since |u|=|f|/A by Lemma
3, (A—L)~'is defined and bounded on 2(L)NC(D). We put Ja=(A—L)-L. Then
we have || [|=<1/A. ], is defined as an operator of 2(L)NC(D) into @(L)NCy(D),
but we may consider J, as an operator of @(L)NCy(D) into Cy(D). Since C,o(D)
is a Banach space and @(L)NCy(D) is dense in Co(D), J is extended to a
bounded operator in Cy(D); we denote the extended operator by [, again.

By the Hille-Yosida theorem, there exists a unique semigroup {7} of

bounded operators in Cy(D) whose generator is a closed extention of the restriction

of L to o(L)NCy(D), and we have
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- (31) Df=[ eMTifai (feCyD).

The following proposition may be proved easily.

ProrosiTiON 1. [ satisfies the resolvent equation:

In—=Ju=(u=2InJ,-
Hence, by the result of Yosida [6], there exists a Green operator G defined by
Gf=s—lirr01 Jaf for any feCy(D) if and only if the following (3.2) and (3.8) hold:
Py

(3.2) s-lm A Jof —f
(3.3) S_lg%l\])‘f:o'

We shall prove (3.2) and (3.3).
Proor or (3.2). It follows from (3.1) that

Anf—f=[ AT~ f)dt.
0
Hence for any §>0,

I af=fIs [ e ITf = flde+ [ ae(ITf ) + )1 71) de
(] ]

<max|T.f—f| + 21f | e
<8

Accordingly
lim A /3 f— f| < max |T,f—f] .
2% o0 I<t<o

Since § is arbitrary and the right side tends to 0 as §—0, we have
lim | J3f = £ = 0.

Proor oF (3.3). For any A>0 and any fe o(L)NCy(D), we put v=aJ,f.
Then '

laal = AT =1/ and (A-L)ux=Af.
Accordingly
ILoal = Allall +1/1) =220 f1 -

Thus we see that {va}y>¢ and {L,} >, are uniformly bounded. Hence by the
axiom (f),

(8.4) {va} has a subsequence which converges uniformly on every compact
subset of D, as A | 0.

Let u<A. Then
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(3.5) ADf—pl f=Ah—J)+ Q=@ 3 f
= QA=A NJ+ A=) J3f
(by Proposition 1)
_ = (= J, ALL—1)f.
Let fi(x) =¢>0 and put wy=AJ,f;. Then

(3-6) ANA—fA=c@Ahl-1) =c(|a]x]—1) =0.

If f in the above argument is replaced by f;, then v, is replaced by w,, and
accordingly {w,} is uniformly bounded and ||Lw,|<2A|f;|»0as A} 0. Since ],
is a positive operator by Lemma 4, {w,} decreases monotonously as A} 0 by (3.5)
and (3.6). From this fact and (3.4), it follows that w, converges to a function w
uniformly on every compact subset of D. Since every w, is in Cy(D), we may

prove

PROPOSITION 2. lirré wy=w holds uniformly on D.
Ay

Thus {w,} and {Lw,} respectively converge to w and O uniformly on D.
Hence we have w € (L) and Lw=0 in D by Lemma 6. Accordingly, from (),
w does not take its maximum in the interior of D. Since w is continuous on D and
w=0 on 3D from Proposition 2, we have w=0 on D.

Thus we obtain that s-lim AJ,f,=0 for any positive constant function f,.
A0

Similary we may get the same result for any negative constant function. For

general fe @(L)NCy(D) we take constant functions f; and f, such that fi=<f<f,.
Since J, is a positive operator, we have

ANAEANLS=2]a)s.
Since the extreme left side and the extreme right side converge to O uniformly
on D as A0, we get S'hf? AJAf=0.
2

From the above results we may conclude the existence of Green operator in
the case of a compact domain.

§4. The existence of Green operator in the case of the whole space
X.

Let {D,}4-0.1,2,--- be a sequence of subdomains of X satisfying that D, is
compact and D,cD,., for each # and that GD,,:X ; such sequence {D,} is
called an exhaustion of X. Since X is locally nc=oompact and o-compact, such an
exhaustion always exists. Here we may assume every D, to be a regular
domain.

