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Introduction

This note deals with the characterization of cylindrical measures on a
Banach space with a shrinking basis.

1. Preliminaries.

Let E and F be Banach spaces over the real fleld R, E’ be the topological
dual space of E and L (E, F) be the Banach space of continuous linear maps
u: E—F,

Our terminology shall primarily be in agreement with that of [3] and [4].

DeriniTioN 1. A4 cylindrical measure (or cylindrical probability) p on E is
a correspondence which assigns to each u € L(E, H), where H is a finite dimen-
sional space, a Radon probability y, on H such that the following coherent re-
lation is satisfied : if u e L(E, H) and ve L (H, K), where K is a finite dimen-
sional space, then p,,,=v ().

This definition may be applicable to any other locally convex Hausdorff
topological vector spaces. Moreover, we can restrict the H to spaces of the
form R™ where n is a positive integer, since every n-dimensional Hausdorff
topological linear space is topologically isomorphic to R”. Thus a cylindrical
measure ¢ on E associates with each n-tuple (&4, ------ , €,), where each &, € E’,
a Radon probability on R”.

DerintTioN 2, (i) Let p be a cylindrical measure on Eand 0 < 0 < 1.
Then p is said to be scalarly concentrated up to 6 on a set AC E if for every con-
tinuous linear form & € E/, (u.)4 (£ (4)) = 1 — 0 where (z)4 is the inner meas-
ure associated with g,

(ii) Let & be a collection of subsets of E. A cylindrical measure g is
said to be scalarly concentrated on & if for every ¢ > 0 there exists a.set 4 €&
such that p is scalarly concentrated up to ¢ on A4.

DeriNITION 3. A sequence {e,};_, ina Banach space E is called a Schauder
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basis of E if for every x ¢ E there is a unique sequence of scalars {a,};-, such

that x= 3 a,e,.
n=1

In this note we shall not consider any type of bases in infinite-dimensional
Banach spaces besides Schauder bases. Therefore, from now on, we shall omit
the word Schauder.

We assume the Banach space E to have a basis {e,};.,. For every n, the

linear functional e, on E defined by e, (Z aiei) — a, is continuous. These
i=1

functionals are called the biorthogonal functionals associated to the basis

{en};;l-

DeriNiTION 4, A basis {e,}y., of E is called a shrinking basis if the se-
quence {e,}y_, of the biorthogonal functionals associated to {e,};, is a basis of
E'.

The following theorem, due to W. B. Johnson, H.P. Rosenthal and M.
Zippin, provides an interesting characterization of shrinking bases.

TueoreM 1. ([2]) Let E be a Banach space such that E' has a basis.
Then E has a shrinking basis.

Finally we shall make a brief mention of the relation between cylindrical
measures and random functions. A sample space is a pair (£2, m) consisting
of a topological space £ and a finite positive Radon measure m with total mass
1, defined on £2. An equivalence class of m-measurable maps from £ to R is
called a real random variable, and we denote by L°(f2, m; R) the set of all
real random variables. Let (£2, m) and (£, m’) be two sample spaces. We
say that two families {x;};c; and {x;};c; of real random variables such that
x;: 2 —>Rand x;: £ — R are isonomous if for every finite subset J of I
they define the same probability distribution on R"7", where ||J|| means the
cardinal number of J. Now we shall define a random function. Given an
arbitrary set 7, a random function fon T is a map from T to L2, m ; R).
Unless T has some structure, we can regard a random function f as a family
{f(®)}ier of random variables. Then it follows that the concept of isonomous
random functions is well defined. In the case where T is a vector space, we
define a random function f to be linear if for every 2;, € R and ¢, 1, T it
satisfies the relation

S Aty + 25t2) =2, f (t1) + Ao f (t3)

in the sense of equality of random variables.
The ensuing statements are well known results. (cf. [4])

ProrosiTioN 1. There exists a bijective correspondence between the cylin-
drical measures on E and the isonomy classes of linear random functions on E'.
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ProrosiTioN 2. Let p be a cylindrical measure on E, f: E'— L*(2, m; R)
a linear random function associated with p. The following are equivalent :

(@) p is scalarly concentrated on the balls of E ;

(b) fis continuous if L°(2, m ; R) is equipped with the topology of con-
vergence in probability.

Prorosrtion 3. If u is a Radon probability on E equipped with the weak
topology o(E, E'), then p is also a Radon probability on E equipped with its
norm topology, and vice versa.

Remark. In particular, when the topological dual E’ of E is separable,
we can replace E by E’and the weak topology ¢ (E, E’) by the weak* topology
o (E', E) in the above statement.

2. Main results.

First, we refer to the following lemma without the proof, that is obtained
from the Banach-Steinhaus theorem for spaces which are not necessarily locally
convex spaces.

We keep the notation of the preceding section.

Lemma 1. (cf. [4]) Let u,: E— L, m; R) (n=1, 2, ------ ) be a se-
quence of continuous linear maps which converges pointwise to a linear map u :
E— L°(2,m; R). Then u is continuous.