Let w, be the function L-harmonic in D,—D,, continuous on D,—D,, and
satisfying that w,=0 on 3D, and =1 on 2D,. Then the following Propositions
3 and 4 may be proved by using (x) (maximum principle) and Lemma 6.
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PROPOSITION 3. w,(x) decreases montonously at every point x, as n—oo, and
converges to an L-harmonic function w wuniformly on every compact subset of X.

PRrROPOSITION 4. The function w in Proposition 3 does not depend on the choice
of the sequence {D,}nz1.

The function w defined by the above proposition satisfies either w=0 on X—
D, or w>0 everywhere on X—D, by the axiom (a).

PROPOSITION 5. The situation: w=0 or w>0 on X—D,, does not depend on

the choise of Dy. Accordingly the situation depends only on topological properties
of X and the operator L.

This fact may be proved from Proposition 4 and by the maximum principle

(o).

PRrROPOSITION 6. w=0 +f and only if the following fact holds: for any subdomain
V of X and any function u bounded and continuwous on V, and L-harmonic in V, both
supu=supu and infu=infu
av 14 av v
are satisfied.

Proof of this proposition is achieved in the same way as that of Theorem 3 in
[31.

The following proposition also is proved by the same argument as in the
case of Riemann surfaces, namely, by applying Proposition 6 to a connected
component V of the domain {x|u(x)<u(x,)} where » is any nonconstant positive
L-harmonic function and %, is any fixed point in X.

ProrosITION 7. If there exists a nonconstant positive L-harmonic function on X,
then w=£0.

Under the assumption of Theorem 1 in §1, we have w0 by Proposition 7,
and accordingly w>0 in X—D,. Henceforth we assume w>0.

Let G, be the Green operator defined in §3 for each D,(#=>1). Then the
function #,=G,f satisfies Lu,=— fin D,. In each D, the operator J, considered
in §3 is a positive operator and G,,=s-£ilr%1 Ja. Hence G, also is a positive operator.

Now we take a nonnegative function feCy(X)N<(L). We may assume
that suppfcD,. Then,

PropositioN 8. G,f<G,f in D, if 1=<n<m.
This may be proved by using (a).

ProrosiTiON 9. max u,<(1—#)max u, for a sutitable »>0 independent of

oD 9Dy
n=1.
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Proor. Let 7 be a positive number such that max (1—w)=1—7 and put
oD

c,=—max #,. Then
9Dy

Therefore

max #, < max ¢,(l1—w) = (1—7)c, = (1—7) max u, .
oD, 9D ‘ 9D

Hereafter we fix 7 as defined above.
Since L(u,—u,)=0 in D,, we have, by (o) and Proposition 9,

#,—u; < maxu, < (1—7) max u, < (1—7) maxwu, on D,.
oDy 9Dy Do

Hence max (#,—u,) < (1—7) maxu,. Accordingly

Dy Dy
max #,—max #; = Max %,—7 max u,,
Do Dy Do Dg
which implies

(4.2) max u, < %nlax Uy .
Dy Dy
Since Lu,,=0 in D,—D, by supp f< D, and since #,=0 on 3D,, we have u,<
max #, in D,—D, This fact and (4.2) imply that
9Dy
(4.3) ", < 1 max #y in D,—D,.
4 oDy
From (4.2) and (4.3) we obtain

(4.4) Uy

IA

% maxu#; in D,.

Do

The sequence {%,} is monotone increasing in # by Proposition 8 and uniformly
bounded by (4.4). Hence u=Ilim #, exists, and

md

(4.5) 0<u=tmaxu,.
Do
Since {u,} and {Lu,} are uniformly bounded, a subsequence of {u,} converges
uniformly on every compact subset of X by (). By virtue of the monotonicity in
n, the original sequence {u,} converges uniformly on every compact subset of X.
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We fix an arbitrary #,. Then L(#,—u, )=0 in D, and {u,~u,,} is uniformly
bounded in D,,. Hence, by Lemma 6, #—u, € 2(L) and L(u—uy)=0 in D, .
Accordingly Lu=Lu,,=—fin D, . Since #, is arbitrary, we have Lu= —f in
X.