Here, we consider that L? is endowed with the topology of convergence in
probability.
Now we shall prove the following

TueoreMm 2. Let E be a Banach space with a shrinking basis {e,};-1.
T here exists a bijective correspondence between the cylindrical measures on E
scalarly concentrated on the balls, and the strong isonomy classes of sequences
{x.(0)}7_10f real random variables with the following property :

(*) For every x' € E/, the series 3, x,(®) (e,, x') converges in probability.
n=1

Proor. Suppose that p is a cylindrical measure on E scalarly concentrated
on the balls. Then we have a continuous linear random function f: E —
L2, m; R) associated with g, by Propositions 1 and 2. Denote by {e, };7-: the
biorthogonal functionals associated to {e,}s... For each e,, there corresponds
a real random variable f'(e;). Then clearly, letting x, = f (e,,), it can satisfy
the condition (*). Indeed, each x’c E’ can be represented as x’'=3 a,e,,

n=1

because the sequence {e;}7_, is a basis of E’. Therefore we only have to prove

that the series > a,f (e,) converges in probability for every scalar sequence
n=1
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{a,}p_, such that 3 a,e, € E’. But we can get easily this result using the con-
n=1

tinuity of the linear random function f.
Conversely, let (£2, m) be a sample space and {x,(»)};-; a sequence of real
random variables defined on £ satisfying the condition (¥). We obtain a linear

random function f. TItisas follows. For each x’ € E’ the series Y. x,(w) {e,, x>
n=1

converges in probability to some random variable, say f(x’). Obviously fis a
linear random function on E’. Next we shall show the continuity of f. For
any integer N >0, let f be the linear map such that

x> fy(x) = £:1an X (®)

for every X’ = 3 a, e, € E'. The map fy is the composition of the projection
n=1

from R” into L° (2, m; R). The first one is obviously continuous and the
second one is continuous, too, because R” is a finite dimensional space. Thus
S 1s continuous for every integer N > 0. Since the sequence {f}¥-: tends
pointwise to f, we can use Lemma 1 and so we can say that f is continuous.
Propositions 1 and 2 show the existence of the cylindrical measure scalarly
concentrated on the balls of E associated with the isonomy class of f.

Recapitulating the above discussion, we have the next result that every
cylindrical measure scalarly concentrated on the balls of E defines the se-
quence of real random variables satisfying the condition (*) and vice versa.
We want to show the existence of the bijective correspondence between these
cylindrical measures and strong isonomy classes of sequences of real random
variables. Given any cylindrical measure g scalarly concentrated on the balls
of E, there corresponds the sequence {x,}y.; of real random variables.
Assume that a sequence {x;}>_, of real random variables is strongly isonomous
to {x,}x-, and satisfies the condition (*). If {x}}7., defines just the same cyl-
indrical measure p, then we complete the proof. Using the same way of
the latter half of the above discussion, we get the random function f* from
{x3}oros. It is clearly verified that f* is isonomous to f which is associated
with g Thus {x}};, defines p. [

We shall now characterize those sequences {x,} of real random vari-
ables for which the associated cylindrical measure p is a Radon measure
on E. For this purpose, we present the following propositionv (cf. [4D).

We denote by R the Cech compactification of R and by R*’ the space
of all maps from E’ to R equipped with the product topology. Let p be
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a cylindrical measure on E. To every n-tuple u=(&, ------ , &,) of elements
of E’, we have a probability g, on R" because it is the very definition
of the cylindrical measure, and let 7, be the projection from RZ’ onto the
partial product R" =R".

ProrositioN 4. ([4]) Given any cylindrical measure p on E, there cor-

responds a Radon probability, say i, on the space RE such that T () =
Sor every u.

Remark. Thus we have the sample space (RZ, ). Let f be the
function which is simply the &-th projection =,: RE’ — R, where & is an
arbitrary element of E’. Then for almost every w € R” the map f (&) takes
its value in R (not only in Ii) and this function f is the random function

from E’ to Lo(i{IE', ¢t ; R) associated with the cylindrical measure g4 origi-
nally given.

We can consider E as a subset of R® with the help of the canonical
injection j: E— R* defined by j(x)=(Kx, &).cz- Then we have the
following

Lemma 2. '([4]) If the Radon probability [t induced by p is concentrated
on j(E), then the original cylindrical measure p is the Radon probability on
E equipped with the weak topology o (E, E').

Remark. Of course, these proposition and lemma are verified even if
the Banach space E has no bases.

TureoreM 3. Let E be a Banach space with a shrinking basis {e,}y_,.
A cylindrical measure p on E, scalarly concentrated on the balls, is a Radon
measure if and only if the associated sequence {x,(®)}r-. of real random
variables satisfies the following condition :

i x,(w)e, converges in E for almost every we 2, where (2, m) is a
n=1

sample space.

Proore. First we observe that the condition that ) x,(w)e, converges
n=1

in E for almost every w e £, depends only on the isonomy class of the
random function f: E' — L2, m ; R) associated with the cylindrical measure
u, or (it comes to the same thing) on the strong isonomy class of the sequence
{x.(@)}5-, associated with p. The sequence {x,(0)}s- defines a map from
2 to RN, where N is the set of all positive integers. Evidently, the space
E with the basis {e,}7_, can be considered as a sequence space by identifying each

x= 3 a, e, € E with the unique sequence of coefficients (a;, as, a3, - ).
n=1
Therefore we can regard such a sequence space in the same light with E

without any confusion. And so the condition that Y x,(w)e, converges in

n=1
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E for almost every w € £2, means that the image of the measure m with
respect to the map {x,}: £2 — R is concentrated on the subspace E of RN.
By the definition of isonomy, the projections of {x,}(m) onto the products
R’, where J is a finite subset of N, depend only on the isonomy class of
{x.}o1, and therefore {x,} (m) depends only on the isonomy class of {x,}5_;.

Therefore we may consider the special random function f and sample
space (2, m), i.e. Q:ﬁE', m=yp and f(§) is the &-th projection =, for
every £e E’. It follows from the consequence of Proposition 4 and its
Remark that the above function f is the associated random function with
respect to p. There is a canonical injection j: E > RE given by j(x)=

({xy &>)ecr for x=(a;, ag, -+ YeE (or x = ian e, € E), and the value
: n=1
of x,=f(e,) at a point w=j(x) € j(E)CRF is given by
xo(@)= f(en) (@)=, (J (x)) =<{x, €, =a,.
Thus ¢z is concentrated on j(E) if and only if the sequence (x;(w), x3(w), ----- )

belongs to E for almost every w € RZ', that is, > x,(w)e, converges in E
n=1

for almost every o € R”". According to Lemma 2 and Proposition 3, we
complete the proof. []

3. Further discussions for cylindrical measures.

In the preceding section we studied the connection between cylindrical
measures and sequences of real random variables. We shall now consider
the class of the cylindrical measures such that the associated sequence
{x.(w)};2, defined on 2, where (£2, m) is a sample space, satisfies the ensu-
ing condition (*¥).

Throughout this section, let £ be a Banach space with a shrinking
basis {e,}i~,, and we always assume the cylindrical measure ¢ on E to be
scalarly concentrated on the balls. '

(**)  For almost every w € R, the sequence {x,(w)e,}s-, is scalarly in I,
ie. {x,(w)en XD}y € I* for every x' € E’.

An interesting case is that of an E which is a C-space (cf. [1]), that
is, every sequence which is scalarly in /* is summable. In this case the
condition (**) implies that the associated cylindrical measure p is a Radon
measure.

Generally, we get the next result.

ProrosiTiON 5. Let p be a cylindrical measure on E. If the associated
sequence {x,(w)}>, defined on a sample space (2, m), satisfies the condition
(**), then p is a Radon probability on the second dual E’ of E, equipped

with the weak™® topology o(E", E').
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Proor. Let f be the random function f: E' — L° (2, m ; R) associated
with p. Clearly, f(&)(w)= % Xn(w) {e,, & for every & € E'. Now we define
n=1

the random variable f: 2 — R® such that

F @ © =7 =3 x ) en &

for almost every w € £ and every £ € E. For almost every o € 2, f(o)
is a map from E’ into R (not only into Iv{), and next we want to show
that f (w) is a continuous linear form on E’. This means that Fflo) €
j(E"”) for almost every w € £, where j is the canonical injection E” — R =
such that j(x")=({& x"))ecr for every x” € E’. As it is trivial that
f () is linear, we only have to prove the continuity. The linear map Fo)
is the composition of the linear map u from E’ into /* such that

&> {x, (0) e, )1

and the linear map v from /' into R such that

[0a(@) Cen V> 3 %, (@) Cews £

Notice that the sequence {x, (®)<e, &)};.: belongs to [* and the series
i x, (0) {e,, & converges for every & € E’, because it is the very condition
n=1

(**¥). It is easy to see the continuity of v. Then we shall check that of u.
Denote by u;, (k=1, 2, ------ ) the linear map from E’ into [* such that

u (&) ={x1(w) {ey, &, -+ , xp(@){ey, £, 0, 0, ------ }

for every & € E’. Obviously each u, is continuous and for every & € F/,
lim u,(¢§)=u(§) € . Therefore it follows from the Banach-Steinhaus theorem
k—oo

that u is continuous. ,

On the other hand we may regard g as a cylindrical measure on E’
equipped with ¢ (E”, E’). In order to assert that p is a Radon probability
on E” endowed with ¢ (E”, E’), it is sufficient to see that g, which was
introduced in the preceding section, is concentrated on j(E’’). But this
means that m (f~1 (J(E”))=1, ie. f(w) € j(E") for almost every w € 2. []

Finally we present some typical Banach spaces as examples that satisfy
our requirement. It is trivial that /%, L7 (0, 1) (1< p < o) and ¢, have
shrinking bases. In particular, since the spaces /X and LF (0, 1) are separ-
able and reflexive, the condition (**) implies that the associated cylindrical
measure g is a Radon probability on the original space equipped with its
norm topology. '
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