The above result is obtained for nonnegative function feCo(X)N2(L). For
any feCo(X)N2 (L), we may find g € Co(X) N & (L) such that g=0 and g=f on X.
Then there exist bounded functions #; and #, € &(L) such that Lu;=—g and Lu,
=—(g—f). Hence u=u,—u, satisfies Lu=— f.

Thus we have obtained a linear operator which maps feCo(X)NZ(L) to u
defined above; we denote the linear operator by G. Then u=Gf implies Lu=— f.

Therefore G is a Green operator associated with L considered in the whole space
X.

The proof of Theorem 1 is thus complete.

§ 5. Integral representation of the Green operator.

THEOREM 2. For the green operator G defined in the preceding section, there
exists a family of measures {®(x, E)|x € X} such that

(5.1) (1)@ = [ o d)f(y) for any feCy(X).
X

Proor. We fix a sequence of domains {D,} such that D,cD,cD,cD,---,
each D, is compact and G D,=X. For each », we fix a function g,c2(L)N
Cot(X) such that l_s_gnézlon D, and suppg,=D,+;. Then M”=?g§ (Gg,) (%)
is finite by (4.5). For every » we shall prove

(5.2) Gf@)| = M, f| for any feCy(D,)N2(L).

We may consider f=0 in X—D,, and we have —g,<f/| f|=g, on X; here we may
assume | f|| >0, otherwise (5.2) is trivial. Since G is a positve operator, we get

—M, = ~ng§T]1C—“—Gf§ Gg, <M, on X.

this shows (5.2). Since Cy(D,)N (L) is dense in Cy(D,), for each x € X, (Gf)(x)
is extended to a positive bounded linear functional &,(*)(f) defined on Cy(D,) which
satisfies

10, (f)| = M| [
by (5.2). Hence there exists a measure o) (x, E) in D, depending on «x such that

(5.3) 0.M(f) = | o™ (x, dy) f(3)
Dn

for any fe Co(D,) and any x € X.
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Next we extend the measure to the whole space X. If n<m and feCy(D,)
N(L), then

[ 20w, a) f(5) = 0.9() = (6f)x) = 8. (/)
Dn

—[ ot a) fly).

Dﬂﬂ
Since Co(D,)N2(L) is dense in Cy(D,), we have

[ o™ d)fis) =] om(x,d)f(y) forany feCyD.),
"Dn, Dy

which implies & (x, E)=®")(x, E) for any x€X and any Borel set EcD,.
Hence, for every #, there exists a measure ®(x, E) on X such that

(5.4) &%, E) =" (x, E) for EcCD,.
For any feCo(X)N2(L) we consider D,>supp f and we have

(G @) = 2:(f) = [ 00w, dy) f(3) = [ @(x, dy) f(3)
Dy

X
by (5.3) and (5.4). Our assertion (5.1) is thus proved.

§6. An example of the case where the range of Green operator is
not contained in Cy(X). )

G. Hunt [2], K. Yosida [5] and others have constructed abstract potential

theory in the function space Cy(X). However, if we consider the differential
operator of the form L=4+ z";ai(x)a/ax,- in X=R", we may find a case where no
i=1

solution of the equation Lu=— f for given fe Cy(X) is contained in the space
Co(X). We shall give an exmaple of such case. (The result of the present paper
covers that kind of case.)

ExampLE. The space X={(x,y)|0<x<oo, 0<y<w} with usual Euclidean
topology is locally compact and o-compact. We consider the operator L:

Ls = thyy + tyy — (¢¥—1) 1y .

Then,
[a] There exists a nonconstant positive L-harmonic function in X.
%

In fact the function #(x, y)= j e?*~¢ d¢ satisfies Lu=0 in X. On the other

0
hand we may prove that

[b] If feCRX), f=0 and f==0, then no solution of the equation Lu=-—f
belongs to Cy(X).
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